-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmodelutils.py
216 lines (183 loc) · 6.29 KB
/
modelutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import sys
sys.path.append('yolov5')
import torch
import torch.nn as nn
from quant import *
DEV = torch.device('cuda:0')
def find_layers(module, layers=[nn.Conv2d, nn.Linear, ActQuantWrapper], name=''):
if type(module) in layers:
return {name: module}
res = {}
for name1, child in module.named_children():
res.update(find_layers(
child, layers=layers, name=name + '.' + name1 if name != '' else name1
))
return res
@torch.no_grad()
def test(model, dataloader):
train = model.training
model.eval()
print('Evaluating ...')
dev = next(iter(model.parameters())).device
preds = []
ys = []
for x, y in dataloader:
preds.append(torch.argmax(model(x.to(dev)), 1))
ys.append(y.to(dev))
acc = torch.mean((torch.cat(preds) == torch.cat(ys)).float()).item()
acc *= 100
print('%.2f' % acc)
if model.training:
model.train()
@torch.no_grad()
def test_yolo(model, dataloader):
import json
from pathlib import Path
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from yolov5.utils.general import coco80_to_coco91_class, non_max_suppression, scale_coords, xywh2xyxy
from yolov5.utils.metrics import ap_per_class
from yolov5.val import process_batch, save_one_json
train = model.training
model.eval()
print('Evaluating ...')
dev = next(iter(model.parameters())).device
conf_thres = .001
iou_thres = .65
iouv = torch.Tensor([.5])
niou = iouv.numel()
class_map = coco80_to_coco91_class()
jdict = []
names = {k: v for k, v in enumerate(model.names)}
for i, (im, targets, paths, shapes) in enumerate(dataloader):
im = im.to(dev)
targets = targets.to(dev)
out, _ = model(im)
nb, _, height, width = im.shape
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(dev)
out = non_max_suppression(
out, conf_thres, iou_thres, labels=[], multi_label=True, agnostic=False
)
for si, pred in enumerate(out):
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else []
path, shape = Path(paths[si]), shapes[si][0]
if len(pred) == 0:
continue
predn = pred.clone()
scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1])
save_one_json(predn, jdict, path, class_map)
anno_json = dataloader.dataset.original.path.replace(
'images/val2017', 'annotations/instances_val2017.json'
)
import random
pred_json = 'yolo-preds-for-eval-%d.json' % random.randint(0, 10 ** 6)
with open(pred_json, 'w') as f:
json.dump(jdict, f)
anno = COCO(anno_json)
pred = anno.loadRes(pred_json)
eval = COCOeval(anno, pred, 'bbox')
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.original.img_files]
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2]
print(100 * map50)
os.remove(pred_json)
if train:
model.train()
@torch.no_grad()
def test_bertsquad(model, _):
import bertsquad
bertsquad.test(model)
def get_test(name):
if 'yolo' in name:
return test_yolo
if 'bertsquad' in name:
return test_bertsquad
return test
def run(model, batch, loss=False, retmoved=False):
dev = next(iter(model.parameters())).device
if retmoved:
return (batch[0].to(dev), batch[1].to(dev))
out = model(batch[0].to(dev))
if loss:
return nn.functional.cross_entropy(out, batch[1].to(dev)).item() * batch[0].shape[0]
return out
def run_yolo(model, batch, loss=False, retmoved=False):
dev = next(iter(model.parameters())).device
if retmoved:
return (batch[0].to(dev), batch[1].to(dev))
out = model(batch[0].to(dev))
if not model.training:
out = out[1]
if loss:
return model.computeloss(out, batch[1].to(dev))[0].item()
return torch.cat([o.flatten() for o in out])
def run_bert(model, batch, loss=False, retmoved=False):
dev = next(iter(model.parameters())).device
for k, v in batch.items():
batch[k] = v.to(DEV)
if retmoved:
return batch
out = model(**batch)
if loss:
return out['loss'].item() * batch[k].shape[0]
return torch.cat([out['start_logits'], out['end_logits']])
def get_run(model):
if 'yolo' in model:
return run_yolo
if 'bert' in model:
return run_bert
return run
def get_yolo(var):
from yolov5.models.yolo import Model
from yolov5.utils.downloads import attempt_download
weights = attempt_download(var + '.pt')
ckpt = torch.load(weights, map_location=DEV)
model = Model(ckpt['model'].yaml)
csd = ckpt['model'].float().state_dict()
model.load_state_dict(csd, strict=False)
from yolov5.utils.loss import ComputeLoss
model.hyp = {
'box': .05, 'cls': .5, 'cls_pw': 1., 'obj': 1., 'obj_pw': 1., 'fl_gamma': 0., 'anchor_t': 4
}
model = model.to(DEV)
model.computeloss = ComputeLoss(model)
return model
def get_bertsquad(layers=12):
import bertsquad
return bertsquad.get_model(layers=layers)
from torchvision.models import resnet18, resnet34, resnet50, resnet101
get_models = {
'rn18': lambda: resnet18(pretrained=True),
'rn34': lambda: resnet34(pretrained=True),
'rn50': lambda: resnet50(pretrained=True),
'yolov5s': lambda: get_yolo('yolov5s'),
'yolov5m': lambda: get_yolo('yolov5m'),
'yolov5l': lambda: get_yolo('yolov5l'),
'bertsquad': lambda: get_bertsquad(),
'bertsquad6': lambda: get_bertsquad(6),
'bertsquad3': lambda: get_bertsquad(3)
}
def get_model(model):
model = get_models[model]()
model = model.to(DEV)
model.eval()
return model
def get_functions(model):
return lambda: get_model(model), get_test(model), get_run(model)
def firstlast_names(model):
if 'rn' in model:
return ['conv1', 'fc']
if 'bertsquad' in model:
return [
'bert.embeddings.word_embeddings',
'bert.embeddings.token_type_embeddings',
'qa_outputs'
]
if 'yolo' in model:
lastidx = {'n': 24}[model[6]]
return ['model.0.conv'] + ['model.%d.m.%d' % (lastidx, i) for i in range(3)]