forked from eladhoffer/TripletNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathData.lua
312 lines (274 loc) · 10.6 KB
/
Data.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
local opt = opt or {}
local Dataset = opt.dataset or 'SVHN'
local PreProcDir = opt.preProcDir or './'
local Whiten = opt.whiten or false
local DataPath = opt.datapath or './datasets/'
local SimpleNormalization = (opt.normalize==1) or false
local TestData
local TrainData
local ValidationData = {}
local Classes
function SplitData(Data, splitValue)
local Data1 = {}
local Data2 = {}
local size = Data.data:size()[1]
local newSize = math.floor(size * splitValue)
if (newSize % 2 ~= 0) then
newSize = newSize - 1
end
Data2.data = Data.data[{{newSize + 1, size}, {}, {}, {}}]
Data2.label = Data.label[{{newSize + 1, size}}]
Data1.data = Data.data[{{1, newSize}, {}, {}, {}}]
Data1.label = Data.label[{{1, newSize}}]
return Data1, Data2
end
if Dataset =='VIPeR' then
Dataset = torch.load(DataPath .. 'VIPeR/VIPeR.t7')
TrainData, TestData = SplitData(Dataset, 0.8)
TrainData, ValidationData = SplitData(TrainData, opt.splitTrainVal)
Classes = Dataset.label:totable()
elseif Dataset =='Cifar100' then
TrainData = torch.load(DataPath .. 'Cifar100/cifar100-train.t7')
TestData = torch.load(DataPath .. 'Cifar100/cifar100-test.t7')
TrainData, ValidationData = SplitData(TrainData, opt.splitTrainVal)
TrainData.labelCoarse:add(1)
TestData.labelCoarse:add(1)
ValidationData.labelCoarse:add(1)
Classes = torch.linspace(1,100,100):storage():totable()
elseif Dataset == 'Cifar10' then
TrainData = torch.load(DataPath .. 'Cifar10/cifar10-train.t7')
TestData = torch.load(DataPath .. 'Cifar10/cifar10-test.t7')
TrainData, ValidationData = SplitData(TrainData, opt.splitTrainVal)
Classes = {'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'}
elseif Dataset == 'STL10' then
TrainData = torch.load(DataPath .. 'STL10/stl10-train.t7')
TestData = torch.load(DataPath .. 'STL10/stl10-test.t7')
TrainData, ValidationData = SplitData(TrainData, opt.splitTrainVal)
Classes = {'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'}
ValidationData.label = ValidationData.label:add(-1):byte()
TestData.label = TestData.label:add(-1):byte()
TrainData.label = TrainData.label:add(-1):byte()
elseif Dataset == 'MNIST' then
TrainData = torch.load(DataPath .. 'MNIST/mnist-train.t7')
TestData = torch.load(DataPath .. 'MNIST/mnist-test.t7')
TrainData, ValidationData = SplitData(TrainData, opt.splitTrainVal)
Classes = {1,2,3,4,5,6,7,8,9,0}
ValidationData.data = ValidationData.data:view(TestData.data:size(1),1,28,28)
TestData.data = TestData.data:view(TestData.data:size(1),1,28,28)
TrainData.data = TrainData.data:view(TrainData.data:size(1),1,28,28)
ValidationData.label = ValidationData.label:byte()
TestData.label = TestData.label:byte()
TrainData.label = TrainData.label:byte()
elseif Dataset == 'SVHN' then
TrainData = torch.load(DataPath .. 'SVHN/train_32x32.t7','ascii')
ExtraData = torch.load(DataPath .. 'SVHN/extra_32x32.t7','ascii')
TrainData.X = torch.cat(TrainData.X, ExtraData.X,1)
TrainData.y = torch.cat(TrainData.y[1], ExtraData.y[1],1)
TrainData = {data = TrainData.X, label = TrainData.y}
TrainData.label = TrainData.label:add(-1):byte()
