-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgenerator.py
executable file
·183 lines (131 loc) · 6.1 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
import torch.nn.functional as F
import time
import numpy as np
class BaseGenerator(object):
def __init__(self, model, context, tokenizer, temperature=1, top_k=0, device='cpu'):
self.temperature = temperature
self.top_k = top_k
self.device = device
self.model = model
self.tokenizer = tokenizer
self.generated = self.get_context_tensor(context)
def filtering(self, logits, filter_value=-float('Inf')):
assert logits.dim() == 1
if self.top_k > 0:
top_values, top_indices = torch.topk(logits, self.top_k, dim=-1)
indices_to_remove = logits < torch.topk(logits, self.top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
top_values, top_indices = torch.topk(logits, 30, dim=-1)
generated = self.generated[0].tolist()
generated = [index for index in generated if index != 0 and index != 3946]
length = len(generated)
#if generated[-1] != generated[-2]:
#generated = generated[:-1]
for index in generated:
logits[index] = filter_value
return logits
def sample_sequence(self):
with torch.no_grad():
while True:
inputs = {'input_ids': self.generated}
outputs = self.model(**inputs)
next_token_logits = outputs[0][0, -1, :] / self.temperature
filtered_logits = self.filtering(next_token_logits)
while True:
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
if next_token.tolist() != [6809]:
break
if next_token.tolist() == [0]:
break
self.generated = torch.cat((self.generated, next_token.unsqueeze(0)), dim=1)
return self.generated
def get_context_tensor(self, context):
context = torch.tensor(context, dtype=torch.long, device=self.device)
context = context.unsqueeze(0)
return context
class CheckedGenerator(BaseGenerator):
def __init__(self, model, context, tokenizer, checker, genre, temperature=1, top_k=0, device='cpu'):
super(CheckedGenerator, self).__init__(model, context, tokenizer, temperature, top_k, device)
self.checker = checker
self.pattern_label = None
self.pattern = None
self.genre = genre
self.subgenre = 'lv' if len(genre) == 7 else 'jue'
self.genre_to_length = {"wuyanlv": 5, "qiyanlv": 7, "wuyanjue": 5, "qiyanjue": 7}
self.count = -1
self.position = 0
self.yun = None
def filtering_with_check(self, logits, filter_value=-float('Inf')):
assert logits.dim() == 1
interval_length = self.genre_to_length[self.genre]
tokens = (self.tokenizer).convert_ids_to_tokens((self.generated)[0].tolist())
if tokens[-1] == ',':
self.position = 0
else:
self.position += 1
if self.pattern_label == None and tokens[-1] == ',':
self.pattern_label = self.checker.judge_pattern(tokens[(-1-interval_length):-1], self.subgenre)
if self.pattern_label == None:
return None
pingze = self.pattern_label.split(' ')[0][-1]
if pingze == '1':
self.yun = tokens[-2]
self.pattern = self.checker.getpattern(self.pattern_label, self.subgenre)
return self.filtering_with_labels(logits)
else:
if tokens[-1] == ',' and self.yun == None:
self.yun = tokens[-2]
if self.pattern_label == None:
return super().filtering(logits)
else:
return self.filtering_with_labels(logits)
def filtering_with_labels(self, logits):
self.count += 1
interval_length = self.genre_to_length[self.genre]
if self.count >= len(self.pattern):
return super().filtering(logits)
else:
current = self.pattern[self.count]
if current == ' ' or current == '0':
return super().filtering(logits)
else:
if current == '1':
if self.position == interval_length - 1 and self.yun != None:
logits = self.filteringYun(logits)
return self.filteringPing(logits)
else:
return self.filteringZe(logits)
def filteringPing(self, logits, filter_value=-float('Inf')):
pingindex = self.checker.get_zeindex(self.tokenizer)
logits[pingindex] = filter_value
return super().filtering(logits)
def filteringZe(self, logits, filter_value=-float('Inf')):
zeindex = self.checker.get_pingindex(self.tokenizer)
logits[zeindex] = filter_value
return super().filtering(logits)
def filteringYun(self, logits, filter_value=-float('Inf')):
entire = set(range(len(logits)))
yun = self.checker.get_yunindnex(self.yun, self.tokenizer)
left = entire - set(yun)
logits[list(left)] = filter_value
return logits
def sample_sequence(self):
with torch.no_grad():
while True:
inputs = {'input_ids': self.generated}
outputs = self.model(**inputs)
next_token_logits = outputs[0][0, -1, :] / self.temperature
filtered_logits = self.filtering_with_check(next_token_logits)
if filtered_logits is None:
return None
while True:
logits = np.array(F.softmax(filtered_logits, dim=-1).tolist())
logits = logits[logits > 0]
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
if next_token.tolist() != [6809]:
break
if next_token.tolist() == [0]:
break
self.generated = torch.cat((self.generated, next_token.unsqueeze(0)), dim=1)
return self.generated