diff --git a/Test_1.ipynb b/Test_1.ipynb new file mode 100644 index 0000000..0fb346d --- /dev/null +++ b/Test_1.ipynb @@ -0,0 +1,355 @@ +\{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### MinMaxScalar Test" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from learnemall.datasets import diabetes\n", + "from learnemall.preprocessing import MinMaxScalar" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x,y = diabetes.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ms = MinMaxScalar(x)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x_scaled = ms.scale(x)\n", + "print(x_scaled)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(ms.revert(x_scaled))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### StandardScaler Test" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from learnemall.datasets import diabetes\n", + "from learnemall.preprocessing import StandardScaler" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x,y = diabetes.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ss = StandardScaler(x)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "x_scaled = ss.scale(x)\n", + "print(x_scaled)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(ss.revert(x_scaled))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Linear Regression Test" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from learnemall.datasets import diabetes\n", + "from learnemall.linear import LinearRegression\n", + "from sklearn.metrics import mean_squared_error" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "xtrain,xtest,ytrain,ytest = diabetes.load_data(split=True,ratio=0.75)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "xtrain.shape,ytrain.shape,xtest.shape,ytest.shape," + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lr = LinearRegression()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "history = lr.fit(xtrain,ytrain,learning_rate=0.01,num_iters=10000)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mean_squared_error(ytrain,lr.predict(xtrain))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mean_squared_error(ytest, lr.predict(xtest))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Logistic Regression Test" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from learnemall.datasets import iris\n", + "from learnemall.linear import LogisticRegression\n", + "from sklearn.metrics import accuracy_score" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "xtrain,xtest,ytrain,ytest = iris.load_data(split=True,ratio=0.75)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "xtrain.shape,ytrain.shape,xtest.shape,ytest.shape," + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "lr = LogisticRegression()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "history = lr.fit(xtrain,ytrain,learning_rate=0.01,num_iters=10000)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "probs = lr.predict_proba(xtrain)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "accuracy_score(ytrain, lr.predict(xtrain))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "accuracy_score(ytest, lr.predict(xtest))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### KNNClassifier Test" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from learnemall.neighbors import KNNClassifier\n", + "from learnemall.datasets import iris" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "xtrain,xtest,ytrain,ytest = iris.load_data(split=True,ratio=0.75)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "xtrain.shape,ytrain.shape,xtest.shape,ytest.shape," + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "knn = KNNClassifier()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}