-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcancer_app.py
53 lines (49 loc) · 2.2 KB
/
cancer_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
from flask import Flask, render_template, request
import jsonify
import requests
import pickle
import numpy as np
import sklearn
from sklearn.preprocessing import StandardScaler
app = Flask(__name__)
model = pickle.load(open('breastcancer.pkl', 'rb'))
@app.route('/',methods=['GET'])
def Home():
return render_template('cancer.html')
standard_to = StandardScaler()
@app.route("/predict", methods=['POST'])
def predict():
texture_mean = float(request.form['texture_mean'])
perimeter_mean = float(request.form['perimeter_mean'])
smoothness_mean = float(request.form['smoothness_mean'])
compactness_mean = float(request.form['compactness_mean'])
concavity_mean = float(request.form['concavity_mean'])
concave_points_mean = float(request.form['concave_points_mean'])
symmetry_mean = float(request.form['symmetry_mean'])
radius_se = float(request.form['radius_se'])
compactness_se = float(request.form['compactness_se'])
concavity_se = float(request.form['concavity_se'])
concave_points_se = float(request.form['concave_points_se'])
texture_worst = float(request.form['texture_worst'])
smoothness_worst = float(request.form['smoothness_worst'])
compactness_worst = float(request.form['compactness_worst'])
concavity_worst = float(request.form['concavity_worst'])
concave_points_worst = float(request.form['concave_points_worst'])
symmetry_worst = float(request.form['symmetry_worst'])
fractal_dimension_worst = float(request.form['fractal_dimension_worst'])
prediction=model.predict([[texture_mean, perimeter_mean, smoothness_mean, compactness_mean,
concavity_mean, concave_points_mean, symmetry_mean, radius_se,
compactness_se, concavity_se, concave_points_se, texture_worst,
smoothness_worst, compactness_worst, concavity_worst,
concave_points_worst, symmetry_worst, fractal_dimension_worst]])
if prediction==1:
return render_template('cancer.html', prediction_text="Oops! The tumor is malignant.")
else:
return render_template('cancer.html', prediction_text="Great! The tumor is benign.")
if __name__=="__main__":
app.run(debug=True)