@@ -120,40 +120,40 @@ def _get_location_from_best(obj):
120120 # (or center) of the axes box.
121121 # 1. Key points of the legend
122122 lower_left_legend = x0_legend
123- lower_right_legend = np .array ([x1_legend [0 ], x0_legend [1 ]], dtype = np .float_ )
124- upper_left_legend = np .array ([x0_legend [0 ], x1_legend [1 ]], dtype = np .float_ )
123+ lower_right_legend = np .array ([x1_legend [0 ], x0_legend [1 ]], dtype = np .float64 )
124+ upper_left_legend = np .array ([x0_legend [0 ], x1_legend [1 ]], dtype = np .float64 )
125125 upper_right_legend = x1_legend
126126 center_legend = x0_legend + dimension_legend / 2.0
127127 center_left_legend = np .array (
128- [x0_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float_
128+ [x0_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float64
129129 )
130130 center_right_legend = np .array (
131- [x1_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float_
131+ [x1_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float64
132132 )
133133 lower_center_legend = np .array (
134- [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x0_legend [1 ]], dtype = np .float_
134+ [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x0_legend [1 ]], dtype = np .float64
135135 )
136136 upper_center_legend = np .array (
137- [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x1_legend [1 ]], dtype = np .float_
137+ [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x1_legend [1 ]], dtype = np .float64
138138 )
139139
140140 # 2. Key points of the axes
141141 lower_left_axes = x0_axes
142- lower_right_axes = np .array ([x1_axes [0 ], x0_axes [1 ]], dtype = np .float_ )
143- upper_left_axes = np .array ([x0_axes [0 ], x1_axes [1 ]], dtype = np .float_ )
142+ lower_right_axes = np .array ([x1_axes [0 ], x0_axes [1 ]], dtype = np .float64 )
143+ upper_left_axes = np .array ([x0_axes [0 ], x1_axes [1 ]], dtype = np .float64 )
144144 upper_right_axes = x1_axes
145145 center_axes = x0_axes + dimension_axes / 2.0
146146 center_left_axes = np .array (
147- [x0_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float_
147+ [x0_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float64
148148 )
149149 center_right_axes = np .array (
150- [x1_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float_
150+ [x1_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float64
151151 )
152152 lower_center_axes = np .array (
153- [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x0_axes [1 ]], dtype = np .float_
153+ [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x0_axes [1 ]], dtype = np .float64
154154 )
155155 upper_center_axes = np .array (
156- [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x1_axes [1 ]], dtype = np .float_
156+ [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x1_axes [1 ]], dtype = np .float64
157157 )
158158
159159 # 3. Compute the distances between comparable points.
0 commit comments