-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrl_multicore.py
66 lines (54 loc) · 2.68 KB
/
rl_multicore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import time
import argparse
import datetime
import panda_gym
from sb_callbacks import CustomCallback
from stable_baselines3 import A2C, DDPG, DQN, PPO, SAC, TD3
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv
from stable_baselines3.common.vec_env.base_vec_env import VecEnvWrapper
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="PPO_PegBox-v0", help="model name to use, e.g. type model_name in models/model_name")
parser.add_argument("--algorithm", type=str, default="PPO", help="Type of algorithm to use:\
A2C, DDPG, DQN, PPO, SAC, TD3")
parser.add_argument("--ts", type=int, default=1000, help="Number of timesteps the RL algorithm trains for")
parser.add_argument("--env", type=str, default="PegBox-v0", help="Enviroment to use")
parser.add_argument("--cpus", type=int, default=4, help="Number of CPUs to use")
args = parser.parse_args()
algorithms = {"A2C":A2C, "DDPG":DDPG, "DQN":DQN,
"PPO":PPO, "SAC":SAC, "TD3":TD3}
env_id = args.env
n_timesteps = args.ts
algorithm = algorithms[args.algorithm]
dir_model = "models/" + args.model + '/'
num_cpu = args.cpus # Number of processes to use
class randomise_on_reset(VecEnvWrapper):
def __init__(self, venv):
super().__init__(venv=venv)
def reset(self):
obs = self.venv.reset()
self.env_method('set_random_task')
return obs
def step_async(self, actions):
self.venv.step_async(actions)
def step_wait(self):
obs, reward, done, info = self.venv.step_wait()
return obs, reward, done, info
if __name__ == '__main__':
time1 = time.time()
print(f'1/4: Making Vector Enviroment for {args.model}, Time: {0}...', flush=True)
vec_env = make_vec_env(env_id, n_envs=num_cpu, vec_env_cls=SubprocVecEnv, vec_env_kwargs={'start_method':'fork'})
vec_env = randomise_on_reset(vec_env)
callback = CustomCallback(path=dir_model)
time2 = time.time()
print(f'2/4: Making model for {args.model}, Time: {datetime.timedelta(seconds=time2-time1)}...', flush=True)
model = algorithm("MlpPolicy", vec_env, verbose=0)
time3 = time.time()
print(f'3/4: Training starting for model {args.model}, Time: {datetime.timedelta(seconds=time3-time1)}...', flush=True)
start_time = time.time()
model.learn(n_timesteps, callback=callback)
finish_time = time.time()
total_time = finish_time - start_time
print('4/4: Training completed. Processing Time: ' + str(datetime.timedelta(seconds=total_time)), flush=True)
print(f'Time since start: {datetime.timedelta(seconds=finish_time-time1)}', flush=True)
model.save(dir_model+args.model)