TrainData.X = nil
TrainData.y = nil
ExtraData = nil
TestData = torch.load(DataPath .. 'SVHN/test_32x32.t7','ascii')
TestData = {data = TestData.X, label = TestData.y[1]}
TrainData, ValidationData = SplitData(TrainData, opt.splitTrainVal)
TestData.label = TestData.label:add(-1):byte()
ValidationData.label = ValidationData.label:add(-1):byte()
Classes = {1,2,3,4,5,6,7,8,9,0}
end
TrainData.label:add(1)
TestData.label:add(1)
ValidationData.label:add(1)
--Preprocesss
TrainData.data = TrainData.data:float()
TestData.data = TestData.data:float()
ValidationData.data = ValidationData.data:float()
local _, channels, y_size, x_size = unpack(TrainData.data:size():totable())
if SimpleNormalization then
local mean = TrainData.data:mean()
local std = TrainData.data:std()
TrainData.data:add(-mean):div(std)
TestData.data:add(-mean):div(std)
ValidationData.data:add(-mean):div(std)
else
--Preprocesss
local meansfile = paths.concat(PreProcDir,'means.t7')
if Whiten then
require 'unsup'
local means, P, invP
local Pfile = paths.concat(PreProcDir,'P.t7')
local invPfile = paths.concat(PreProcDir,'invP.t7')
if (paths.filep(Pfile) and paths.filep(invPfile) and paths.filep(meansfile)) then
P = torch.load(Pfile)
invP = torch.load(invPfile)
means = torch.load(meansfile)
TrainData.data = unsup.zca_whiten(TrainData.data, means, P, invP)
else
TrainData.data, means, P, invP = unsup.zca_whiten(TrainData.data)
torch.save(Pfile,P)
torch.save(invPfile,invP)
torch.save(meansfile,means)
end
TestData.data = unsup.zca_whiten(TestData.data, means, P, invP)
ValidationData.data = unsup.zca_whiten(ValidationData.data, means, P, invP)
TrainData.data = TrainData.data:float()
TestData.data = TestData.data:float()
ValidationData.data = ValidationData.data:float()
else
local means, std
local loaded = false
local stdfile = paths.concat(PreProcDir,'std.t7')
if paths.filep(meansfile) and paths.filep(stdfile) then
means = torch.load(meansfile)
std = torch.load(stdfile)
loaded = true
end
if not loaded then
means = torch.mean(TrainData.data, 1):squeeze()
end
TrainData.data:add(-1, means:view(1,channels,y_size,x_size):expand(TrainData.data:size(1),channels,y_size,x_size))
TestData.data:add(-1, means:view(1,channels,y_size,x_size):expand(TestData.data:size(1),channels,y_size,x_size))
ValidationData.data:add(-1, means:view(1,channels,y_size,x_size):expand(ValidationData.data:size(1),channels,y_size,x_size))
if not loaded then
std = torch.std(TrainData.data, 1):squeeze()
end
TrainData.data:cdiv(std:view(1,channels,y_size,x_size):expand(TrainData.data:size(1),channels,y_size,x_size))
TestData.data:cdiv(std:view(1,channels,y_size,x_size):expand(TestData.data:size(1),channels,y_size,x_size))
ValidationData.data:cdiv(std:view(1,channels,y_size,x_size):expand(ValidationData.data:size(1),channels,y_size,x_size))
if not loaded then
torch.save(meansfile,means)
torch.save(stdfile,std)
end
end
end
function GroupByLabel(labels)
local numClasses = labels:max()
local Grouped = {}
for i=1,labels:size(1) do
if Grouped[labels[i]] == nil then
Grouped[labels[i]] = {}
end
table.insert(Grouped[labels[i]], i)
end
return Grouped
end
function Keys(dict)
local KeysDict = {}
local counter = 1
for key, value in pairs(dict) do
