-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsb_callbacks.py
65 lines (47 loc) · 2.29 KB
/
sb_callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from stable_baselines3.common.callbacks import BaseCallback
import csv
import pandas as pd
import os
import numpy as np
class CustomCallback(BaseCallback):
def __init__(self, verbose=0, path='.', file_name='data'):
super(CustomCallback, self).__init__(verbose)
self.path = path
self.file_name = file_name
if not(os.path.isdir(path)):
os.mkdir(path)
# Data collected on step and reset on rollout
self.step_data = pd.DataFrame()
# Data collected on rollout and saved on training end
self.mean_rollout_data = pd.DataFrame()
self.std_rollout_data = pd.DataFrame()
self.rollout_goal_reached_accuracy = pd.DataFrame()
def _on_step(self) -> bool:
all_data = self.training_env.env_method('get_step_info')
for idx, cpu_data in enumerate(all_data):
state, reward, info = cpu_data
data = info.copy()
data['net_reward'] = reward
self.step_data = pd.concat([self.step_data, pd.DataFrame([data])], ignore_index=True)
return True
def _on_rollout_end(self) -> None:
# Remove goal_reached_col
goal_reached_col = self.step_data.pop('goal_reached')
# Average columns
df_mean = pd.DataFrame(self.step_data.mean()).T
df_std = pd.DataFrame(self.step_data.std()).T
# preprocess goal_reached_col
goal_reached_col.dropna(inplace=True)
total_attempts = goal_reached_col.shape[0]
hits = goal_reached_col.sum()
percentage_goals_reached = pd.DataFrame([{'percentage_goals_reached' : hits / total_attempts}])
# Concat with rollout_data
self.mean_rollout_data = pd.concat([self.mean_rollout_data, df_mean])
self.std_rollout_data = pd.concat([self.std_rollout_data, df_std])
self.rollout_goal_reached_accuracy = pd.concat([self.rollout_goal_reached_accuracy, percentage_goals_reached])
# Reset data collection
self.step_data = pd.DataFrame()
def _on_training_end(self) -> None:
self.mean_rollout_data.to_csv(self.path + 'mean_'+self.file_name + '.csv')
self.std_rollout_data.to_csv(self.path + 'std_'+self.file_name + '.csv')
self.rollout_goal_reached_accuracy.to_csv(self.path + 'goals_'+self.file_name + '.csv')