From 110fdb48b12b83867bd6fce1efdfdad52518a4ba Mon Sep 17 00:00:00 2001 From: Guillaume Dalle <22795598+gdalle@users.noreply.github.com> Date: Fri, 14 Jun 2024 10:53:38 +0200 Subject: [PATCH 1/3] Individual indexing --- src/ADNLPProblems/britgas.jl | 2698 ++++++++++++---------------------- 1 file changed, 900 insertions(+), 1798 deletions(-) diff --git a/src/ADNLPProblems/britgas.jl b/src/ADNLPProblems/britgas.jl index 8ade774a..5857c9b1 100644 --- a/src/ADNLPProblems/britgas.jl +++ b/src/ADNLPProblems/britgas.jl @@ -20,905 +20,456 @@ function britgas(; n::Int = default_nvar, type::Type{T} = Float64, kwargs...) wh h = T(0.01) function f(x) - p1_0, - p2_0, - p3_0, - p4_0, - p5_0, - p6_0, - p7_0, - p8_0, - p9_0, - p10_0, - p11_0, - p12_0, - p13_0, - p14_0, - p15_0, - p16_0, - p17_0, - p18_0, - p19_0, - p20_0, - p21_0, - p22_0, - p23_0, - p1_1, - p2_1, - p3_1, - p4_1, - p5_1, - p6_1, - p7_1, - p8_1, - p9_1, - p10_1, - p11_1, - p12_1, - p13_1, - p14_1, - p15_1, - p16_1, - p17_1, - p18_1, - p19_1, - p20_1, - p21_1, - p22_1, - p23_1, - p1_2, - p2_2, - p3_2, - p4_2, - p5_2, - p6_2, - p7_2, - p8_2, - p9_2, - p10_2, - p11_2, - p12_2, - p13_2, - p14_2, - p15_2, - p16_2, - p17_2, - p18_2, - p19_2, - p20_2, - p21_2, - p22_2, - p23_2, - p1_3, - p2_3, - p3_3, - p4_3, - p5_3, - p6_3, - p7_3, - p8_3, - p9_3, - p10_3, - p11_3, - p12_3, - p13_3, - p14_3, - p15_3, - p16_3, - p17_3, - p18_3, - p19_3, - p20_3, - p21_3, - p22_3, - p23_3, - p1_4, - p2_4, - p3_4, - p4_4, - p5_4, - p6_4, - p7_4, - p8_4, - p9_4, - p10_4, - p11_4, - p12_4, - p13_4, - p14_4, - p15_4, - p16_4, - p17_4, - p18_4, - p19_4, - p20_4, - p21_4, - p22_4, - p23_4, - p1_5, - p2_5, - p3_5, - p4_5, - p5_5, - p6_5, - p7_5, - p8_5, - p9_5, - p10_5, - p11_5, - p12_5, - p13_5, - p14_5, - p15_5, - p16_5, - p17_5, - p18_5, - p19_5, - p20_5, - p21_5, - p22_5, - p23_5, - p1_6, - p2_6, - p3_6, - p4_6, - p5_6, - p6_6, - p7_6, - p8_6, - p9_6, - p10_6, - p11_6, - p12_6, - p13_6, - p14_6, - p15_6, - p16_6, - p17_6, - p18_6, - p19_6, - p20_6, - p21_6, - p22_6, - p23_6, - p1_7, - p2_7, - p3_7, - p4_7, - p5_7, - p6_7, - p7_7, - p8_7, - p9_7, - p10_7, - p11_7, - p12_7, - p13_7, - p14_7, - p15_7, - p16_7, - p17_7, - p18_7, - p19_7, - p20_7, - p21_7, - p22_7, - p23_7, - p1_8, - p2_8, - p3_8, - p4_8, - p5_8, - p6_8, - p7_8, - p8_8, - p9_8, - p10_8, - p11_8, - p12_8, - p13_8, - p14_8, - p15_8, - p16_8, - p17_8, - p18_8, - p19_8, - p20_8, - p21_8, - p22_8, - p23_8, - q1_2_0, - q1_17_0, - q2_3_0, - q4_5_0, - q5_6_0, - q7_8_0, - q8_9_0, - q8_10_0, - q8_11_0, - q11_12_0, - q12_13_0, - q13_14_0, - q13_15_0, - q15_16_0, - q17_18_0, - q18_19_0, - q20_21_0, - q21_22_0, - q22_23_0, - q1_2_1, - q1_17_1, - q2_3_1, - q4_5_1, - q5_6_1, - q7_8_1, - q8_9_1, - q8_10_1, - q8_11_1, - q11_12_1, - q12_13_1, - q13_14_1, - q13_15_1, - q15_16_1, - q17_18_1, - q18_19_1, - q20_21_1, - q21_22_1, - q22_23_1, - q1_2_2, - q1_17_2, - q2_3_2, - q4_5_2, - q5_6_2, - q7_8_2, - q8_9_2, - q8_10_2, - q8_11_2, - q11_12_2, - q12_13_2, - q13_14_2, - q13_15_2, - q15_16_2, - q17_18_2, - q18_19_2, - q20_21_2, - q21_22_2, - q22_23_2, - q1_2_3, - q1_17_3, - q2_3_3, - q4_5_3, - q5_6_3, - q7_8_3, - q8_9_3, - q8_10_3, - q8_11_3, - q11_12_3, - q12_13_3, - q13_14_3, - q13_15_3, - q15_16_3, - q17_18_3, - q18_19_3, - q20_21_3, - q21_22_3, - q22_23_3, - q1_2_4, - q1_17_4, - q2_3_4, - q4_5_4, - q5_6_4, - q7_8_4, - q8_9_4, - q8_10_4, - q8_11_4, - q11_12_4, - q12_13_4, - q13_14_4, - q13_15_4, - q15_16_4, - q17_18_4, - q18_19_4, - q20_21_4, - q21_22_4, - q22_23_4, - q1_2_5, - q1_17_5, - q2_3_5, - q4_5_5, - q5_6_5, - q7_8_5, - q8_9_5, - q8_10_5, - q8_11_5, - q11_12_5, - q12_13_5, - q13_14_5, - q13_15_5, - q15_16_5, - q17_18_5, - q18_19_5, - q20_21_5, - q21_22_5, - q22_23_5, - q1_2_6, - q1_17_6, - q2_3_6, - q4_5_6, - q5_6_6, - q7_8_6, - q8_9_6, - q8_10_6, - q8_11_6, - q11_12_6, - q12_13_6, - q13_14_6, - q13_15_6, - q15_16_6, - q17_18_6, - q18_19_6, - q20_21_6, - q21_22_6, - q22_23_6, - q1_2_7, - q1_17_7, - q2_3_7, - q4_5_7, - q5_6_7, - q7_8_7, - q8_9_7, - q8_10_7, - q8_11_7, - q11_12_7, - q12_13_7, - q13_14_7, - q13_15_7, - q15_16_7, - q17_18_7, - q18_19_7, - q20_21_7, - q21_22_7, - q22_23_7, - q1_2_8, - q1_17_8, - q2_3_8, - q4_5_8, - q5_6_8, - q7_8_8, - q8_9_8, - q8_10_8, - q8_11_8, - q11_12_8, - q12_13_8, - q13_14_8, - q13_15_8, - q15_16_8, - q17_18_8, - q18_19_8, - q20_21_8, - q21_22_8, - q22_23_8, - f3_4_1, - f5_7_1, - f19_20_1, - r3_4_1, - r5_7_1, - r19_20_1, - f3_4_2, - f5_7_2, - f19_20_2, - r3_4_2, - r5_7_2, - r19_20_2, - f3_4_3, - f5_7_3, - f19_20_3, - r3_4_3, - r5_7_3, - r19_20_3, - f3_4_4, - f5_7_4, - f19_20_4, - r3_4_4, - r5_7_4, - r19_20_4, - f3_4_5, - f5_7_5, - f19_20_5, - r3_4_5, - r5_7_5, - r19_20_5, - f3_4_6, - f5_7_6, - f19_20_6, - r3_4_6, - r5_7_6, - r19_20_6, - f3_4_7, - f5_7_7, - f19_20_7, - r3_4_7, - r5_7_7, - r19_20_7, - f3_4_8, - f5_7_8, - f19_20_8, - r3_4_8, - r5_7_8, - r19_20_8, - in1_1, - out16_1, - out23_1, - in1_2, - out16_2, - out23_2, - in1_3, - out16_3, - out23_3, - in1_4, - out16_4, - out23_4, - in1_5, - out16_5, - out23_5, - in1_6, - out16_6, - out23_6, - in1_7, - out16_7, - out23_7, - in1_8, - out16_8, - out23_8 = x[1], - x[2], - x[3], - x[4], - x[5], - x[6], - x[7], - x[8], - x[9], - x[10], - x[11], - x[12], - x[13], - x[14], - x[15], - x[16], - x[17], - x[18], - x[19], - x[20], - x[21], - x[22], - x[23], - x[24], - x[25], - x[26], - x[27], - x[28], - x[29], - x[30], - x[31], - x[32], - x[33], - x[34], - x[35], - x[36], - x[37], - x[38], - x[39], - x[40], - x[41], - x[42], - x[43], - x[44], - x[45], - x[46], - x[47], - x[48], - x[49], - x[50], - x[51], - x[52], - x[53], - x[54], - x[55], - x[56], - x[57], - x[58], - x[59], - x[60], - x[61], - x[62], - x[63], - x[64], - x[65], - x[66], - x[67], - x[68], - x[69], - x[70], - x[71], - x[72], - x[73], - x[74], - x[75], - x[76], - x[77], - x[78], - x[79], - x[80], - x[81], - x[82], - x[83], - x[84], - x[85], - x[86], - x[87], - x[88], - x[89], - x[90], - x[91], - x[92], - x[93], - x[94], - x[95], - x[96], - x[97], - x[98], - x[99], - x[100], - x[101], - x[102], - x[103], - x[104], - x[105], - x[106], - x[107], - x[108], - x[109], - x[110], - x[111], - x[112], - x[113], - x[114], - x[115], - x[116], - x[117], - x[118], - x[119], - x[120], - x[121], - x[122], - x[123], - x[124], - x[125], - x[126], - x[127], - x[128], - x[129], - x[130], - x[131], - x[132], - x[133], - x[134], - x[135], - x[136], - x[137], - x[138], - x[139], - x[140], - x[141], - x[142], - x[143], - x[144], - x[145], - x[146], - x[147], - x[148], - x[149], - x[150], - x[151], - x[152], - x[153], - x[154], - x[155], - x[156], - x[157], - x[158], - x[159], - x[160], - x[161], - x[162], - x[163], - x[164], - x[165], - x[166], - x[167], - x[168], - x[169], - x[170], - x[171], - x[172], - x[173], - x[174], - x[175], - x[176], - x[177], - x[178], - x[179], - x[180], - x[181], - x[182], - x[183], - x[184], - x[185], - x[186], - x[187], - x[188], - x[189], - x[190], - x[191], - x[192], - x[193], - x[194], - x[195], - x[196], - x[197], - x[198], - x[199], - x[200], - x[201], - x[202], - x[203], - x[204], - x[205], - x[206], - x[207], - x[208], - x[209], - x[210], - x[211], - x[212], - x[213], - x[214], - x[215], - x[216], - x[217], - x[218], - x[219], - x[220], - x[221], - x[222], - x[223], - x[224], - x[225], - x[226], - x[227], - x[228], - x[229], - x[230], - x[231], - x[232], - x[233], - x[234], - x[235], - x[236], - x[237], - x[238], - x[239], - x[240], - x[241], - x[242], - x[243], - x[244], - x[245], - x[246], - x[247], - x[248], - x[249], - x[250], - x[251], - x[252], - x[253], - x[254], - x[255], - x[256], - x[257], - x[258], - x[259], - x[260], - x[261], - x[262], - x[263], - x[264], - x[265], - x[266], - x[267], - x[268], - x[269], - x[270], - x[271], - x[272], - x[273], - x[274], - x[275], - x[276], - x[277], - x[278], - x[279], - x[280], - x[281], - x[282], - x[283], - x[284], - x[285], - x[286], - x[287], - x[288], - x[289], - x[290], - x[291], - x[292], - x[293], - x[294], - x[295], - x[296], - x[297], - x[298], - x[299], - x[300], - x[301], - x[302], - x[303], - x[304], - x[305], - x[306], - x[307], - x[308], - x[309], - x[310], - x[311], - x[312], - x[313], - x[314], - x[315], - x[316], - x[317], - x[318], - x[319], - x[320], - x[321], - x[322], - x[323], - x[324], - x[325], - x[326], - x[327], - x[328], - x[329], - x[330], - x[331], - x[332], - x[333], - x[334], - x[335], - x[336], - x[337], - x[338], - x[339], - x[340], - x[341], - x[342], - x[343], - x[344], - x[345], - x[346], - x[347], - x[348], - x[349], - x[350], - x[351], - x[352], - x[353], - x[354], - x[355], - x[356], - x[357], - x[358], - x[359], - x[360], - x[361], - x[362], - x[363], - x[364], - x[365], - x[366], - x[367], - x[368], - x[369], - x[370], - x[371], - x[372], - x[373], - x[374], - x[375], - x[376], - x[377], - x[378], - x[379], - x[380], - x[381], - x[382], - x[383], - x[384], - x[385], - x[386], - x[387], - x[388], - x[389], - x[390], - x[391], - x[392], - x[393], - x[394], - x[395], - x[396], - x[397], - x[398], - x[399], - x[400], - x[401], - x[402], - x[403], - x[404], - x[405], - x[406], - x[407], - x[408], - x[409], - x[410], - x[411], - x[412], - x[413], - x[414], - x[415], - x[416], - x[417], - x[418], - x[419], - x[420], - x[421], - x[422], - x[423], - x[424], - x[425], - x[426], - x[427], - x[428], - x[429], - x[430], - x[431], - x[432], - x[433], - x[434], - x[435], - x[436], - x[437], - x[438], - x[439], - x[440], - x[441], - x[442], - x[443], - x[444], - x[445], - x[446], - x[447], - x[448], - x[449], - x[450] + p1_0 = x[1] + p2_0 = x[2] + p3_0 = x[3] + p4_0 = x[4] + p5_0 = x[5] + p6_0 = x[6] + p7_0 = x[7] + p8_0 = x[8] + p9_0 = x[9] + p10_0 = x[10] + p11_0 = x[11] + p12_0 = x[12] + p13_0 = x[13] + p14_0 = x[14] + p15_0 = x[15] + p16_0 = x[16] + p17_0 = x[17] + p18_0 = x[18] + p19_0 = x[19] + p20_0 = x[20] + p21_0 = x[21] + p22_0 = x[22] + p23_0 = x[23] + p1_1 = x[24] + p2_1 = x[25] + p3_1 = x[26] + p4_1 = x[27] + p5_1 = x[28] + p6_1 = x[29] + p7_1 = x[30] + p8_1 = x[31] + p9_1 = x[32] + p10_1 = x[33] + p11_1 = x[34] + p12_1 = x[35] + p13_1 = x[36] + p14_1 = x[37] + p15_1 = x[38] + p16_1 = x[39] + p17_1 = x[40] + p18_1 = x[41] + p19_1 = x[42] + p20_1 = x[43] + p21_1 = x[44] + p22_1 = x[45] + p23_1 = x[46] + p1_2 = x[47] + p2_2 = x[48] + p3_2 = x[49] + p4_2 = x[50] + p5_2 = x[51] + p6_2 = x[52] + p7_2 = x[53] + p8_2 = x[54] + p9_2 = x[55] + p10_2 = x[56] + p11_2 = x[57] + p12_2 = x[58] + p13_2 = x[59] + p14_2 = x[60] + p15_2 = x[61] + p16_2 = x[62] + p17_2 = x[63] + p18_2 = x[64] + p19_2 = x[65] + p20_2 = x[66] + p21_2 = x[67] + p22_2 = x[68] + p23_2 = x[69] + p1_3 = x[70] + p2_3 = x[71] + p3_3 = x[72] + p4_3 = x[73] + p5_3 = x[74] + p6_3 = x[75] + p7_3 = x[76] + p8_3 = x[77] + p9_3 = x[78] + p10_3 = x[79] + p11_3 = x[80] + p12_3 = x[81] + p13_3 = x[82] + p14_3 = x[83] + p15_3 = x[84] + p16_3 = x[85] + p17_3 = x[86] + p18_3 = x[87] + p19_3 = x[88] + p20_3 = x[89] + p21_3 = x[90] + p22_3 = x[91] + p23_3 = x[92] + p1_4 = x[93] + p2_4 = x[94] + p3_4 = x[95] + p4_4 = x[96] + p5_4 = x[97] + p6_4 = x[98] + p7_4 = x[99] + p8_4 = x[100] + p9_4 = x[101] + p10_4 = x[102] + p11_4 = x[103] + p12_4 = x[104] + p13_4 = x[105] + p14_4 = x[106] + p15_4 = x[107] + p16_4 = x[108] + p17_4 = x[109] + p18_4 = x[110] + p19_4 = x[111] + p20_4 = x[112] + p21_4 = x[113] + p22_4 = x[114] + p23_4 = x[115] + p1_5 = x[116] + p2_5 = x[117] + p3_5 = x[118] + p4_5 = x[119] + p5_5 = x[120] + p6_5 = x[121] + p7_5 = x[122] + p8_5 = x[123] + p9_5 = x[124] + p10_5 = x[125] + p11_5 = x[126] + p12_5 = x[127] + p13_5 = x[128] + p14_5 = x[129] + p15_5 = x[130] + p16_5 = x[131] + p17_5 = x[132] + p18_5 = x[133] + p19_5 = x[134] + p20_5 = x[135] + p21_5 = x[136] + p22_5 = x[137] + p23_5 = x[138] + p1_6 = x[139] + p2_6 = x[140] + p3_6 = x[141] + p4_6 = x[142] + p5_6 = x[143] + p6_6 = x[144] + p7_6 = x[145] + p8_6 = x[146] + p9_6 = x[147] + p10_6 = x[148] + p11_6 = x[149] + p12_6 = x[150] + p13_6 = x[151] + p14_6 = x[152] + p15_6 = x[153] + p16_6 = x[154] + p17_6 = x[155] + p18_6 = x[156] + p19_6 = x[157] + p20_6 = x[158] + p21_6 = x[159] + p22_6 = x[160] + p23_6 = x[161] + p1_7 = x[162] + p2_7 = x[163] + p3_7 = x[164] + p4_7 = x[165] + p5_7 = x[166] + p6_7 = x[167] + p7_7 = x[168] + p8_7 = x[169] + p9_7 = x[170] + p10_7 = x[171] + p11_7 = x[172] + p12_7 = x[173] + p13_7 = x[174] + p14_7 = x[175] + p15_7 = x[176] + p16_7 = x[177] + p17_7 = x[178] + p18_7 = x[179] + p19_7 = x[180] + p20_7 = x[181] + p21_7 = x[182] + p22_7 = x[183] + p23_7 = x[184] + p1_8 = x[185] + p2_8 = x[186] + p3_8 = x[187] + p4_8 = x[188] + p5_8 = x[189] + p6_8 = x[190] + p7_8 = x[191] + p8_8 = x[192] + p9_8 = x[193] + p10_8 = x[194] + p11_8 = x[195] + p12_8 = x[196] + p13_8 = x[197] + p14_8 = x[198] + p15_8 = x[199] + p16_8 = x[200] + p17_8 = x[201] + p18_8 = x[202] + p19_8 = x[203] + p20_8 = x[204] + p21_8 = x[205] + p22_8 = x[206] + p23_8 = x[207] + q1_2_0 = x[208] + q1_17_0 = x[209] + q2_3_0 = x[210] + q4_5_0 = x[211] + q5_6_0 = x[212] + q7_8_0 = x[213] + q8_9_0 = x[214] + q8_10_0 = x[215] + q8_11_0 = x[216] + q11_12_0 = x[217] + q12_13_0 = x[218] + q13_14_0 = x[219] + q13_15_0 = x[220] + q15_16_0 = x[221] + q17_18_0 = x[222] + q18_19_0 = x[223] + q20_21_0 = x[224] + q21_22_0 = x[225] + q22_23_0 = x[226] + q1_2_1 = x[227] + q1_17_1 = x[228] + q2_3_1 = x[229] + q4_5_1 = x[230] + q5_6_1 = x[231] + q7_8_1 = x[232] + q8_9_1 = x[233] + q8_10_1 = x[234] + q8_11_1 = x[235] + q11_12_1 = x[236] + q12_13_1 = x[237] + q13_14_1 = x[238] + q13_15_1 = x[239] + q15_16_1 = x[240] + q17_18_1 = x[241] + q18_19_1 = x[242] + q20_21_1 = x[243] + q21_22_1 = x[244] + q22_23_1 = x[245] + q1_2_2 = x[246] + q1_17_2 = x[247] + q2_3_2 = x[248] + q4_5_2 = x[249] + q5_6_2 = x[250] + q7_8_2 = x[251] + q8_9_2 = x[252] + q8_10_2 = x[253] + q8_11_2 = x[254] + q11_12_2 = x[255] + q12_13_2 = x[256] + q13_14_2 = x[257] + q13_15_2 = x[258] + q15_16_2 = x[259] + q17_18_2 = x[260] + q18_19_2 = x[261] + q20_21_2 = x[262] + q21_22_2 = x[263] + q22_23_2 = x[264] + q1_2_3 = x[265] + q1_17_3 = x[266] + q2_3_3 = x[267] + q4_5_3 = x[268] + q5_6_3 = x[269] + q7_8_3 = x[270] + q8_9_3 = x[271] + q8_10_3 = x[272] + q8_11_3 = x[273] + q11_12_3 = x[274] + q12_13_3 = x[275] + q13_14_3 = x[276] + q13_15_3 = x[277] + q15_16_3 = x[278] + q17_18_3 = x[279] + q18_19_3 = x[280] + q20_21_3 = x[281] + q21_22_3 = x[282] + q22_23_3 = x[283] + q1_2_4 = x[284] + q1_17_4 = x[285] + q2_3_4 = x[286] + q4_5_4 = x[287] + q5_6_4 = x[288] + q7_8_4 = x[289] + q8_9_4 = x[290] + q8_10_4 = x[291] + q8_11_4 = x[292] + q11_12_4 = x[293] + q12_13_4 = x[294] + q13_14_4 = x[295] + q13_15_4 = x[296] + q15_16_4 = x[297] + q17_18_4 = x[298] + q18_19_4 = x[299] + q20_21_4 = x[300] + q21_22_4 = x[301] + q22_23_4 = x[302] + q1_2_5 = x[303] + q1_17_5 = x[304] + q2_3_5 = x[305] + q4_5_5 = x[306] + q5_6_5 = x[307] + q7_8_5 = x[308] + q8_9_5 = x[309] + q8_10_5 = x[310] + q8_11_5 = x[311] + q11_12_5 = x[312] + q12_13_5 = x[313] + q13_14_5 = x[314] + q13_15_5 = x[315] + q15_16_5 = x[316] + q17_18_5 = x[317] + q18_19_5 = x[318] + q20_21_5 = x[319] + q21_22_5 = x[320] + q22_23_5 = x[321] + q1_2_6 = x[322] + q1_17_6 = x[323] + q2_3_6 = x[324] + q4_5_6 = x[325] + q5_6_6 = x[326] + q7_8_6 = x[327] + q8_9_6 = x[328] + q8_10_6 = x[329] + q8_11_6 = x[330] + q11_12_6 = x[331] + q12_13_6 = x[332] + q13_14_6 = x[333] + q13_15_6 = x[334] + q15_16_6 = x[335] + q17_18_6 = x[336] + q18_19_6 = x[337] + q20_21_6 = x[338] + q21_22_6 = x[339] + q22_23_6 = x[340] + q1_2_7 = x[341] + q1_17_7 = x[342] + q2_3_7 = x[343] + q4_5_7 = x[344] + q5_6_7 = x[345] + q7_8_7 = x[346] + q8_9_7 = x[347] + q8_10_7 = x[348] + q8_11_7 = x[349] + q11_12_7 = x[350] + q12_13_7 = x[351] + q13_14_7 = x[352] + q13_15_7 = x[353] + q15_16_7 = x[354] + q17_18_7 = x[355] + q18_19_7 = x[356] + q20_21_7 = x[357] + q21_22_7 = x[358] + q22_23_7 = x[359] + q1_2_8 = x[360] + q1_17_8 = x[361] + q2_3_8 = x[362] + q4_5_8 = x[363] + q5_6_8 = x[364] + q7_8_8 = x[365] + q8_9_8 = x[366] + q8_10_8 = x[367] + q8_11_8 = x[368] + q11_12_8 = x[369] + q12_13_8 = x[370] + q13_14_8 = x[371] + q13_15_8 = x[372] + q15_16_8 = x[373] + q17_18_8 = x[374] + q18_19_8 = x[375] + q20_21_8 = x[376] + q21_22_8 = x[377] + q22_23_8 = x[378] + f3_4_1 = x[379] + f5_7_1 = x[380] + f19_20_1 = x[381] + r3_4_1 = x[382] + r5_7_1 = x[383] + r19_20_1 = x[384] + f3_4_2 = x[385] + f5_7_2 = x[386] + f19_20_2 = x[387] + r3_4_2 = x[388] + r5_7_2 = x[389] + r19_20_2 = x[390] + f3_4_3 = x[391] + f5_7_3 = x[392] + f19_20_3 = x[393] + r3_4_3 = x[394] + r5_7_3 = x[395] + r19_20_3 = x[396] + f3_4_4 = x[397] + f5_7_4 = x[398] + f19_20_4 = x[399] + r3_4_4 = x[400] + r5_7_4 = x[401] + r19_20_4 = x[402] + f3_4_5 = x[403] + f5_7_5 = x[404] + f19_20_5 = x[405] + r3_4_5 = x[406] + r5_7_5 = x[407] + r19_20_5 = x[408] + f3_4_6 = x[409] + f5_7_6 = x[410] + f19_20_6 = x[411] + r3_4_6 = x[412] + r5_7_6 = x[413] + r19_20_6 = x[414] + f3_4_7 = x[415] + f5_7_7 = x[416] + f19_20_7 = x[417] + r3_4_7 = x[418] + r5_7_7 = x[419] + r19_20_7 = x[420] + f3_4_8 = x[421] + f5_7_8 = x[422] + f19_20_8 = x[423] + r3_4_8 = x[424] + r5_7_8 = x[425] + r19_20_8 = x[426] + in1_1 = x[427] + out16_1 = x[428] + out23_1 = x[429] + in1_2 = x[430] + out16_2 = x[431] + out23_2 = x[432] + in1_3 = x[433] + out16_3 = x[434] + out23_3 = x[435] + in1_4 = x[436] + out16_4 = x[437] + out23_4 = x[438] + in1_5 = x[439] + out16_5 = x[440] + out23_5 = x[441] + in1_6 = x[442] + out16_6 = x[443] + out23_6 = x[444] + in1_7 = x[445] + out16_7 = x[446] + out23_7 = x[447] + in1_8 = x[448] + out16_8 = x[449] + out23_8 = x[450] return f3_4_1 * ((abs(r3_4_1)^(22 // 100)) - 1) + f5_7_1 * ((abs(r5_7_1)^(22 // 100)) - 1) + f19_20_1 * ((abs(r19_20_1)^(22 // 100)) - 1) + @@ -1397,905 +948,456 @@ function britgas(; n::Int = default_nvar, type::Type{T} = Float64, kwargs...) wh 1.0, ] function c!