-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmalaria.py
105 lines (82 loc) · 3.49 KB
/
malaria.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# -*- coding: utf-8 -*-
from google.colab import drive
drive.mount('/content/drive')
!unzip -uq "/content/drive/My Drive/malaria.zip" -d "/content/drive/My Drive/disease"
#import shutil
#shutil.rmtree('/content/drive/My Drive/disease/malaria', ignore_errors=True)
import numpy as np
import pandas as pd
import tensorflow as tf
import np_utils
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout
import cv2
import matplotlib.pyplot as plt
import seaborn as sns
from PIL import Image
import os
print(os.listdir("/content/drive/My Drive/disease/malaria"))
data=[]
labels=[]
Parasitized=os.listdir("/content/drive/My Drive/disease/malaria/Parasitized/")
for a in Parasitized:
try:
image=cv2.imread("/content/drive/My Drive/disease/malaria/Parasitized/"+a)
image_from_array = Image.fromarray(image, 'RGB')
size_image = image_from_array.resize((30, 30))
data.append(np.array(size_image))
labels.append(1)
except AttributeError:
print("")
Uninfected=os.listdir("/content/drive/My Drive/disease/malaria/Uninfected/")
for b in Uninfected:
try:
image=cv2.imread("/content/drive/My Drive/disease/malaria/Uninfected/"+b)
image_from_array = Image.fromarray(image, 'RGB')
size_image = image_from_array.resize((30, 30))
data.append(np.array(size_image))
labels.append(0)
except AttributeError:
print("")
Cells=np.array(data)
labels=np.array(labels)
s=np.arange(Cells.shape[0])
np.random.shuffle(s)
Cells=Cells[s]
labels=labels[s]
num_classes=len(np.unique(labels))
len_data=len(Cells)
(x_train,x_test)=Cells[(int)(0.1*len_data):],Cells[:(int)(0.1*len_data)]
x_train = x_train.astype('float32')/255 # As we are working on image data we are normalizing data by divinding 255.
x_test = x_test.astype('float32')/255
x_train.shape
(y_train,y_test)=labels[(int)(0.1*len_data):],labels[:(int)(0.1*len_data)]
def model_builder(hp):
model = keras.Sequential()
filters = hp.Int('filters', min_value = 32, max_value = 128, step = 16)
kernel_size=hp.Choice('kernel_size', values=[3,5])
model.add(keras.layers.Conv2D(filters,kernel_size, activation = 'relu', input_shape=(30, 30,3)))
model.add(keras.layers.Conv2D(filters, kernel_size, activation = 'relu'))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(units=hp.Int('unit', min_value = 32, max_value = 128, step = 16), activation='relu'))
model.add(keras.layers.Dense(1, activation='sigmoid'))
hp_learning_rate = hp.Choice('learning_rate', values = [1e-2, 1e-3, 1e-4])
model.compile(optimizer = keras.optimizers.Adam(learning_rate = hp_learning_rate),
loss='binary_crossentropy',
metrics = ['accuracy'])
return model
!pip install keras.tuner
from tensorflow import keras
from kerastuner import RandomSearch
tuner_search=RandomSearch(model_builder,
objective = 'val_accuracy',
max_trials = 5,
directory = 'malaria_output',
project_name = 'Malaria_Detection')
tuner_search.search(x_train, y_train, epochs=3, validation_split=0.1)
model=tuner_search.get_best_models(num_models=1)[0]
model.summary()
from tensorflow.keras.callbacks import EarlyStopping
early_stop = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=3)
model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=50, initial_epoch=3, callbacks=[early_stop])
model.save('malariadisease.h5')