forked from Sharmi-1999/Covarate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmytraining.py
32 lines (27 loc) · 1.05 KB
/
mytraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
import pickle
def data_split(data,ratio):
np.random.seed(42)
shuffled=np.random.permutation(len(data))
test_set_size=int(len(data)*ratio)
test_indices=shuffled[:test_set_size]
train_indices=shuffled[test_set_size:]
return data.iloc[train_indices],data.iloc[test_indices]
if __name__ == '__main__':
df=pd.read_csv('covid.csv')
train,test=data_split(df,0.2)
X_train=train[['fever','bodypain','age','runnynose','diffbreath']].to_numpy()
X_test=test[['fever','bodypain','age','runnynose','diffbreath']].to_numpy()
Y_train=train[['infectionp']].to_numpy().reshape(2032,)
Y_test=test[['infectionp']].to_numpy().reshape(507,)
clf = LogisticRegression()
clf.fit(X_train,Y_train)
# open a file, where you ant to store the data
file = open('models/model.pkl', 'wb')
# dump information to that file
pickle.dump(clf, file)
input_features=[100,1,21,1,0]
infprob=clf.predict_proba([input_features])[0][1]
print("infprob")