(cx, x) - p1_0, - p2_0, - p3_0, - p4_0, - p5_0, - p6_0, - p7_0, - p8_0, - p9_0, - p10_0, - p11_0, - p12_0, - p13_0, - p14_0, - p15_0, - p16_0, - p17_0, - p18_0, - p19_0, - p20_0, - p21_0, - p22_0, - p23_0, - p1_1, - p2_1, - p3_1, - p4_1, - p5_1, - p6_1, - p7_1, - p8_1, - p9_1, - p10_1, - p11_1, - p12_1, - p13_1, - p14_1, - p15_1, - p16_1, - p17_1, - p18_1, - p19_1, - p20_1, - p21_1, - p22_1, - p23_1, - p1_2, - p2_2, - p3_2, - p4_2, - p5_2, - p6_2, - p7_2, - p8_2, - p9_2, - p10_2, - p11_2, - p12_2, - p13_2, - p14_2, - p15_2, - p16_2, - p17_2, - p18_2, - p19_2, - p20_2, - p21_2, - p22_2, - p23_2, - p1_3, - p2_3, - p3_3, - p4_3, - p5_3, - p6_3, - p7_3, - p8_3, - p9_3, - p10_3, - p11_3, - p12_3, - p13_3, - p14_3, - p15_3, - p16_3, - p17_3, - p18_3, - p19_3, - p20_3, - p21_3, - p22_3, - p23_3, - p1_4, - p2_4, - p3_4, - p4_4, - p5_4, - p6_4, - p7_4, - p8_4, - p9_4, - p10_4, - p11_4, - p12_4, - p13_4, - p14_4, - p15_4, - p16_4, - p17_4, - p18_4, - p19_4, - p20_4, - p21_4, - p22_4, - p23_4, - p1_5, - p2_5, - p3_5, - p4_5, - p5_5, - p6_5, - p7_5, - p8_5, - p9_5, - p10_5, - p11_5, - p12_5, - p13_5, - p14_5, - p15_5, - p16_5, - p17_5, - p18_5, - p19_5, - p20_5, - p21_5, - p22_5, - p23_5, - p1_6, - p2_6, - p3_6, - p4_6, - p5_6, - p6_6, - p7_6, - p8_6, - p9_6, - p10_6, - p11_6, - p12_6, - p13_6, - p14_6, - p15_6, - p16_6, - p17_6, - p18_6, - p19_6, - p20_6, - p21_6, - p22_6, - p23_6, - p1_7, - p2_7, - p3_7, - p4_7, - p5_7, - p6_7, - p7_7, - p8_7, - p9_7, - p10_7, - p11_7, - p12_7, - p13_7, - p14_7, - p15_7, - p16_7, - p17_7, - p18_7, - p19_7, - p20_7, - p21_7, - p22_7, - p23_7, - p1_8, - p2_8, - p3_8, - p4_8, - p5_8, - p6_8, - p7_8, - p8_8, - p9_8, - p10_8, - p11_8, - p12_8, - p13_8, - p14_8, - p15_8, - p16_8, - p17_8, - p18_8, - p19_8, - p20_8, - p21_8, - p22_8, - p23_8, - q1_2_0, - q1_17_0, - q2_3_0, - q4_5_0, - q5_6_0, - q7_8_0, - q8_9_0, - q8_10_0, - q8_11_0, - q11_12_0, - q12_13_0, - q13_14_0, - q13_15_0, - q15_16_0, - q17_18_0, - q18_19_0, - q20_21_0, - q21_22_0, - q22_23_0, - q1_2_1, - q1_17_1, - q2_3_1, - q4_5_1, - q5_6_1, - q7_8_1, - q8_9_1, - q8_10_1, - q8_11_1, - q11_12_1, - q12_13_1, - q13_14_1, - q13_15_1, - q15_16_1, - q17_18_1, - q18_19_1, - q20_21_1, - q21_22_1, - q22_23_1, - q1_2_2, - q1_17_2, - q2_3_2, - q4_5_2, - q5_6_2, - q7_8_2, - q8_9_2, - q8_10_2, - q8_11_2, - q11_12_2, - q12_13_2, - q13_14_2, - q13_15_2, - q15_16_2, - q17_18_2, - q18_19_2, - q20_21_2, - q21_22_2, - q22_23_2, - q1_2_3, - q1_17_3, - q2_3_3, - q4_5_3, - q5_6_3, - q7_8_3, - q8_9_3, - q8_10_3, - q8_11_3, - q11_12_3, - q12_13_3, - q13_14_3, - q13_15_3, - q15_16_3, - q17_18_3, - q18_19_3, - q20_21_3, - q21_22_3, - q22_23_3, - q1_2_4, - q1_17_4, - q2_3_4, - q4_5_4, - q5_6_4, - q7_8_4, - q8_9_4, - q8_10_4, - q8_11_4, - q11_12_4, - q12_13_4, - q13_14_4, - q13_15_4, - q15_16_4, - q17_18_4, - q18_19_4, - q20_21_4, - q21_22_4, - q22_23_4, - q1_2_5, - q1_17_5, - q2_3_5, - q4_5_5, - q5_6_5, - q7_8_5, - q8_9_5, - q8_10_5, - q8_11_5, - q11_12_5, - q12_13_5, - q13_14_5, - q13_15_5, - q15_16_5, - q17_18_5, - q18_19_5, - q20_21_5, - q21_22_5, - q22_23_5, - q1_2_6, - q1_17_6, - q2_3_6, - q4_5_6, - q5_6_6, - q7_8_6, - q8_9_6, - q8_10_6, - q8_11_6, - q11_12_6, - q12_13_6, - q13_14_6, - q13_15_6, - q15_16_6, - q17_18_6, - q18_19_6, - q20_21_6, - q21_22_6, - q22_23_6, - q1_2_7, - q1_17_7, - q2_3_7, - q4_5_7, - q5_6_7, - q7_8_7, - q8_9_7, - q8_10_7, - q8_11_7, - q11_12_7, - q12_13_7, - q13_14_7, - q13_15_7, - q15_16_7, - q17_18_7, - q18_19_7, - q20_21_7, - q21_22_7, - q22_23_7, - q1_2_8, - q1_17_8, - q2_3_8, - q4_5_8, - q5_6_8, - q7_8_8, - q8_9_8, - q8_10_8, - q8_11_8, - q11_12_8, - q12_13_8, - q13_14_8, - q13_15_8, - q15_16_8, - q17_18_8, - q18_19_8, - q20_21_8, - q21_22_8, - q22_23_8, - f3_4_1, - f5_7_1, - f19_20_1, - r3_4_1, - r5_7_1, - r19_20_1, - f3_4_2, - f5_7_2, - f19_20_2, - r3_4_2, - r5_7_2, - r19_20_2, - f3_4_3, - f5_7_3, - f19_20_3, - r3_4_3, - r5_7_3, - r19_20_3, - f3_4_4, - f5_7_4, - f19_20_4, - r3_4_4, - r5_7_4, - r19_20_4, - f3_4_5, - f5_7_5, - f19_20_5, - r3_4_5, - r5_7_5, - r19_20_5, - f3_4_6, - f5_7_6, - f19_20_6, - r3_4_6, - r5_7_6, - r19_20_6, - f3_4_7, - f5_7_7, - f19_20_7, - r3_4_7, - r5_7_7, - r19_20_7, - f3_4_8, - f5_7_8, - f19_20_8, - r3_4_8, - r5_7_8, - r19_20_8, - in1_1, - out16_1, - out23_1, - in1_2, - out16_2, - out23_2, - in1_3, - out16_3, - out23_3, - in1_4, - out16_4, - out23_4, - in1_5, - out16_5, - out23_5, - in1_6, - out16_6, - out23_6, - in1_7, - out16_7, - out23_7, - in1_8, - out16_8, - out23_8 = x[1], - x[2], - x[3], - x[4], - x[5], - x[6], - x[7], - x[8], - x[9], - x[10], - x[11], - x[12], - x[13], - x[14], - x[15], - x[16], - x[17], - x[18], - x[19], - x[20], - x[21], - x[22], - x[23], - x[24], - x[25], - x[26], - x[27], - x[28], - x[29], - x[30], - x[31], - x[32], - x[33], - x[34], - x[35], - x[36], - x[37], - x[38], - x[39], - x[40], - x[41], - x[42], - x[43], - x[44], - x[45], - x[46], - x[47], - x[48], - x[49], - x[50], - x[51], - x[52], - x[53], - x[54], - x[55], - x[56], - x[57], - x[58], - x[59], - x[60], - x[61], - x[62], - x[63], - x[64], - x[65], - x[66], - x[67], - x[68], - x[69], - x[70], - x[71], - x[72], - x[73], - x[74], - x[75], - x[76], - x[77], - x[78], - x[79], - x[80], - x[81], - x[82], - x[83], - x[84], - x[85], - x[86], - x[87], - x[88], - x[89], - x[90], - x[91], - x[92], - x[93], - x[94], - x[95], - x[96], - x[97], - x[98], - x[99], - x[100], - x[101], - x[102], - x[103], - x[104], - x[105], - x[106], - x[107], - x[108], - x[109], - x[110], - x[111], - x[112], - x[113], - x[114], - x[115], - x[116], - x[117], - x[118], - x[119], - x[120], - x[121], - x[122], - x[123], - x[124], - x[125], - x[126], - x[127], - x[128], - x[129], - x[130], - x[131], - x[132], - x[133], - x[134], - x[135], - x[136], - x[137], - x[138], - x[139], - x[140], - x[141], - x[142], - x[143], - x[144], - x[145], - x[146], - x[147], - x[148], - x[149], - x[150], - x[151], - x[152], - x[153], - x[154], - x[155], - x[156], - x[157], - x[158], - x[159], - x[160], - x[161], - x[162], - x[163], - x[164], - x[165], - x[166], - x[167], - x[168], - x[169], - x[170], - x[171], - x[172], - x[173], - x[174], - x[175], - x[176], - x[177], - x[178], - x[179], - x[180], - x[181], - x[182], - x[183], - x[184], - x[185], - x[186], - x[187], - x[188], - x[189], - x[190], - x[191], - x[192], - x[193], - x[194], - x[195], - x[196], - x[197], - x[198], - x[199], - x[200], - x[201], - x[202], - x[203], - x[204], - x[205], - x[206], - x[207], - x[208], - x[209], - x[210], - x[211], - x[212], - x[213], - x[214], - x[215], - x[216], - x[217], - x[218], - x[219], - x[220], - x[221], - x[222], - x[223], - x[224], - x[225], - x[226], - x[227], - x[228], - x[229], - x[230], - x[231], - x[232], - x[233], - x[234], - x[235], - x[236], - x[237], - x[238], - x[239], - x[240], - x[241], - x[242], - x[243], - x[244], - x[245], - x[246], - x[247], - x[248], - x[249], - x[250], - x[251], - x[252], - x[253], - x[254], - x[255], - x[256], - x[257], - x[258], - x[259], - x[260], - x[261], - x[262], - x[263], - x[264], - x[265], - x[266], - x[267], - x[268], - x[269], - x[270], - x[271], - x[272], - x[273], - x[274], - x[275], - x[276], - x[277], - x[278], - x[279], - x[280], - x[281], - x[282], - x[283], - x[284], - x[285], - x[286], - x[287], - x[288], - x[289], - x[290], - x[291], - x[292], - x[293], - x[294], - x[295], - x[296], - x[297], - x[298], - x[299], - x[300], - x[301], - x[302], - x[303], - x[304], - x[305], - x[306], - x[307], - x[308], - x[309], - x[310], - x[311], - x[312], - x[313], - x[314], - x[315], - x[316], - x[317], - x[318], - x[319], - x[320], - x[321], - x[322], - x[323], - x[324], - x[325], - x[326], - x[327], - x[328], - x[329], - x[330], - x[331], - x[332], - x[333], - x[334], - x[335], - x[336], - x[337], - x[338], - x[339], - x[340], - x[341], - x[342], - x[343], - x[344], - x[345], - x[346], - x[347], - x[348], - x[349], - x[350], - x[351], - x[352], - x[353], - x[354], - x[355], - x[356], - x[357], - x[358], - x[359], - x[360], - x[361], - x[362], - x[363], - x[364], - x[365], - x[366], - x[367], - x[368], - x[369], - x[370], - x[371], - x[372], - x[373], - x[374], - x[375], - x[376], - x[377], - x[378], - x[379], - x[380], - x[381], - x[382], - x[383], - x[384], - x[385], - x[386], - x[387], - x[388], - x[389], - x[390], - x[391], - x[392], - x[393], - x[394], - x[395], - x[396], - x[397], - x[398], - x[399], - x[400], - x[401], - x[402], - x[403], - x[404], - x[405], - x[406], - x[407], - x[408], - x[409], - x[410], - x[411], - x[412], - x[413], - x[414], - x[415], - x[416], - x[417], - x[418], - x[419], - x[420], - x[421], - x[422], - x[423], - x[424], - x[425], - x[426], - x[427], - x[428], - x[429], - x[430], - x[431], - x[432], - x[433], - x[434], - x[435], - x[436], - x[437], - x[438], - x[439], - x[440], - x[441], - x[442], - x[443], - x[444], - x[445], - x[446], - x[447], - x[448], - x[449], - x[450] + p1_0 = x[1] + p2_0 = x[2] + p3_0 = x[3] + p4_0 = x[4] + p5_0 = x[5] + p6_0 = x[6] + p7_0 = x[7] + p8_0 = x[8] + p9_0 = x[9] + p10_0 = x[10] + p11_0 = x[11] + p12_0 = x[12] + p13_0 = x[13] + p14_0 = x[14] + p15_0 = x[15] + p16_0 = x[16] + p17_0 = x[17] + p18_0 = x[18] + p19_0 = x[19] + p20_0 = x[20] + p21_0 = x[21] + p22_0 = x[22] + p23_0 = x[23] + p1_1 = x[24] + p2_1 = x[25] + p3_1 = x[26] + p4_1 = x[27] + p5_1 = x[28] + p6_1 = x[29] + p7_1 = x[30] + p8_1 = x[31] + p9_1 = x[32] + p10_1 = x[33] + p11_1 = x[34] + p12_1 = x[35] + p13_1 = x[36] + p14_1 = x[37] + p15_1 = x[38] + p16_1 = x[39] + p17_1 = x[40] + p18_1 = x[41] + p19_1 = x[42] + p20_1 = x[43] + p21_1 = x[44] + p22_1 = x[45] + p23_1 = x[46] + p1_2 = x[47] + p2_2 = x[48] + p3_2 = x[49] + p4_2 = x[50] + p5_2 = x[51] + p6_2 = x[52] + p7_2 = x[53] + p8_2 = x[54] + p9_2 = x[55] + p10_2 = x[56] + p11_2 = x[57] + p12_2 = x[58] + p13_2 = x[59] + p14_2 = x[60] + p15_2 = x[61] + p16_2 = x[62] + p17_2 = x[63] + p18_2 = x[64] + p19_2 = x[65] + p20_2 = x[66] + p21_2 = x[67] + p22_2 = x[68] + p23_2 = x[69] + p1_3 = x[70] + p2_3 = x[71] + p3_3 = x[72] + p4_3 = x[73] + p5_3 = x[74] + p6_3 = x[75] + p7_3 = x[76] + p8_3 = x[77] + p9_3 = x[78] + p10_3 = x[79] + p11_3 = x[80] + p12_3 = x[81] + p13_3 = x[82] + p14_3 = x[83] + p15_3 = x[84] + p16_3 = x[85] + p17_3 = x[86] + p18_3 = x[87] + p19_3 = x[88] + p20_3 = x[89] + p21_3 = x[90] + p22_3 = x[91] + p23_3 = x[92] + p1_4 = x[93] + p2_4 = x[94] + p3_4 = x[95] + p4_4 = x[96] + p5_4 = x[97] + p6_4 = x[98] + p7_4 = x[99] + p8_4 = x[100] + p9_4 = x[101] + p10_4 = x[102] + p11_4 = x[103] + p12_4 = x[104] + p13_4 = x[105] + p14_4 = x[106] + p15_4 = x[107] + p16_4 = x[108] + p17_4 = x[109] + p18_4 = x[110] + p19_4 = x[111] + p20_4 = x[112] + p21_4 = x[113] + p22_4 = x[114] + p23_4 = x[115] + p1_5 = x[116] + p2_5 = x[117] + p3_5 = x[118] + p4_5 = x[119] + p5_5 = x[120] + p6_5 = x[121] + p7_5 = x[122] + p8_5 = x[123] + p9_5 = x[124] + p10_5 = x[125] + p11_5 = x[126] + p12_5 = x[127] + p13_5 = x[128] + p14_5 = x[129] + p15_5 = x[130] + p16_5 = x[131] + p17_5 = x[132] + p18_5 = x[133] + p19_5 = x[134] + p20_5 = x[135] + p21_5 = x[136] + p22_5 = x[137] + p23_5 = x[138] + p1_6 = x[139] + p2_6 = x[140] + p3_6 = x[141] + p4_6 = x[142] + p5_6 = x[143] + p6_6 = x[144] + p7_6 = x[145] + p8_6 = x[146] + p9_6 = x[147] + p10_6 = x[148] + p11_6 = x[149] + p12_6 = x[150] + p13_6 = x[151] + p14_6 = x[152] + p15_6 = x[153] + p16_6 = x[154] + p17_6 = x[155] + p18_6 = x[156] + p19_6 = x[157] + p20_6 = x[158] + p21_6 = x[159] + p22_6 = x[160] + p23_6 = x[161] + p1_7 = x[162] + p2_7 = x[163] + p3_7 = x[164] + p4_7 = x[165] + p5_7 = x[166] + p6_7 = x[167] + p7_7 = x[168] + p8_7 = x[169] + p9_7 = x[170] + p10_7 = x[171] + p11_7 = x[172] + p12_7 = x[173] + p13_7 = x[174] + p14_7 = x[175] + p15_7 = x[176] + p16_7 = x[177] + p17_7 = x[178] + p18_7 = x[179] + p19_7 = x[180] + p20_7 = x[181] + p21_7 = x[182] + p22_7 = x[183] + p23_7 = x[184] + p1_8 = x[185] + p2_8 = x[186] + p3_8 = x[187] + p4_8 = x[188] + p5_8 = x[189] + p6_8 = x[190] + p7_8 = x[191] + p8_8 = x[192] + p9_8 = x[193] + p10_8 = x[194] + p11_8 = x[195] + p12_8 = x[196] + p13_8 = x[197] + p14_8 = x[198] + p15_8 = x[199] + p16_8 = x[200] + p17_8 = x[201] + p18_8 = x[202] + p19_8 = x[203] + p20_8 = x[204] + p21_8 = x[205] + p22_8 = x[206] + p23_8 = x[207] + q1_2_0 = x[208] + q1_17_0 = x[209] + q2_3_0 = x[210] + q4_5_0 = x[211] + q5_6_0 = x[212] + q7_8_0 = x[213] + q8_9_0 = x[214] + q8_10_0 = x[215] + q8_11_0 = x[216] + q11_12_0 = x[217] + q12_13_0 = x[218] + q13_14_0 = x[219] + q13_15_0 = x[220] + q15_16_0 = x[221] + q17_18_0 = x[222] + q18_19_0 = x[223] + q20_21_0 = x[224] + q21_22_0 = x[225] + q22_23_0 = x[226] + q1_2_1 = x[227] + q1_17_1 = x[228] + q2_3_1 = x[229] + q4_5_1 = x[230] + q5_6_1 = x[231] + q7_8_1 = x[232] + q8_9_1 = x[233] + q8_10_1 = x[234] + q8_11_1 = x[235] + q11_12_1 = x[236] + q12_13_1 = x[237] + q13_14_1 = x[238] + q13_15_1 = x[239] + q15_16_1 = x[240] + q17_18_1 = x[241] + q18_19_1 = x[242] + q20_21_1 = x[243] + q21_22_1 = x[244] + q22_23_1 = x[245] + q1_2_2 = x[246] + q1_17_2 = x[247] + q2_3_2 = x[248] + q4_5_2 = x[249] + q5_6_2 = x[250] + q7_8_2 = x[251] + q8_9_2 = x[252] + q8_10_2 = x[253] + q8_11_2 = x[254] + q11_12_2 = x[255] + q12_13_2 = x[256] + q13_14_2 = x[257] + q13_15_2 = x[258] + q15_16_2 = x[259] + q17_18_2 = x[260] + q18_19_2 = x[261] + q20_21_2 = x[262] + q21_22_2 = x[263] + q22_23_2 = x[264] + q1_2_3 = x[265] + q1_17_3 = x[266] + q2_3_3 = x[267] + q4_5_3 = x[268] + q5_6_3 = x[269] + q7_8_3 = x[270] + q8_9_3 = x[271] + q8_10_3 = x[272] + q8_11_3 = x[273] + q11_12_3 = x[274] + q12_13_3 = x[275] + q13_14_3 = x[276] + q13_15_3 = x[277] + q15_16_3 = x[278] + q17_18_3 = x[279] + q18_19_3 = x[280] + q20_21_3 = x[281] + q21_22_3 = x[282] + q22_23_3 = x[283] + q1_2_4 = x[284] + q1_17_4 = x[285] + q2_3_4 = x[286] + q4_5_4 = x[287] + q5_6_4 = x[288] + q7_8_4 = x[289] + q8_9_4 = x[290] + q8_10_4 = x[291] + q8_11_4 = x[292] + q11_12_4 = x[293] + q12_13_4 = x[294] + q13_14_4 = x[295] + q13_15_4 = x[296] + q15_16_4 = x[297] + q17_18_4 = x[298] + q18_19_4 = x[299] + q20_21_4 = x[300] + q21_22_4 = x[301] + q22_23_4 = x[302] + q1_2_5 = x[303] + q1_17_5 = x[304] + q2_3_5 = x[305] + q4_5_5 = x[306] + q5_6_5 = x[307] + q7_8_5 = x[308] + q8_9_5 = x[309] + q8_10_5 = x[310] + q8_11_5 = x[311] + q11_12_5 = x[312] + q12_13_5 = x[313] + q13_14_5 = x[314] + q13_15_5 = x[315] + q15_16_5 = x[316] + q17_18_5 = x[317] + q18_19_5 = x[318] + q20_21_5 = x[319] + q21_22_5 = x[320] + q22_23_5 = x[321] + q1_2_6 = x[322] + q1_17_6 = x[323] + q2_3_6 = x[324] + q4_5_6 = x[325] + q5_6_6 = x[326] + q7_8_6 = x[327] + q8_9_6 = x[328] + q8_10_6 = x[329] + q8_11_6 = x[330] + q11_12_6 = x[331] + q12_13_6 = x[332] + q13_14_6 = x[333] + q13_15_6 = x[334] + q15_16_6 = x[335] + q17_18_6 = x[336] + q18_19_6 = x[337] + q20_21_6 = x[338] + q21_22_6 = x[339] + q22_23_6 = x[340] + q1_2_7 = x[341] + q1_17_7 = x[342] + q2_3_7 = x[343] + q4_5_7 = x[344] + q5_6_7 = x[345] + q7_8_7 = x[346] + q8_9_7 = x[347] + q8_10_7 = x[348] + q8_11_7 = x[349] + q11_12_7 = x[350] + q12_13_7 = x[351] + q13_14_7 = x[352] + q13_15_7 = x[353] + q15_16_7 = x[354] + q17_18_7 = x[355] + q18_19_7 = x[356] + q20_21_7 = x[357] + q21_22_7 = x[358] + q22_23_7 = x[359] + q1_2_8 = x[360] + q1_17_8 = x[361] + q2_3_8 = x[362] + q4_5_8 = x[363] + q5_6_8 = x[364] + q7_8_8 = x[365] + q8_9_8 = x[366] + q8_10_8 = x[367] + q8_11_8 = x[368] + q11_12_8 = x[369] + q12_13_8 = x[370] + q13_14_8 = x[371] + q13_15_8 = x[372] + q15_16_8 = x[373] + q17_18_8 = x[374] + q18_19_8 = x[375] + q20_21_8 = x[376] + q21_22_8 = x[377] + q22_23_8 = x[378] + f3_4_1 = x[379] + f5_7_1 = x[380] + f19_20_1 = x[381] + r3_4_1 = x[382] + r5_7_1 = x[383] + r19_20_1 = x[384] + f3_4_2 = x[385] + f5_7_2 = x[386] + f19_20_2 = x[387] + r3_4_2 = x[388] + r5_7_2 = x[389] + r19_20_2 = x[390] + f3_4_3 = x[391] + f5_7_3 = x[392] + f19_20_3 = x[393] + r3_4_3 = x[394] + r5_7_3 = x[395] + r19_20_3 = x[396] + f3_4_4 = x[397] + f5_7_4 = x[398] + f19_20_4 = x[399] + r3_4_4 = x[400] + r5_7_4 = x[401] + r19_20_4 = x[402] + f3_4_5 = x[403] + f5_7_5 = x[404] + f19_20_5 = x[405] + r3_4_5 = x[406] + r5_7_5 = x[407] + r19_20_5 = x[408] + f3_4_6 = x[409] + f5_7_6 = x[410] + f19_20_6 = x[411] + r3_4_6 = x[412] + r5_7_6 = x[413] + r19_20_6 = x[414] + f3_4_7 = x[415] + f5_7_7 = x[416] + f19_20_7 = x[417] + r3_4_7 = x[418] + r5_7_7 = x[419] + r19_20_7 = x[420] + f3_4_8 = x[421] + f5_7_8 = x[422] + f19_20_8 = x[423] + r3_4_8 = x[424] + r5_7_8 = x[425] + r19_20_8 = x[426] + in1_1 = x[427] + out16_1 = x[428] + out23_1 = x[429] + in1_2 = x[430] + out16_2 = x[431] + out23_2 = x[432] + in1_3 = x[433] + out16_3 = x[434] + out23_3 = x[435] + in1_4 = x[436] + out16_4 = x[437] + out23_4 = x[438] + in1_5 = x[439] + out16_5 = x[440] + out23_5 = x[441] + in1_6 = x[442] + out16_6 = x[443] + out23_6 = x[444] + in1_7 = x[445] + out16_7 = x[446] + out23_7 = x[447] + in1_8 = x[448] + out16_8 = x[449] + out23_8 = x[450] cx[1] = p1_1 / ((1) + (1) * p1_1) - p1_0 / ((1) + (1) * p1_0) - T(0.75) * q1_17_1 - T(0.75) * q1_2_1 + in1_1 - T(0.25) * q1_17_0 - T(0.25) * q1_2_0 From e95daf92ac1754e7009f775720c4352c8b76295b Mon Sep 17 00:00:00 2001 From: Guillaume Dalle <22795598+gdalle@users.noreply.github.com> Date: Fri, 14 Jun 2024 12:08:11 +0200 Subject: [PATCH 2/3] Compress --- src/ADNLPProblems/britgas.jl | 2464 ++++++++-------------------------- 1 file changed, 597 insertions(+), 1867 deletions(-) diff --git a/src/ADNLPProblems/britgas.jl b/src/ADNLPProblems/britgas.jl index 5857c9b1..82452d1d 100644 --- a/src/ADNLPProblems/britgas.jl +++ b/src/ADNLPProblems/britgas.jl @@ -1,15 +1,17 @@ export britgas +_britgas_obj(fi, ri) = fi * (abs(ri)^(22 // 100) - 1) + function britgas(; n::Int = default_nvar, type::Type{T} = Float64, kwargs...) where {T} hours = T(8) nodes = T(23) - theta = T(0.75) + θ = T(0.75) a = T(1.0) b = T(1.0) - alpha = T(1.8539) + α = T(1.8539) dt = T(1.0) one = T(1.0) - omega = T(1.0) + (-1.0 * (T(0.75))) + omega = T(1.0) + (-1.0 * T(0.75)) s = -1 + (T(8)) crmax = 10 k = T(1.0) @@ -19,481 +21,77 @@ function britgas(; n::Int = default_nvar, type::Type{T} = Float64, kwargs...) wh vddt = (T(1.0)) * ((T(1.0)) / (T(1.0))) h = T(0.01) + # newly introduced + + γ = T(0.5) + + # q variables are indexed with some pairs from 1:23 × 1:23 + q_ind = [ + (1, 2), + (1, 17), + (2, 3), + (4, 5), + (5, 6), + (7, 8), + (8, 9), + (8, 10), + (8, 11), + (11, 12), + (12, 13), + (13, 14), + (13, 15), + (15, 16), + (17, 18), + (18, 19), + (20, 21), + (21, 22), + (22, 23), + ] + q_outneighbors = [i => Int[] for i = 1:23] + q_inneighbors = [i => Int[] for i = 1:23] + for (i, j) in q_ind + push!