diff --git a/README.md b/README.md index 8a601b40..fe15bfe6 100644 --- a/README.md +++ b/README.md @@ -16,7 +16,8 @@ The library provides: ### Pip In order to use th file `pyproject.toml` it is necessary to guarantee `pip>=21.8`. If necessary upgrade `pip` using `python -m pip install --upgrade pip`. -Install the library with `pip install git+https://github.com/IBM/terratorch.git`. +For a stable point-release, use `pip install terratorch`. +If you prefer to get the most recent version of the main branch, install the library with `pip install git+https://github.com/IBM/terratorch.git`. TerraTorch requires gdal to be installed, which can be quite a complex process. If you don't have GDAL set up on your system, we reccomend using a conda environment and installing it with `conda install -c conda-forge gdal`. diff --git a/docs/quick_start.md b/docs/quick_start.md index 7f027abb..2fdbab99 100644 --- a/docs/quick_start.md +++ b/docs/quick_start.md @@ -4,7 +4,8 @@ To get started, make sure to have [PyTorch](https://pytorch.org/get-started/loca Installing GDAL can be quite a complex process. If you don't have GDAL set up on your system, we reccomend using a conda environment and installing it with `conda install -c conda-forge gdal`. -Install TerraTorch with `pip install git+https://github.com/IBM/terratorch.git` +For a stable point-release, use `pip install terratorch`. +If you prefer to get the most recent version of the main branch, install the library with `pip install git+https://github.com/IBM/terratorch.git`. To install as a developer (e.g. to extend the library) clone this repo, and run `pip install -e .`. @@ -235,4 +236,4 @@ To run this training task, simply execute `terratorch fit --config --ckpt_path ` -For inference, execute `terratorch predict -c --ckpt_path --predict_output_dir --data.init_args.predict_data_root --data.init_args.predict_dataset_bands ` \ No newline at end of file +For inference, execute `terratorch predict -c --ckpt_path --predict_output_dir --data.init_args.predict_data_root --data.init_args.predict_dataset_bands `