-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
174 lines (143 loc) · 6.02 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
## This script is based on the https://github.com/TaoRuijie/ECAPA-TDNN/blob/main/model.py
## I made some changes to the original code for training a binary classifier.
from typing import Optional
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from torchaudio.transforms import Resample
from huggingface_hub import PyTorchModelHubMixin
class SEModule(nn.Module):
def __init__(self, channels : int , bottleneck : int = 128) -> None:
super(SEModule, self).__init__()
self.se = nn.Sequential(
nn.AdaptiveAvgPool1d(1),
nn.Conv1d(channels, bottleneck, kernel_size=1, padding=0),
nn.ReLU(),
# nn.BatchNorm1d(bottleneck), # I remove this layer
nn.Conv1d(bottleneck, channels, kernel_size=1, padding=0),
nn.Sigmoid(),
)
def forward(self, input : torch.Tensor) -> torch.Tensor:
x = self.se(input)
return input * x
class Bottle2neck(nn.Module):
def __init__(self, inplanes : int, planes : int, kernel_size : Optional[int] = None, dilation : Optional[int] = None, scale : int = 8) -> None:
super(Bottle2neck, self).__init__()
width = int(math.floor(planes / scale))
self.conv1 = nn.Conv1d(inplanes, width*scale, kernel_size=1)
self.bn1 = nn.BatchNorm1d(width*scale)
self.nums = scale -1
convs = []
bns = []
num_pad = math.floor(kernel_size/2)*dilation
for i in range(self.nums):
convs.append(nn.Conv1d(width, width, kernel_size=kernel_size, dilation=dilation, padding=num_pad))
bns.append(nn.BatchNorm1d(width))
self.convs = nn.ModuleList(convs)
self.bns = nn.ModuleList(bns)
self.conv3 = nn.Conv1d(width*scale, planes, kernel_size=1)
self.bn3 = nn.BatchNorm1d(planes)
self.relu = nn.ReLU()
self.width = width
self.se = SEModule(planes)
def forward(self, x : torch.Tensor) -> torch.Tensor:
residual = x
out = self.conv1(x)
out = self.relu(out)
out = self.bn1(out)
spx = torch.split(out, self.width, 1)
for i in range(self.nums):
if i==0:
sp = spx[i]
else:
sp = sp + spx[i]
sp = self.convs[i](sp)
sp = self.relu(sp)
sp = self.bns[i](sp)
if i==0:
out = sp
else:
out = torch.cat((out, sp), 1)
out = torch.cat((out, spx[self.nums]),1)
out = self.conv3(out)
out = self.relu(out)
out = self.bn3(out)
out = self.se(out)
out += residual
return out
class ECAPA_gender(nn.Module, PyTorchModelHubMixin):
def __init__(self, C : int = 1024):
super(ECAPA_gender, self).__init__()
self.C = C
self.conv1 = nn.Conv1d(80, C, kernel_size=5, stride=1, padding=2)
self.relu = nn.ReLU()
self.bn1 = nn.BatchNorm1d(C)
self.layer1 = Bottle2neck(C, C, kernel_size=3, dilation=2, scale=8)
self.layer2 = Bottle2neck(C, C, kernel_size=3, dilation=3, scale=8)
self.layer3 = Bottle2neck(C, C, kernel_size=3, dilation=4, scale=8)
# I fixed the shape of the output from MFA layer, that is close to the setting from ECAPA paper.
self.layer4 = nn.Conv1d(3*C, 1536, kernel_size=1)
self.attention = nn.Sequential(
nn.Conv1d(4608, 256, kernel_size=1),
nn.ReLU(),
nn.BatchNorm1d(256),
nn.Tanh(), # I add this layer
nn.Conv1d(256, 1536, kernel_size=1),
nn.Softmax(dim=2),
)
self.bn5 = nn.BatchNorm1d(3072)
self.fc6 = nn.Linear(3072, 192)
self.bn6 = nn.BatchNorm1d(192)
self.fc7 = nn.Linear(192, 2)
self.pred2gender = {0 : 'male', 1 : 'female'}
def logtorchfbank(self, x : torch.Tensor) -> torch.Tensor:
# Preemphasis
flipped_filter = torch.FloatTensor([-0.97, 1.]).unsqueeze(0).unsqueeze(0).to(x.device)
x = x.unsqueeze(1)
x = F.pad(x, (1, 0), 'reflect')
x = F.conv1d(x, flipped_filter).squeeze(1)
# Melspectrogram
x = torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=512, win_length=400, hop_length=160, \
f_min = 20, f_max = 7600, window_fn=torch.hamming_window, n_mels=80).to(x.device)(x) + 1e-6
# Log and normalize
x = x.log()
x = x - torch.mean(x, dim=-1, keepdim=True)
return x
def forward(self, x : torch.Tensor) -> torch.Tensor:
x = self.logtorchfbank(x)
x = self.conv1(x)
x = self.relu(x)
x = self.bn1(x)
x1 = self.layer1(x)
x2 = self.layer2(x+x1)
x3 = self.layer3(x+x1+x2)
x = self.layer4(torch.cat((x1,x2,x3),dim=1))
x = self.relu(x)
t = x.size()[-1]
global_x = torch.cat((x,torch.mean(x,dim=2,keepdim=True).repeat(1,1,t), torch.sqrt(torch.var(x,dim=2,keepdim=True).clamp(min=1e-4)).repeat(1,1,t)), dim=1)
w = self.attention(global_x)
mu = torch.sum(x * w, dim=2)
sg = torch.sqrt( ( torch.sum((x**2) * w, dim=2) - mu**2 ).clamp(min=1e-4) )
x = torch.cat((mu,sg),1)
x = self.bn5(x)
x = self.fc6(x)
x = self.bn6(x)
x = self.relu(x)
x = self.fc7(x)
return x
def load_audio(self, path: str) -> torch.Tensor:
audio, sr = torchaudio.load(path)
if sr != 16000:
resampler = Resample(orig_freq=sr, new_freq=16000)
audio = resampler(audio)
return audio.mean(dim=0, keepdim=True) # Convert to mono if stereo
def predict(self, audio : torch.Tensor, device: torch.device) -> torch.Tensor:
audio = self.load_audio(audio)
audio = audio.to(device)
self.eval()
with torch.no_grad():
output = self.forward(audio)
_, pred = output.max(1)
return self.pred2gender[pred.item()]