(q_outneighbors[i], j) + push!(q_inneighbors[j], i) + end + q_neighbors = [vcat(q_inneighbors[i], q_outneighbors[i]) for i in 1:23] + + # f and r variables are indexed with some pairs from 1:23 × 1:23 + fr_ind = [(3, 4), (5, 7), (19, 20)] + fr_outneighbors = [i => Int[] for i = 1:23] + fr_inneighbors = [i => Int[] for i = 1:23] + for (i, j) in fr_ind + push!(fr_outneighbors[i], j) + push!(fr_inneighbors[j], i) + end + fr_neighbors = [vcat(fr_inneighbors[i], outneighbors[i]) for i in 1:23] + + # in and out variables are indexed with some indices from 1:23 + in_ind = [1] + out_ind = [16, 23] + function f(x) - p1_0 = x[1] - p2_0 = x[2] - p3_0 = x[3] - p4_0 = x[4] - p5_0 = x[5] - p6_0 = x[6] - p7_0 = x[7] - p8_0 = x[8] - p9_0 = x[9] - p10_0 = x[10] - p11_0 = x[11] - p12_0 = x[12] - p13_0 = x[13] - p14_0 = x[14] - p15_0 = x[15] - p16_0 = x[16] - p17_0 = x[17] - p18_0 = x[18] - p19_0 = x[19] - p20_0 = x[20] - p21_0 = x[21] - p22_0 = x[22] - p23_0 = x[23] - p1_1 = x[24] - p2_1 = x[25] - p3_1 = x[26] - p4_1 = x[27] - p5_1 = x[28] - p6_1 = x[29] - p7_1 = x[30] - p8_1 = x[31] - p9_1 = x[32] - p10_1 = x[33] - p11_1 = x[34] - p12_1 = x[35] - p13_1 = x[36] - p14_1 = x[37] - p15_1 = x[38] - p16_1 = x[39] - p17_1 = x[40] - p18_1 = x[41] - p19_1 = x[42] - p20_1 = x[43] - p21_1 = x[44] - p22_1 = x[45] - p23_1 = x[46] - p1_2 = x[47] - p2_2 = x[48] - p3_2 = x[49] - p4_2 = x[50] - p5_2 = x[51] - p6_2 = x[52] - p7_2 = x[53] - p8_2 = x[54] - p9_2 = x[55] - p10_2 = x[56] - p11_2 = x[57] - p12_2 = x[58] - p13_2 = x[59] - p14_2 = x[60] - p15_2 = x[61] - p16_2 = x[62] - p17_2 = x[63] - p18_2 = x[64] - p19_2 = x[65] - p20_2 = x[66] - p21_2 = x[67] - p22_2 = x[68] - p23_2 = x[69] - p1_3 = x[70] - p2_3 = x[71] - p3_3 = x[72] - p4_3 = x[73] - p5_3 = x[74] - p6_3 = x[75] - p7_3 = x[76] - p8_3 = x[77] - p9_3 = x[78] - p10_3 = x[79] - p11_3 = x[80] - p12_3 = x[81] - p13_3 = x[82] - p14_3 = x[83] - p15_3 = x[84] - p16_3 = x[85] - p17_3 = x[86] - p18_3 = x[87] - p19_3 = x[88] - p20_3 = x[89] - p21_3 = x[90] - p22_3 = x[91] - p23_3 = x[92] - p1_4 = x[93] - p2_4 = x[94] - p3_4 = x[95] - p4_4 = x[96] - p5_4 = x[97] - p6_4 = x[98] - p7_4 = x[99] - p8_4 = x[100] - p9_4 = x[101] - p10_4 = x[102] - p11_4 = x[103] - p12_4 = x[104] - p13_4 = x[105] - p14_4 = x[106] - p15_4 = x[107] - p16_4 = x[108] - p17_4 = x[109] - p18_4 = x[110] - p19_4 = x[111] - p20_4 = x[112] - p21_4 = x[113] - p22_4 = x[114] - p23_4 = x[115] - p1_5 = x[116] - p2_5 = x[117] - p3_5 = x[118] - p4_5 = x[119] - p5_5 = x[120] - p6_5 = x[121] - p7_5 = x[122] - p8_5 = x[123] - p9_5 = x[124] - p10_5 = x[125] - p11_5 = x[126] - p12_5 = x[127] - p13_5 = x[128] - p14_5 = x[129] - p15_5 = x[130] - p16_5 = x[131] - p17_5 = x[132] - p18_5 = x[133] - p19_5 = x[134] - p20_5 = x[135] - p21_5 = x[136] - p22_5 = x[137] - p23_5 = x[138] - p1_6 = x[139] - p2_6 = x[140] - p3_6 = x[141] - p4_6 = x[142] - p5_6 = x[143] - p6_6 = x[144] - p7_6 = x[145] - p8_6 = x[146] - p9_6 = x[147] - p10_6 = x[148] - p11_6 = x[149] - p12_6 = x[150] - p13_6 = x[151] - p14_6 = x[152] - p15_6 = x[153] - p16_6 = x[154] - p17_6 = x[155] - p18_6 = x[156] - p19_6 = x[157] - p20_6 = x[158] - p21_6 = x[159] - p22_6 = x[160] - p23_6 = x[161] - p1_7 = x[162] - p2_7 = x[163] - p3_7 = x[164] - p4_7 = x[165] - p5_7 = x[166] - p6_7 = x[167] - p7_7 = x[168] - p8_7 = x[169] - p9_7 = x[170] - p10_7 = x[171] - p11_7 = x[172] - p12_7 = x[173] - p13_7 = x[174] - p14_7 = x[175] - p15_7 = x[176] - p16_7 = x[177] - p17_7 = x[178] - p18_7 = x[179] - p19_7 = x[180] - p20_7 = x[181] - p21_7 = x[182] - p22_7 = x[183] - p23_7 = x[184] - p1_8 = x[185] - p2_8 = x[186] - p3_8 = x[187] - p4_8 = x[188] - p5_8 = x[189] - p6_8 = x[190] - p7_8 = x[191] - p8_8 = x[192] - p9_8 = x[193] - p10_8 = x[194] - p11_8 = x[195] - p12_8 = x[196] - p13_8 = x[197] - p14_8 = x[198] - p15_8 = x[199] - p16_8 = x[200] - p17_8 = x[201] - p18_8 = x[202] - p19_8 = x[203] - p20_8 = x[204] - p21_8 = x[205] - p22_8 = x[206] - p23_8 = x[207] - q1_2_0 = x[208] - q1_17_0 = x[209] - q2_3_0 = x[210] - q4_5_0 = x[211] - q5_6_0 = x[212] - q7_8_0 = x[213] - q8_9_0 = x[214] - q8_10_0 = x[215] - q8_11_0 = x[216] - q11_12_0 = x[217] - q12_13_0 = x[218] - q13_14_0 = x[219] - q13_15_0 = x[220] - q15_16_0 = x[221] - q17_18_0 = x[222] - q18_19_0 = x[223] - q20_21_0 = x[224] - q21_22_0 = x[225] - q22_23_0 = x[226] - q1_2_1 = x[227] - q1_17_1 = x[228] - q2_3_1 = x[229] - q4_5_1 = x[230] - q5_6_1 = x[231] - q7_8_1 = x[232] - q8_9_1 = x[233] - q8_10_1 = x[234] - q8_11_1 = x[235] - q11_12_1 = x[236] - q12_13_1 = x[237] - q13_14_1 = x[238] - q13_15_1 = x[239] - q15_16_1 = x[240] - q17_18_1 = x[241] - q18_19_1 = x[242] - q20_21_1 = x[243] - q21_22_1 = x[244] - q22_23_1 = x[245] - q1_2_2 = x[246] - q1_17_2 = x[247] - q2_3_2 = x[248] - q4_5_2 = x[249] - q5_6_2 = x[250] - q7_8_2 = x[251] - q8_9_2 = x[252] - q8_10_2 = x[253] - q8_11_2 = x[254] - q11_12_2 = x[255] - q12_13_2 = x[256] - q13_14_2 = x[257] - q13_15_2 = x[258] - q15_16_2 = x[259] - q17_18_2 = x[260] - q18_19_2 = x[261] - q20_21_2 = x[262] - q21_22_2 = x[263] - q22_23_2 = x[264] - q1_2_3 = x[265] - q1_17_3 = x[266] - q2_3_3 = x[267] - q4_5_3 = x[268] - q5_6_3 = x[269] - q7_8_3 = x[270] - q8_9_3 = x[271] - q8_10_3 = x[272] - q8_11_3 = x[273] - q11_12_3 = x[274] - q12_13_3 = x[275] - q13_14_3 = x[276] - q13_15_3 = x[277] - q15_16_3 = x[278] - q17_18_3 = x[279] - q18_19_3 = x[280] - q20_21_3 = x[281] - q21_22_3 = x[282] - q22_23_3 = x[283] - q1_2_4 = x[284] - q1_17_4 = x[285] - q2_3_4 = x[286] - q4_5_4 = x[287] - q5_6_4 = x[288] - q7_8_4 = x[289] - q8_9_4 = x[290] - q8_10_4 = x[291] - q8_11_4 = x[292] - q11_12_4 = x[293] - q12_13_4 = x[294] - q13_14_4 = x[295] - q13_15_4 = x[296] - q15_16_4 = x[297] - q17_18_4 = x[298] - q18_19_4 = x[299] - q20_21_4 = x[300] - q21_22_4 = x[301] - q22_23_4 = x[302] - q1_2_5 = x[303] - q1_17_5 = x[304] - q2_3_5 = x[305] - q4_5_5 = x[306] - q5_6_5 = x[307] - q7_8_5 = x[308] - q8_9_5 = x[309] - q8_10_5 = x[310] - q8_11_5 = x[311] - q11_12_5 = x[312] - q12_13_5 = x[313] - q13_14_5 = x[314] - q13_15_5 = x[315] - q15_16_5 = x[316] - q17_18_5 = x[317] - q18_19_5 = x[318] - q20_21_5 = x[319] - q21_22_5 = x[320] - q22_23_5 = x[321] - q1_2_6 = x[322] - q1_17_6 = x[323] - q2_3_6 = x[324] - q4_5_6 = x[325] - q5_6_6 = x[326] - q7_8_6 = x[327] - q8_9_6 = x[328] - q8_10_6 = x[329] - q8_11_6 = x[330] - q11_12_6 = x[331] - q12_13_6 = x[332] - q13_14_6 = x[333] - q13_15_6 = x[334] - q15_16_6 = x[335] - q17_18_6 = x[336] - q18_19_6 = x[337] - q20_21_6 = x[338] - q21_22_6 = x[339] - q22_23_6 = x[340] - q1_2_7 = x[341] - q1_17_7 = x[342] - q2_3_7 = x[343] - q4_5_7 = x[344] - q5_6_7 = x[345] - q7_8_7 = x[346] - q8_9_7 = x[347] - q8_10_7 = x[348] - q8_11_7 = x[349] - q11_12_7 = x[350] - q12_13_7 = x[351] - q13_14_7 = x[352] - q13_15_7 = x[353] - q15_16_7 = x[354] - q17_18_7 = x[355] - q18_19_7 = x[356] - q20_21_7 = x[357] - q21_22_7 = x[358] - q22_23_7 = x[359] - q1_2_8 = x[360] - q1_17_8 = x[361] - q2_3_8 = x[362] - q4_5_8 = x[363] - q5_6_8 = x[364] - q7_8_8 = x[365] - q8_9_8 = x[366] - q8_10_8 = x[367] - q8_11_8 = x[368] - q11_12_8 = x[369] - q12_13_8 = x[370] - q13_14_8 = x[371] - q13_15_8 = x[372] - q15_16_8 = x[373] - q17_18_8 = x[374] - q18_19_8 = x[375] - q20_21_8 = x[376] - q21_22_8 = x[377] - q22_23_8 = x[378] - f3_4_1 = x[379] - f5_7_1 = x[380] - f19_20_1 = x[381] - r3_4_1 = x[382] - r5_7_1 = x[383] - r19_20_1 = x[384] - f3_4_2 = x[385] - f5_7_2 = x[386] - f19_20_2 = x[387] - r3_4_2 = x[388] - r5_7_2 = x[389] - r19_20_2 = x[390] - f3_4_3 = x[391] - f5_7_3 = x[392] - f19_20_3 = x[393] - r3_4_3 = x[394] - r5_7_3 = x[395] - r19_20_3 = x[396] - f3_4_4 = x[397] - f5_7_4 = x[398] - f19_20_4 = x[399] - r3_4_4 = x[400] - r5_7_4 = x[401] - r19_20_4 = x[402] - f3_4_5 = x[403] - f5_7_5 = x[404] - f19_20_5 = x[405] - r3_4_5 = x[406] - r5_7_5 = x[407] - r19_20_5 = x[408] - f3_4_6 = x[409] - f5_7_6 = x[410] - f19_20_6 = x[411] - r3_4_6 = x[412] - r5_7_6 = x[413] - r19_20_6 = x[414] - f3_4_7 = x[415] - f5_7_7 = x[416] - f19_20_7 = x[417] - r3_4_7 = x[418] - r5_7_7 = x[419] - r19_20_7 = x[420] - f3_4_8 = x[421] - f5_7_8 = x[422] - f19_20_8 = x[423] - r3_4_8 = x[424] - r5_7_8 = x[425] - r19_20_8 = x[426] - in1_1 = x[427] - out16_1 = x[428] - out23_1 = x[429] - in1_2 = x[430] - out16_2 = x[431] - out23_2 = x[432] - in1_3 = x[433] - out16_3 = x[434] - out23_3 = x[435] - in1_4 = x[436] - out16_4 = x[437] - out23_4 = x[438] - in1_5 = x[439] - out16_5 = x[440] - out23_5 = x[441] - in1_6 = x[442] - out16_6 = x[443] - out23_6 = x[444] - in1_7 = x[445] - out16_7 = x[446] - out23_7 = x[447] - in1_8 = x[448] - out16_8 = x[449] - out23_8 = x[450] - return f3_4_1 * ((abs(r3_4_1)^(22 // 100)) - 1) + - f5_7_1 * ((abs(r5_7_1)^(22 // 100)) - 1) + - f19_20_1 * ((abs(r19_20_1)^(22 // 100)) - 1) + - f3_4_2 * ((abs(r3_4_2)^(22 // 100)) - 1) + - f5_7_2 * ((abs(r5_7_2)^(22 // 100)) - 1) + - f19_20_2 * ((abs(r19_20_2)^(22 // 100)) - 1) + - f3_4_3 * ((abs(r3_4_3)^(22 // 100)) - 1) + - f5_7_3 * ((abs(r5_7_3)^(22 // 100)) - 1) + - f19_20_3 * ((abs(r19_20_3)^(22 // 100)) - 1) + - f3_4_4 * ((abs(r3_4_4)^(22 // 100)) - 1) + - f5_7_4 * ((abs(r5_7_4)^(22 // 100)) - 1) + - f19_20_4 * ((abs(r19_20_4)^(22 // 100)) - 1) + - f3_4_5 * ((abs(r3_4_5)^(22 // 100)) - 1) + - f5_7_5 * ((abs(r5_7_5)^(22 // 100)) - 1) + - f19_20_5 * ((abs(r19_20_5)^(22 // 100)) - 1) + - f3_4_6 * ((abs(r3_4_6)^(22 // 100)) - 1) + - f5_7_6 * ((abs(r5_7_6)^(22 // 100)) - 1) + - f19_20_6 * ((abs(r19_20_6)^(22 // 100)) - 1) + - f3_4_7 * ((abs(r3_4_7)^(22 // 100)) - 1) + - f5_7_7 * ((abs(r5_7_7)^(22 // 100)) - 1) + - f19_20_7 * ((abs(r19_20_7)^(22 // 100)) - 1) + - f3_4_8 * ((abs(r3_4_8)^(22 // 100)) - 1) + - f5_7_8 * ((abs(r5_7_8)^(22 // 100)) - 1) + - f19_20_8 * ((abs(r19_20_8)^(22 // 100)) - 1) + f_1 = view(x, 379:381) + r_1 = view(x, 382:384) + f_2 = view(x, 385:387) + r_2 = view(x, 388:390) + f_3 = view(x, 391:393) + r_3 = view(x, 394:396) + f_4 = view(x, 397:399) + r_4 = view(x, 400:402) + f_5 = view(x, 403:405) + r_5 = view(x, 406:408) + f_6 = view(x, 409:411) + r_6 = view(x, 412:414) + f_7 = view(x, 415:417) + r_7 = view(x, 418:420) + f_8 = view(x, 421:423) + r_8 = view(x, 424:426) + + f_ = [f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8] + r_ = [r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8] + + o = sum(mapreduce(_britgas_obj, +, f_[t], r_[t]) for t = 1:8) + return o end x0 = T[ 1.0, @@ -948,1544 +546,676 @@ function britgas(; n::Int = default_nvar, type::Type{T} = Float64, kwargs...) wh 1.0, ] function c!(cx, x) - p1_0 = x[1] - p2_0 = x[2] - p3_0 = x[3] - p4_0 = x[4] - p5_0 = x[5] - p6_0 = x[6] - p7_0 = x[7] - p8_0 = x[8] - p9_0 = x[9] - p10_0 = x[10] - p11_0 = x[11] - p12_0 = x[12] - p13_0 = x[13] - p14_0 = x[14] - p15_0 = x[15] - p16_0 = x[16] - p17_0 = x[17] - p18_0 = x[18] - p19_0 = x[19] - p20_0 = x[20] - p21_0 = x[21] - p22_0 = x[22] - p23_0 = x[23] - p1_1 = x[24] - p2_1 = x[25] - p3_1 = x[26] - p4_1 = x[27] - p5_1 = x[28] - p6_1 = x[29] - p7_1 = x[30] - p8_1 = x[31] - p9_1 = x[32] - p10_1 = x[33] - p11_1 = x[34] - p12_1 = x[35] - p13_1 = x[36] - p14_1 = x[37] - p15_1 = x[38] - p16_1 = x[39] - p17_1 = x[40] - p18_1 = x[41] - p19_1 = x[42] - p20_1 = x[43] - p21_1 = x[44] - p22_1 = x[45] - p23_1 = x[46] - p1_2 = x[47] - p2_2 = x[48] - p3_2 = x[49] - p4_2 = x[50] - p5_2 = x[51] - p6_2 = x[52] - p7_2 = x[53] - p8_2 = x[54] - p9_2 = x[55] - p10_2 = x[56] - p11_2 = x[57] - p12_2 = x[58] - p13_2 = x[59] - p14_2 = x[60] - p15_2 = x[61] - p16_2 = x[62] - p17_2 = x[63] - p18_2 = x[64] - p19_2 = x[65] - p20_2 = x[66] - p21_2 = x[67] - p22_2 = x[68] - p23_2 = x[69] - p1_3 = x[70] - p2_3 = x[71] - p3_3 = x[72] - p4_3 = x[73] - p5_3 = x[74] - p6_3 = x[75] - p7_3 = x[76] - p8_3 = x[77] - p9_3 = x[78] - p10_3 = x[79] - p11_3 = x[80] - p12_3 = x[81] - p13_3 = x[82] - p14_3 = x[83] - p15_3 = x[84] - p16_3 = x[85] - p17_3 = x[86] - p18_3 = x[87] - p19_3 = x[88] - p20_3 = x[89] - p21_3 = x[90] - p22_3 = x[91] - p23_3 = x[92] - p1_4 = x[93] - p2_4 = x[94] - p3_4 = x[95] - p4_4 = x[96] - p5_4 = x[97] - p6_4 = x[98] - p7_4 = x[99] - p8_4 = x[100] - p9_4 = x[101] - p10_4 = x[102] - p11_4 = x[103] - p12_4 = x[104] - p13_4 = x[105] - p14_4 = x[106] - p15_4 = x[107] - p16_4 = x[108] - p17_4 = x[109] - p18_4 = x[110] - p19_4 = x[111] - p20_4 = x[112] - p21_4 = x[113] - p22_4 = x[114] - p23_4 = x[115] - p1_5 = x[116] - p2_5 = x[117] - p3_5 = x[118] - p4_5 = x[119] - p5_5 = x[120] - p6_5 = x[121] - p7_5 = x[122] - p8_5 = x[123] - p9_5 = x[124] - p10_5 = x[125] - p11_5 = x[126] - p12_5 = x[127] - p13_5 = x[128] - p14_5 = x[129] - p15_5 = x[130] - p16_5 = x[131] - p17_5 = x[132] - p18_5 = x[133] - p19_5 = x[134] - p20_5 = x[135] - p21_5 = x[136] - p22_5 = x[137] - p23_5 = x[138] - p1_6 = x[139] - p2_6 = x[140] - p3_6 = x[141] - p4_6 = x[142] - p5_6 = x[143] - p6_6 = x[144] - p7_6 = x[145] - p8_6 = x[146] - p9_6 = x[147] - p10_6 = x[148] - p11_6 = x[149] - p12_6 = x[150] - p13_6 = x[151] - p14_6 = x[152] - p15_6 = x[153] - p16_6 = x[154] - p17_6 = x[155] - p18_6 = x[156] - p19_6 = x[157] - p20_6 = x[158] - p21_6 = x[159] - p22_6 = x[160] - p23_6 = x[161] - p1_7 = x[162] - p2_7 = x[163] - p3_7 = x[164] - p4_7 = x[165] - p5_7 = x[166] - p6_7 = x[167] - p7_7 = x[168] - p8_7 = x[169] - p9_7 = x[170] - p10_7 = x[171] - p11_7 = x[172] - p12_7 = x[173] - p13_7 = x[174] - p14_7 = x[175] - p15_7 = x[176] - p16_7 = x[177] - p17_7 = x[178] - p18_7 = x[179] - p19_7 = x[180] - p20_7 = x[181] - p21_7 = x[182] - p22_7 = x[183] - p23_7 = x[184] - p1_8 = x[185] - p2_8 = x[186] - p3_8 = x[187] - p4_8 = x[188] - p5_8 = x[189] - p6_8 = x[190] - p7_8 = x[191] - p8_8 = x[192] - p9_8 = x[193] - p10_8 = x[194] - p11_8 = x[195] - p12_8 = x[196] - p13_8 = x[197] - p14_8 = x[198] - p15_8 = x[199] - p16_8 = x[200] - p17_8 = x[201] - p18_8 = x[202] - p19_8 = x[203] - p20_8 = x[204] - p21_8 = x[205] - p22_8 = x[206] - p23_8 = x[207] - q1_2_0 = x[208] - q1_17_0 = x[209] - q2_3_0 = x[210] - q4_5_0 = x[211] - q5_6_0 = x[212] - q7_8_0 = x[213] - q8_9_0 = x[214] - q8_10_0 = x[215] - q8_11_0 = x[216] - q11_12_0 = x[217] - q12_13_0 = x[218] - q13_14_0 = x[219] - q13_15_0 = x[220] - q15_16_0 = x[221] - q17_18_0 = x[222] - q18_19_0 = x[223] - q20_21_0 = x[224] - q21_22_0 = x[225] - q22_23_0 = x[226] - q1_2_1 = x[227] - q1_17_1 = x[228] - q2_3_1 = x[229] - q4_5_1 = x[230] - q5_6_1 = x[231] - q7_8_1 = x[232] - q8_9_1 = x[233] - q8_10_1 = x[234] - q8_11_1 = x[235] - q11_12_1 = x[236] - q12_13_1 = x[237] - q13_14_1 = x[238] - q13_15_1 = x[239] - q15_16_1 = x[240] - q17_18_1 = x[241] - q18_19_1 = x[242] - q20_21_1 = x[243] - q21_22_1 = x[244] - q22_23_1 = x[245] - q1_2_2 = x[246] - q1_17_2 = x[247] - q2_3_2 = x[248] - q4_5_2 = x[249] - q5_6_2 = x[250] - q7_8_2 = x[251] - q8_9_2 = x[252] - q8_10_2 = x[253] - q8_11_2 = x[254] - q11_12_2 = x[255] - q12_13_2 = x[256] - q13_14_2 = x[257] - q13_15_2 = x[258] - q15_16_2 = x[259] - q17_18_2 = x[260] - q18_19_2 = x[261] - q20_21_2 = x[262] - q21_22_2 = x[263] - q22_23_2 = x[264] - q1_2_3 = x[265] - q1_17_3 = x[266] - q2_3_3 = x[267] - q4_5_3 = x[268] - q5_6_3 = x[269] - q7_8_3 = x[270] - q8_9_3 = x[271] - q8_10_3 = x[272] - q8_11_3 = x[273] - q11_12_3 = x[274] - q12_13_3 = x[275] - q13_14_3 = x[276] - q13_15_3 = x[277] - q15_16_3 = x[278] - q17_18_3 = x[279] - q18_19_3 = x[280] - q20_21_3 = x[281] - q21_22_3 = x[282] - q22_23_3 = x[283] - q1_2_4 = x[284] - q1_17_4 = x[285] - q2_3_4 = x[286] - q4_5_4 = x[287] - q5_6_4 = x[288] - q7_8_4 = x[289] - q8_9_4 = x[290] - q8_10_4 = x[291] - q8_11_4 = x[292] - q11_12_4 = x[293] - q12_13_4 = x[294] - q13_14_4 = x[295] - q13_15_4 = x[296] - q15_16_4 = x[297] - q17_18_4 = x[298] - q18_19_4 = x[299] - q20_21_4 = x[300] - q21_22_4 = x[301] - q22_23_4 = x[302] - q1_2_5 = x[303] - q1_17_5 = x[304] - q2_3_5 = x[305] - q4_5_5 = x[306] - q5_6_5 = x[307] - q7_8_5 = x[308] - q8_9_5 = x[309] - q8_10_5 = x[310] - q8_11_5 = x[311] - q11_12_5 = x[312] - q12_13_5 = x[313] - q13_14_5 = x[314] - q13_15_5 = x[315] - q15_16_5 = x[316] - q17_18_5 = x[317] - q18_19_5 = x[318] - q20_21_5 = x[319] - q21_22_5 = x[320] - q22_23_5 = x[321] - q1_2_6 = x[322] - q1_17_6 = x[323] - q2_3_6 = x[324] - q4_5_6 = x[325] - q5_6_6 = x[326] - q7_8_6 = x[327] - q8_9_6 = x[328] - q8_10_6 = x[329] - q8_11_6 = x[330] - q11_12_6 = x[331] - q12_13_6 = x[332] - q13_14_6 = x[333] - q13_15_6 = x[334] - q15_16_6 = x[335] - q17_18_6 = x[336] - q18_19_6 = x[337] - q20_21_6 = x[338] - q21_22_6 = x[339] - q22_23_6 = x[340] - q1_2_7 = x[341] - q1_17_7 = x[342] - q2_3_7 = x[343] - q4_5_7 = x[344] - q5_6_7 = x[345] - q7_8_7 = x[346] - q8_9_7 = x[347] - q8_10_7 = x[348] - q8_11_7 = x[349] - q11_12_7 = x[350] - q12_13_7 = x[351] - q13_14_7 = x[352] - q13_15_7 = x[353] - q15_16_7 = x[354] - q17_18_7 = x[355] - q18_19_7 = x[356] - q20_21_7 = x[357] - q21_22_7 = x[358] - q22_23_7 = x[359] - q1_2_8 = x[360] - q1_17_8 = x[361] - q2_3_8 = x[362] - q4_5_8 = x[363] - q5_6_8 = x[364] - q7_8_8 = x[365] - q8_9_8 = x[366] - q8_10_8 = x[367] - q8_11_8 = x[368] - q11_12_8 = x[369] - q12_13_8 = x[370] - q13_14_8 = x[371] - q13_15_8 = x[372] - q15_16_8 = x[373] - q17_18_8 = x[374] - q18_19_8 = x[375] - q20_21_8 = x[376] - q21_22_8 = x[377] - q22_23_8 = x[378] - f3_4_1 = x[379] - f5_7_1 = x[380] - f19_20_1 = x[381] - r3_4_1 = x[382] - r5_7_1 = x[383] - r19_20_1 = x[384] - f3_4_2 = x[385] - f5_7_2 = x[386] - f19_20_2 = x[387] - r3_4_2 = x[388] - r5_7_2 = x[389] - r19_20_2 = x[390] - f3_4_3 = x[391] - f5_7_3 = x[392] - f19_20_3 = x[393] - r3_4_3 = x[394] - r5_7_3 = x[395] - r19_20_3 = x[396] - f3_4_4 = x[397] - f5_7_4 = x[398] - f19_20_4 = x[399] - r3_4_4 = x[400] - r5_7_4 = x[401] - r19_20_4 = x[402] - f3_4_5 = x[403] - f5_7_5 = x[404] - f19_20_5 = x[405] - r3_4_5 = x[406] - r5_7_5 = x[407] - r19_20_5 = x[408] - f3_4_6 = x[409] - f5_7_6 = x[410] - f19_20_6 = x[411] - r3_4_6 = x[412] - r5_7_6 = x[413] - r19_20_6 = x[414] - f3_4_7 = x[415] - f5_7_7 = x[416] - f19_20_7 = x[417] - r3_4_7 = x[418] - r5_7_7 = x[419] - r19_20_7 = x[420] - f3_4_8 = x[421] - f5_7_8 = x[422] - f19_20_8 = x[423] - r3_4_8 = x[424] - r5_7_8 = x[425] - r19_20_8 = x[426] - in1_1 = x[427] - out16_1 = x[428] - out23_1 = x[429] - in1_2 = x[430] - out16_2 = x[431] - out23_2 = x[432] - in1_3 = x[433] - out16_3 = x[434] - out23_3 = x[435] - in1_4 = x[436] - out16_4 = x[437] - out23_4 = x[438] - in1_5 = x[439] - out16_5 = x[440] - out23_5 = x[441] - in1_6 = x[442] - out16_6 = x[443] - out23_6 = x[444] - in1_7 = x[445] - out16_7 = x[446] - out23_7 = x[447] - in1_8 = x[448] - out16_8 = x[449] - out23_8 = x[450] + p_0 = view(x, 1:23) + p_1 = view(x, 24:46) + p_2 = view(x, 47:69) + p_3 = view(x, 70:92) + p_4 = view(x, 93:115) + p_5 = view(x, 116:138) + p_6 = view(x, 139:161) + p_7 = view(x, 162:184) + p_8 = view(x, 185:207) + + q_0 = Dict(q_ind .