-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbox.py
49 lines (44 loc) · 1.84 KB
/
box.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
import gym
from gym import logger
class Box(gym.Space):
"""
A box in R^n.
I.e., each coordinate is bounded.
Example usage:
self.action_space = spaces.Box(low=-10, high=10, shape=(1,))
"""
def __init__(self, low=None, high=None, shape=None, dtype=np.float32):
"""
Two kinds of valid input:
Box(low=-1.0, high=1.0, shape=(3,4)) # low and high are scalars, and shape is provided
Box(low=np.array([-1.0,-2.0]), high=np.array([2.0,4.0])) # low and high are arrays of the same shape
"""
if shape is None:
assert low.shape == high.shape
shape = low.shape
else:
assert np.isscalar(low) and np.isscalar(high)
low = low + np.zeros(shape)
high = high + np.zeros(shape)
if dtype is None: # Autodetect type
if (high == 255).all():
dtype = np.uint8
else:
dtype = np.float32
logger.warn("gym.spaces.Box autodetected dtype as %s. Please provide explicit dtype." % dtype)
self.low = low.astype(dtype)
self.high = high.astype(dtype)
gym.Space.__init__(self, shape, dtype)
def sample(self):
return gym.spaces.np_random.uniform(low=self.low, high=self.high + (0 if self.dtype.kind == 'f' else 1), size=self.low.shape).astype(self.dtype)
def contains(self, x):
return x.shape == self.shape and (x >= self.low).all() and (x <= self.high).all()
def to_jsonable(self, sample_n):
return np.array(sample_n).tolist()
def from_jsonable(self, sample_n):
return [np.asarray(sample) for sample in sample_n]
def __repr__(self):
return "Box" + str(self.shape)
def __eq__(self, other):
return np.allclose(self.low, other.low) and np.allclose(self.high, other.high)