-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
54 lines (44 loc) · 1.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import hydra
from hydra.utils import instantiate
from lightning import seed_everything
from omegaconf import OmegaConf
import torch
import wandb
@hydra.main(version_base=None, config_path="config", config_name="train")
def main(config):
# set to prevent warning
torch.set_float32_matmul_precision("high")
# reproducibility
if config.trainer.deterministic:
seed_everything(42, workers=True)
# dataset + dataloader = lightning datamodule
datamodule = instantiate(config.datamodule)
# network + loss + optimizer = lightning module
network = instantiate(config.network)
loss_fns = instantiate(config.loss_fns)
optimizer = instantiate(config.optimizer)
litmodule = instantiate(config.litmodule, network, loss_fns, optimizer)
# callbacks
callbacks = instantiate(config.callbacks)
# logger
# NOTE: https://docs.wandb.ai/guides/app/features/panels/code/
# stores code as an artifact but doesn't work that well yet
wandb.require("legacy-service") # to have diff.patch stored
logger = instantiate(config.logger)
if logger is not None:
logger.log_hyperparams(OmegaConf.to_container(config, resolve=True, throw_on_missing=True))
enable_checkpointing = True
else:
logger = False
enable_checkpointing = False
callbacks.pop("checkpoint", None)
# trainer and train!
trainer = instantiate(
config.trainer,
logger=logger,
callbacks=[cb for cb in callbacks.values()],
enable_checkpointing=enable_checkpointing,
)
trainer.fit(litmodule, datamodule=datamodule)
if __name__ == "__main__":
main()