KeysDict[counter] = key
counter = counter + 1
end
counter = counter - 1
return{keys=KeysDict, size=counter}
end
function GenerateList(labels,num, size)
local list = torch.IntTensor(size,num)
local Grouped = GroupByLabel(labels)
local Keys = Keys(Grouped)
local Classes = Keys.keys
local nClasses = Keys.size
local c = torch.IntTensor(num-1)
for i=1, size do
c[1] = Classes[math.random(nClasses)] --compared class
local n1 = math.random(#Grouped[c[1]])
local n_last = math.random(#Grouped[c[1]])
while n_last == n1 do
n_last = math.random(#Grouped[c[1]])
end
list[i][1] = Grouped[c[1]][n1]
list[i][num] = Grouped[c[1]][n_last]
for j=2,num-1 do --dissimilar classes
repeat
c[j] = Classes[math.random(nClasses)]
until c[j] ~= c[1]
local n_j = math.random(#Grouped[c[j]])
list[i][j] = Grouped[c[j]][n_j]
end
end
return list
end
function GenerateListTriplets(labels, size)
local list = torch.IntTensor(size,3)
local Grouped = GroupByLabel(labels)
local Keys = Keys(Grouped)
local Classes = Keys.keys
local nClasses = Keys.size
for i=1, size do
local c1 = Classes[math.random(nClasses)]
local c2 = Classes[math.random(nClasses)]
while c2 == c1 do
c2 = Classes[math.random(nClasses)]
end
local n1 = math.random(#Grouped[c1])
local n2 = math.random(#Grouped[c2])
local n3 = math.random(#Grouped[c1])
while n3 == n1 do
n3 = math.random(#Grouped[c1])
end
list[i][1] = Grouped[c1][n1]
list[i][2] = Grouped[c2][n2]
list[i][3] = Grouped[c1][n3]
end
return list
end
function GenerateBiasedListTriplets(labels, size)
local list = torch.IntTensor(size,3)
local Grouped = GroupByLabel(labels)
local Keys = Keys(Grouped)
local Classes = Keys.keys
local nClasses = Keys.size
for i=1, size do
local c1 = Classes[math.random(nClasses)]
local c2 = Classes[math.random(nClasses)]
while c2 == c1 do
c2 = Classes[math.random(nClasses)]
end
local same_loc = torch.LongTensor(#Grouped[c1])
local new_loc = torch.LongTensor(#Grouped[c2])
for k=1,#Grouped[c1] do
same_loc[k] = Grouped[c1][k]
end
for k=1,#Grouped[c2] do
new_loc[k] = Grouped[c2][k]
end
local n1 = math.random(#Grouped[c1])
list[i][1] = Grouped[c1][n1]
local n3=n1
while n1==n3 do
n3 = math.random(#Grouped[c1])
end
local p2 = DistanceTensor[Grouped[c1][n3]]:index(1,new_loc):float()
p2 = torch.cdiv(torch.ones(p2:nElement()):float(),p2)
local n2 = dist.cat.rnd(p2)--math.random(#Grouped[c2])
-- local p2 = DistanceTensor[list[i][1]]:index(1,new_loc):float()
-- p2 = torch.cdiv(torch.ones(p2:nElement()):float(),p2)
-- local n2 = dist.cat.rnd(p2)--math.random(#Grouped[c2])
-- local p3 = DistanceTensor[list[i][1]]:index(1,same_loc):float()
-- local n3 = dist.cat.rnd(p3)--math.random(#Grouped[c2])math.random(#Grouped[c1])
n2 = n2[1]
--n3 = n3[1]
list[i][2] = Grouped[c2][n2]
list[i][3] = Grouped[c1][n3]
end
return list
end
function hash_c(c1,c2)
return (c1*10 + c2 -10)
end
function CreateDistanceTensor(data,labels, model)
local Rep = ForwardModel(model,data)
local Dist = torch.ByteTensor(data:size(1),data:size(1)):zero()
for i=1,data:size(1) do
for j=i+1,data:size(1) do
Dist[i][j] = math.ceil(torch.dist(Rep[i],Rep[j]))
end
end
return Dist
end
return{
TrainData = TrainData,
TestData = TestData,
ValidationData = ValidationData,
Classes = Classes
}