-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathforecast_stat.py
99 lines (80 loc) · 3.18 KB
/
forecast_stat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import argparse
import torch
import numpy as np
import pandas as pd
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from datetime import datetime
from tqdm import tqdm
from models.Oracle import Oracle
from dataset import Visuelle2
from utils import calc_error_metrics
def run(args):
print(args)
# Seed for reproducibility (By default we use the number 21)
pl.seed_everything(args.seed)
####################################### Load data #######################################
# Load train-test data
test_df = pd.read_csv(
os.path.join(args.dataset_path, "stfore_test.csv"),
parse_dates=["release_date"],
)
# Load attribute encodings
cat_dict = torch.load(os.path.join(args.dataset_path, "category_labels.pt"))
col_dict = torch.load(os.path.join(args.dataset_path, "color_labels.pt"))
fab_dict = torch.load(os.path.join(args.dataset_path, "fabric_labels.pt"))
# Load Google trends
gtrends = pd.read_csv(
os.path.join(args.dataset_path, "vis2_gtrends_data.csv"), index_col=[0], parse_dates=True
)
img_folder = os.path.join(args.dataset_path, 'images')
visuelle_pt_test = "visuelle2_test_processed_stfore.pt"
# Create (PyTorch) dataset objects
testset = Visuelle2(
test_df,
img_folder,
gtrends,
cat_dict,
col_dict,
fab_dict,
args.trend_len,
demand=False, # Can't do demand forecasting of new products with these methods,
local_savepath=os.path.join(args.dataset_path, visuelle_pt_test)
)
# # If you wish to debug with less data you can use this syntax
# testset = torch.utils.data.Subset(testset, list(range(1000)))
testloader = DataLoader(
testset, batch_size=args.batch_size, shuffle=False, num_workers=0
)
print("Test batches:", len(testloader))
# ####################################### Run model #######################################
# Create model
model = Oracle(args.method, bool(args.use_teacher_forcing))
# Perform forecasts
gt, forecasts = [], []
for data in tqdm(testloader, total=len(testloader)):
with torch.no_grad():
(X, y, _, _, _, _, _, _), _ = data
y_hat = model(X)
forecasts.append(y_hat)
gt.append(y)
norm_scalar = np.load(os.path.join(args.dataset_path, 'stfore_sales_norm_scalar.npy'))
gt, forecasts = (
torch.cat(gt).squeeze().numpy() * norm_scalar,
torch.cat(forecasts).squeeze().numpy() * norm_scalar,
)
mae, wape = calc_error_metrics(gt, forecasts)
print(f"Results for {args.method}")
print(f"{wape},{mae}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# General arguments
parser.add_argument("--dataset_path", type=str, default='/media/data/gskenderi/visuelle2/')
parser.add_argument("--seed", type=int, default=21)
parser.add_argument("--method", type=str, default="naive")
parser.add_argument("--use_teacher_forcing", type=int, default=1)
parser.add_argument("--trend_len", type=int, default=52)
parser.add_argument("--batch_size", type=int, default=128)
args = parser.parse_args()
run(args)