=> view(x, 208:226)) + q_1 = Dict(q_ind .=> view(x, 227:245)) + q_2 = Dict(q_ind .=> view(x, 246:264)) + q_3 = Dict(q_ind .=> view(x, 265:283)) + q_4 = Dict(q_ind .=> view(x, 284:302)) + q_5 = Dict(q_ind .=> view(x, 303:321)) + q_6 = Dict(q_ind .=> view(x, 322:340)) + q_7 = Dict(q_ind .=> view(x, 341:359)) + q_8 = Dict(q_ind .=> view(x, 360:378)) + + f_1 = Dict(fr_ind .=> view(x, 379:381)) + r_1 = Dict(fr_ind .=> view(x, 382:384)) + f_2 = Dict(fr_ind .=> view(x, 385:387)) + r_2 = Dict(fr_ind .=> view(x, 388:390)) + f_3 = Dict(fr_ind .=> view(x, 391:393)) + r_3 = Dict(fr_ind .=> view(x, 394:396)) + f_4 = Dict(fr_ind .=> view(x, 397:399)) + r_4 = Dict(fr_ind .=> view(x, 400:402)) + f_5 = Dict(fr_ind .=> view(x, 403:405)) + r_5 = Dict(fr_ind .=> view(x, 406:408)) + f_6 = Dict(fr_ind .=> view(x, 409:411)) + r_6 = Dict(fr_ind .=> view(x, 412:414)) + f_7 = Dict(fr_ind .=> view(x, 415:417)) + r_7 = Dict(fr_ind .=> view(x, 418:420)) + f_8 = Dict(fr_ind .=> view(x, 421:423)) + r_8 = Dict(fr_ind .=> view(x, 424:426)) + + in_1 = Dict.(in_ind .=> view(x, 427:427)) + out_1 = Dict(out_ind .=> view(x, 428:429)) + in_2 = Dict.(in_ind .=> view(x, 430:430)) + out_2 = Dict(out_ind .=> view(x, 431:432)) + in_3 = Dict.(in_ind .=> view(x, 433:433)) + out_3 = Dict(out_ind .=> view(x, 434:435)) + in_4 = Dict.(in_ind .=> view(x, 436:436)) + out_4 = Dict(out_ind .=> view(x, 437:438)) + in_5 = Dict.(in_ind .=> view(x, 439:439)) + out_5 = Dict(out_ind .=> view(x, 440:441)) + in_6 = Dict.(in_ind .=> view(x, 442:442)) + out_6 = Dict(out_ind .=> view(x, 443:444)) + in_7 = Dict.(in_ind .=> view(x, 445:445)) + out_7 = Dict(out_ind .=> view(x, 446:447)) + in_8 = Dict.(in_ind .=> view(x, 448:448)) + out_8 = Dict(out_ind .=> view(x, 449:450)) + + # multi-step variables + p_ = [p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8] + q_ = [q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8] + f_ = [f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8] + r_ = [r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8] + in_ = [in_1, in_2, in_3, in_4, in_5, in_6, in_7, in_8] + out_ = [out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8] + + # time step 1 + cx[1] = - p1_1 / ((1) + (1) * p1_1) - p1_0 / ((1) + (1) * p1_0) - T(0.75) * q1_17_1 - T(0.75) * q1_2_1 + - in1_1 - T(0.25) * q1_17_0 - T(0.25) * q1_2_0 + p_1[1] / (1 + p_1[1]) - p_0[1] / (1 + p_0[1]) - θ * q1_17_1 - θ * q1_2_1 + in_1[1] - + (1 - θ) * q1_17_0 - (1 - θ) * q1_2_0 + + cx[1] = + p1_1 / (1 + p1_1) - p1_0 / (1 + p1_0) - θ * q1_17_1 - θ * q1_2_1 + in1_1 - (1 - θ) * q1_17_0 - + (1 - θ) * q1_2_0 cx[2] = - p2_1 / ((1) + (1) * p2_1) - p2_0 / ((1) + (1) * p2_0) - T(0.75) * q2_3_1 + T(0.75) * q1_2_1 - - T(0.25) * q2_3_0 + T(0.25) * q1_2_0 - 1 - cx[3] = - p3_1 / ((1) + (1) * p3_1) - p3_0 / ((1) + (1) * p3_0) - f3_4_1 + - T(0.75) * q2_3_1 + - T(0.25) * q2_3_0 - cx[4] = - p4_1 / ((1) + (1) * p4_1) - p4_0 / ((1) + (1) * p4_0) - T(0.75) * q4_5_1 + f3_4_1 - - T(0.25) * q4_5_0 + p2_1 / (1 + p2_1) - p2_0 / (1 + p2_0) - θ * q2_3_1 + θ * q1_2_1 - (1 - θ) * q2_3_0 + + (1 - θ) * q1_2_0 - 1 + cx[3] = p3_1 / (1 + p3_1) - p3_0 / (1 + p3_0) - f3_4_1 + θ * q2_3_1 + (1 - θ) * q2_3_0 + cx[4] = p4_1 / (1 + p4_1) - p4_0 / (1 + p4_0) - θ * q4_5_1 + f3_4_1 - (1 - θ) * q4_5_0 cx[5] = - p5_1 / ((1) + (1) * p5_1) - p5_0 / ((1) + (1) * p5_0) - T(0.75) * q5_6_1 - f5_7_1 + - T(0.75) * q4_5_1 - T(0.25) * q5_6_0 + T(0.25) * q4_5_0 - cx[6] = - p6_1 / ((1) + (1) * p6_1) - p6_0 / ((1) + (1) * p6_0) + T(0.75) * q5_6_1 + T(0.25) * q5_6_0 - - 1 - cx[7] = - p7_1 / ((1) + (1) * p7_1) - p7_0 / ((1) + (1) * p7_0) - T(0.75) * q7_8_1 + f5_7_1 - - T(0.25) * q7_8_0 + p5_1 / (1 + p5_1) - p5_0 / (1 + p5_0) - θ * q5_6_1 - f5_7_1 + θ * q4_5_1 - (1 - θ) * q5_6_0 + + (1 - θ) * q4_5_0 + cx[6] = p6_1 / (1 + p6_1) - p6_0 / (1 + p6_0) + θ * q5_6_1 + (1 - θ) * q5_6_0 - 1 + cx[7] = p7_1 / (1 + p7_1) - p7_0 / (1 + p7_0) - θ * q7_8_1 + f5_7_1 - (1 - θ) * q7_8_0 cx[8] = - p8_1 / ((1) + (1) * p8_1) - p8_0 / ((1) + (1) * p8_0) - T(0.75) * q8_9_1 - T(0.75) * q8_10_1 - - T(0.75) * q8_11_1 + T(0.75) * q7_8_1 - T(0.25) * q8_9_0 - T(0.25) * q8_10_0 - - T(0.25) * q8_11_0 + T(0.25) * q7_8_0 - cx[9] = - p9_1 / ((1) + (1) * p9_1) - p9_0 / ((1) + (1) * p9_0) + T(0.75) * q8_9_1 + T(0.25) * q8_9_0 - cx[10] = - p10_1 / ((1) + (1) * p10_1) - p10_0 / ((1) + (1) * p10_0) + - T(0.75) * q8_10_1 + - T(0.25) * q8_10_0 - 1 + p8_1 / (1 + p8_1) - p8_0 / (1 + p8_0) - θ * q8_9_1 - θ * q8_10_1 - θ * q8_11_1 + θ * q7_8_1 - + (1 - θ) * q8_9_0 - (1 - θ) * q8_10_0 - (1 - θ) * q8_11_0 + (1 - θ) * q7_8_0 + cx[9] = p9_1 / (1 + p9_1) - p9_0 / (1 + p9_0) + θ * q8_9_1 + (1 - θ) * q8_9_0 + cx[10] = p10_1 / (1 + p10_1) - p10_0 / (1 + p10_0) + θ * q8_10_1 + (1 - θ) * q8_10_0 - 1 cx[11] = - p11_1 / ((1) + (1) * p11_1) - p11_0 / ((1) + (1) * p11_0) - T(0.75) * q11_12_1 + - T(0.75) * q8_11_1 - T(0.25) * q11_12_0 + T(0.25) * q8_11_0 + p11_1 / (1 + p11_1) - p11_0 / (1 + p11_0) - θ * q11_12_1 + θ * q8_11_1 - (1 - θ) * q11_12_0 + + (1 - θ) * q8_11_0 cx[12] = - p12_1 / ((1) + (1) * p12_1) - p12_0 / ((1) + (1) * p12_0) - T(0.75) * q12_13_1 + - T(0.75) * q11_12_1 - T(0.25) * q12_13_0 + T(0.25) * q11_12_0 + p12_1 / (1 + p12_1) - p12_0 / (1 + p12_0) - θ * q12_13_1 + θ * q11_12_1 - (1 - θ) * q12_13_0 + + (1 - θ) * q11_12_0 cx[13] = - p13_1 / ((1) + (1) * p13_1) - p13_0 / ((1) + (1) * p13_0) - T(0.75) * q13_14_1 - - T(0.75) * q13_15_1 + T(0.75) * q12_13_1 - T(0.25) * q13_14_0 - T(0.25) * q13_15_0 + - T(0.25) * q12_13_0 - 1 - cx[14] = - p14_1 / ((1) + (1) * p14_1) - p14_0 / ((1) + (1) * p14_0) + - T(0.75) * q13_14_1 + - T(0.25) * q13_14_0 + p13_1 / (1 + p13_1) - p13_0 / (1 + p13_0) - θ * q13_14_1 - θ * q13_15_1 + θ * q12_13_1 - + (1 - θ) * q13_14_0 - (1 - θ) * q13_15_0 + (1 - θ) * q12_13_0 - 1 + cx[14] = p14_1 / (1 + p14_1) - p14_0 / (1 + p14_0) + θ * q13_14_1 + (1 - θ) * q13_14_0 cx[15] = - p15_1 / ((1) + (1) * p15_1) - p15_0 / ((1) + (1) * p15_0) - T(0.75) * q15_16_1 + - T(0.75) * q13_15_1 - T(0.25) * q15_16_0 + T(0.25) * q13_15_0 - 1 - cx[16] = - p16_1 / ((1) + (1) * p16_1) - p16_0 / ((1) + (1) * p16_0) + - T(0.75) * q15_16_1 + - T(0.25) * q15_16_0 - out16_1 + p15_1 / (1 + p15_1) - p15_0 / (1 + p15_0) - θ * q15_16_1 + θ * q13_15_1 - (1 - θ) * q15_16_0 + + (1 - θ) * q13_15_0 - 1 + cx[16] = p16_1 / (1 + p16_1) - p16_0 / (1 + p16_0) + θ * q15_16_1 + (1 - θ) * q15_16_0 - out16_1 cx[17] = - p17_1 / ((1) + (1) * p17_1) - p17_0 / ((1) + (1) * p17_0) - T(0.75) * q17_18_1 + - T(0.75) * q1_17_1 - T(0.25) * q17_18_0 + T(0.25) * q1_17_0 - 1 + p17_1 / (1 + p17_1) - p17_0 / (1 + p17_0) - θ * q17_18_1 + θ * q1_17_1 - (1 - θ) * q17_18_0 + + (1 - θ) * q1_17_0 - 1 cx[18] = - p18_1 / ((1) + (1) * p18_1) - p18_0 / ((1) + (1) * p18_0) - T(0.75) * q18_19_1 + - T(0.75) * q17_18_1 - T(0.25) * q18_19_0 + T(0.25) * q17_18_0 - 1 + p18_1 / (1 + p18_1) - p18_0 / (1 + p18_0) - θ * q18_19_1 + θ * q17_18_1 - (1 - θ) * q18_19_0 + + (1 - θ) * q17_18_0 - 1 cx[19] = - p19_1 / ((1) + (1) * p19_1) - p19_0 / ((1) + (1) * p19_0) - f19_20_1 + - T(0.75) * q18_19_1 + - T(0.25) * q18_19_0 + p19_1 / (1 + p19_1) - p19_0 / (1 + p19_0) - f19_20_1 + θ * q18_19_1 + (1 - θ) * q18_19_0 cx[20] = - p20_1 / ((1) + (1) * p20_1) - p20_0 / ((1) + (1) * p20_0) - T(0.75) * q20_21_1 + f19_20_1 - - T(0.25) * q20_21_0 + p20_1 / (1 + p20_1) - p20_0 / (1 + p20_0) - θ * q20_21_1 + f19_20_1 - (1 - θ) * q20_21_0 cx[21] = - p21_1 / ((1) + (1) * p21_1) - p21_0 / ((1) + (1) * p21_0) - T(0.75) * q21_22_1 + - T(0.75) * q20_21_1 - T(0.25) * q21_22_0 + T(0.25) * q20_21_0 - 1 + p21_1 / (1 + p21_1) - p21_0 / (1 + p21_0) - θ * q21_22_1 + θ * q20_21_1 - (1 - θ) * q21_22_0 + + (1 - θ) * q20_21_0 - 1 cx[22] = - p22_1 / ((1) + (1) * p22_1) - p22_0 / ((1) + (1) * p22_0) - T(0.75) * q22_23_1 + - T(0.75) * q21_22_1 - T(0.25) * q22_23_0 + T(0.25) * q21_22_0 - 1 - cx[23] = - p23_1 / ((1) + (1) * p23_1) - p23_0 / ((1) + (1) * p23_0) + - T(0.75) * q22_23_1 + - T(0.25) * q22_23_0 - out23_1 + p22_1 / (1 + p22_1) - p22_0 / (1 + p22_0) - θ * q22_23_1 + θ * q21_22_1 - (1 - θ) * q22_23_0 + + (1 - θ) * q21_22_0 - 1 + cx[23] = p23_1 / (1 + p23_1) - p23_0 / (1 + p23_0) + θ * q22_23_1 + (1 - θ) * q22_23_0 - out23_1 cx[24] = p3_1 * r3_4_1 - p4_1 cx[25] = p5_1 * r5_7_1 - p7_1 cx[26] = p19_1 * r19_20_1 - p20_1 - cx[27] = - p1_1 * p1_1 - p2_1 * p2_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_1 + p2_1)) * ((abs(q1_2_1))^T(1.8539)) - cx[28] = - p1_1 * p1_1 - p17_1 * p17_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_1 + p17_1)) * ((abs(q1_17_1))^T(1.8539)) - cx[29] = - p2_1 * p2_1 - p3_1 * p3_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p2_1 + p3_1)) * ((abs(q2_3_1))^T(1.8539)) - cx[30] = - p4_1 * p4_1 - p5_1 * p5_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p4_1 + p5_1)) * ((abs(q4_5_1))^T(1.8539)) - cx[31] = - p5_1 * p5_1 - p6_1 * p6_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p5_1 + p6_1)) * ((abs(q5_6_1))^T(1.8539)) - cx[32] = - p7_1 * p7_1 - p8_1 * p8_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p7_1 + p8_1)) * ((abs(q7_8_1))^T(1.8539)) - cx[33] = - p8_1 * p8_1 - p9_1 * p9_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_1 + p9_1)) * ((abs(q8_9_1))^T(1.8539)) - cx[34] = - p8_1 * p8_1 - p10_1 * p10_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_1 + p10_1)) * ((abs(q8_10_1))^T(1.8539)) - cx[35] = - p8_1 * p8_1 - p11_1 * p11_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_1 + p11_1)) * ((abs(q8_11_1))^T(1.8539)) - cx[36] = - p11_1 * p11_1 - p12_1 * p12_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p11_1 + p12_1)) * ((abs(q11_12_1))^T(1.8539)) - cx[37] = - p12_1 * p12_1 - p13_1 * p13_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p12_1 + p13_1)) * ((abs(q12_13_1))^T(1.8539)) - cx[38] = - p13_1 * p13_1 - p14_1 * p14_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_1 + p14_1)) * ((abs(q13_14_1))^T(1.8539)) - cx[39] = - p13_1 * p13_1 - p15_1 * p15_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_1 + p15_1)) * ((abs(q13_15_1))^T(1.8539)) - cx[40] = - p15_1 * p15_1 - p16_1 * p16_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p15_1 + p16_1)) * ((abs(q15_16_1))^T(1.8539)) - cx[41] = - p17_1 * p17_1 - p18_1 * p18_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p17_1 + p18_1)) * ((abs(q17_18_1))^T(1.8539)) - cx[42] = - p18_1 * p18_1 - p19_1 * p19_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p18_1 + p19_1)) * ((abs(q18_19_1))^T(1.8539)) - cx[43] = - p20_1 * p20_1 - p21_1 * p21_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p20_1 + p21_1)) * ((abs(q20_21_1))^T(1.8539)) - cx[44] = - p21_1 * p21_1 - p22_1 * p22_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p21_1 + p22_1)) * ((abs(q21_22_1))^T(1.8539)) - cx[45] = - p22_1 * p22_1 - p23_1 * p23_1 - - T(0.01) * ((1) + (T(0.5) * 1) * (p22_1 + p23_1)) * ((abs(q22_23_1))^T(1.8539)) + cx[27] = p1_1 * p1_1 - p2_1 * p2_1 - h * (1 + γ * (p1_1 + p2_1)) * (abs(q1_2_1)^α) + cx[28] = p1_1 * p1_1 - p17_1 * p17_1 - h * (1 + γ * (p1_1 + p17_1)) * (abs(q1_17_1)^α) + cx[29] = p2_1 * p2_1 - p3_1 * p3_1 - h * (1 + γ * (p2_1 + p3_1)) * (abs(q2_3_1)^α) + cx[30] = p4_1 * p4_1 - p5_1 * p5_1 - h * (1 + γ * (p4_1 + p5_1)) * (abs(q4_5_1)^α) + cx[31] = p5_1 * p5_1 - p6_1 * p6_1 - h * (1 + γ * (p5_1 + p6_1)) * (abs(q5_6_1)^α) + cx[32] = p7_1 * p7_1 - p8_1 * p8_1 - h * (1 + γ * (p7_1 + p8_1)) * (abs(q7_8_1)^α) + cx[33] = p8_1 * p8_1 - p9_1 * p9_1 - h * (1 + γ * (p8_1 + p9_1)) * (abs(q8_9_1)^α) + cx[34] = p8_1 * p8_1 - p10_1 * p10_1 - h * (1 + γ * (p8_1 + p10_1)) * (abs(q8_10_1)^α) + cx[35] = p8_1 * p8_1 - p11_1 * p11_1 - h * (1 + γ * (p8_1 + p11_1)) * (abs(q8_11_1)^α) + cx[36] = p11_1 * p11_1 - p12_1 * p12_1 - h * (1 + γ * (p11_1 + p12_1)) * (abs(q11_12_1)^α) + cx[37] = p12_1 * p12_1 - p13_1 * p13_1 - h * (1 + γ * (p12_1 + p13_1)) * (abs(q12_13_1)^α) + cx[38] = p13_1 * p13_1 - p14_1 * p14_1 - h * (1 + γ * (p13_1 + p14_1)) * (abs(q13_14_1)^α) + cx[39] = p13_1 * p13_1 - p15_1 * p15_1 - h * (1 + γ * (p13_1 + p15_1)) * (abs(q13_15_1)^α) + cx[40] = p15_1 * p15_1 - p16_1 * p16_1 - h * (1 + γ * (p15_1 + p16_1)) * (abs(q15_16_1)^α) + cx[41] = p17_1 * p17_1 - p18_1 * p18_1 - h * (1 + γ * (p17_1 + p18_1)) * (abs(q17_18_1)^α) + cx[42] = p18_1 * p18_1 - p19_1 * p19_1 - h * (1 + γ * (p18_1 + p19_1)) * (abs(q18_19_1)^α) + cx[43] = p20_1 * p20_1 - p21_1 * p21_1 - h * (1 + γ * (p20_1 + p21_1)) * (abs(q20_21_1)^α) + cx[44] = p21_1 * p21_1 - p22_1 * p22_1 - h * (1 + γ * (p21_1 + p22_1)) * (abs(q21_22_1)^α) + cx[45] = p22_1 * p22_1 - p23_1 * p23_1 - h * (1 + γ * (p22_1 + p23_1)) * (abs(q22_23_1)^α) + + # time step 2 + cx[46] = - p1_2 / ((1) + (1) * p1_2) - p1_1 / ((1) + (1) * p1_1) - T(0.75) * q1_17_2 - T(0.75) * q1_2_2 + - in1_2 - T(0.25) * q1_17_1 - T(0.25) * q1_2_1 + p1_2 / (1 + p1_2) - p1_1 / (1 + p1_1) - θ * q1_17_2 - θ * q1_2_2 + in1_2 - (1 - θ) * q1_17_1 - + (1 - θ) * q1_2_1 cx[47] = - p2_2 / ((1) + (1) * p2_2) - p2_1 / ((1) + (1) * p2_1) - T(0.75) * q2_3_2 + T(0.75) * q1_2_2 - - T(0.25) * q2_3_1 + T(0.25) * q1_2_1 - 1 - cx[48] = - p3_2 / ((1) + (1) * p3_2) - p3_1 / ((1) + (1) * p3_1) - f3_4_2 + - T(0.75) * q2_3_2 + - T(0.25) * q2_3_1 - cx[49] = - p4_2 / ((1) + (1) * p4_2) - p4_1 / ((1) + (1) * p4_1) - T(0.75) * q4_5_2 + f3_4_2 - - T(0.25) * q4_5_1 + p2_2 / (1 + p2_2) - p2_1 / (1 + p2_1) - θ * q2_3_2 + θ * q1_2_2 - (1 - θ) * q2_3_1 + + (1 - θ) * q1_2_1 - 1 + cx[48] = p3_2 / (1 + p3_2) - p3_1 / (1 + p3_1) - f3_4_2 + θ * q2_3_2 + (1 - θ) * q2_3_1 + cx[49] = p4_2 / (1 + p4_2) - p4_1 / (1 + p4_1) - θ * q4_5_2 + f3_4_2 - (1 - θ) * q4_5_1 cx[50] = - p5_2 / ((1) + (1) * p5_2) - p5_1 / ((1) + (1) * p5_1) - T(0.75) * q5_6_2 - f5_7_2 + - T(0.75) * q4_5_2 - T(0.25) * q5_6_1 + T(0.25) * q4_5_1 - cx[51] = - p6_2 / ((1) + (1) * p6_2) - p6_1 / ((1) + (1) * p6_1) + T(0.75) * q5_6_2 + T(0.25) * q5_6_1 - - 1 - cx[52] = - p7_2 / ((1) + (1) * p7_2) - p7_1 / ((1) + (1) * p7_1) - T(0.75) * q7_8_2 + f5_7_2 - - T(0.25) * q7_8_1 + p5_2 / (1 + p5_2) - p5_1 / (1 + p5_1) - θ * q5_6_2 - f5_7_2 + θ * q4_5_2 - (1 - θ) * q5_6_1 + + (1 - θ) * q4_5_1 + cx[51] = p6_2 / (1 + p6_2) - p6_1 / (1 + p6_1) + θ * q5_6_2 + (1 - θ) * q5_6_1 - 1 + cx[52] = p7_2 / (1 + p7_2) - p7_1 / (1 + p7_1) - θ * q7_8_2 + f5_7_2 - (1 - θ) * q7_8_1 cx[53] = - p8_2 / ((1) + (1) * p8_2) - p8_1 / ((1) + (1) * p8_1) - T(0.75) * q8_9_2 - T(0.75) * q8_10_2 - - T(0.75) * q8_11_2 + T(0.75) * q7_8_2 - T(0.25) * q8_9_1 - T(0.25) * q8_10_1 - - T(0.25) * q8_11_1 + T(0.25) * q7_8_1 - cx[54] = - p9_2 / ((1) + (1) * p9_2) - p9_1 / ((1) + (1) * p9_1) + T(0.75) * q8_9_2 + T(0.25) * q8_9_1 - cx[55] = - p10_2 / ((1) + (1) * p10_2) - p10_1 / ((1) + (1) * p10_1) + - T(0.75) * q8_10_2 + - T(0.25) * q8_10_1 - 1 + p8_2 / (1 + p8_2) - p8_1 / (1 + p8_1) - θ * q8_9_2 - θ * q8_10_2 - θ * q8_11_2 + θ * q7_8_2 - + (1 - θ) * q8_9_1 - (1 - θ) * q8_10_1 - (1 - θ) * q8_11_1 + (1 - θ) * q7_8_1 + cx[54] = p9_2 / (1 + p9_2) - p9_1 / (1 + p9_1) + θ * q8_9_2 + (1 - θ) * q8_9_1 + cx[55] = p10_2 / (1 + p10_2) - p10_1 / (1 + p10_1) + θ * q8_10_2 + (1 - θ) * q8_10_1 - 1 cx[56] = - p11_2 / ((1) + (1) * p11_2) - p11_1 / ((1) + (1) * p11_1) - T(0.75) * q11_12_2 + - T(0.75) * q8_11_2 - T(0.25) * q11_12_1 + T(0.25) * q8_11_1 + p11_2 / (1 + p11_2) - p11_1 / (1 + p11_1) - θ * q11_12_2 + θ * q8_11_2 - (1 - θ) * q11_12_1 + + (1 - θ) * q8_11_1 cx[57] = - p12_2 / ((1) + (1) * p12_2) - p12_1 / ((1) + (1) * p12_1) - T(0.75) * q12_13_2 + - T(0.75) * q11_12_2 - T(0.25) * q12_13_1 + T(0.25) * q11_12_1 + p12_2 / (1 + p12_2) - p12_1 / (1 + p12_1) - θ * q12_13_2 + θ * q11_12_2 - (1 - θ) * q12_13_1 + + (1 - θ) * q11_12_1 cx[58] = - p13_2 / ((1) + (1) * p13_2) - p13_1 / ((1) + (1) * p13_1) - T(0.75) * q13_14_2 - - T(0.75) * q13_15_2 + T(0.75) * q12_13_2 - T(0.25) * q13_14_1 - T(0.25) * q13_15_1 + - T(0.25) * q12_13_1 - 1 - cx[59] = - p14_2 / ((1) + (1) * p14_2) - p14_1 / ((1) + (1) * p14_1) + - T(0.75) * q13_14_2 + - T(0.25) * q13_14_1 + p13_2 / (1 + p13_2) - p13_1 / (1 + p13_1) - θ * q13_14_2 - θ * q13_15_2 + θ * q12_13_2 - + (1 - θ) * q13_14_1 - (1 - θ) * q13_15_1 + (1 - θ) * q12_13_1 - 1 + cx[59] = p14_2 / (1 + p14_2) - p14_1 / (1 + p14_1) + θ * q13_14_2 + (1 - θ) * q13_14_1 cx[60] = - p15_2 / ((1) + (1) * p15_2) - p15_1 / ((1) + (1) * p15_1) - T(0.75) * q15_16_2 + - T(0.75) * q13_15_2 - T(0.25) * q15_16_1 + T(0.25) * q13_15_1 - 1 - cx[61] = - p16_2 / ((1) + (1) * p16_2) - p16_1 / ((1) + (1) * p16_1) + - T(0.75) * q15_16_2 + - T(0.25) * q15_16_1 - out16_2 + p15_2 / (1 + p15_2) - p15_1 / (1 + p15_1) - θ * q15_16_2 + θ * q13_15_2 - (1 - θ) * q15_16_1 + + (1 - θ) * q13_15_1 - 1 + cx[61] = p16_2 / (1 + p16_2) - p16_1 / (1 + p16_1) + θ * q15_16_2 + (1 - θ) * q15_16_1 - out16_2 cx[62] = - p17_2 / ((1) + (1) * p17_2) - p17_1 / ((1) + (1) * p17_1) - T(0.75) * q17_18_2 + - T(0.75) * q1_17_2 - T(0.25) * q17_18_1 + T(0.25) * q1_17_1 - 1 + p17_2 / (1 + p17_2) - p17_1 / (1 + p17_1) - θ * q17_18_2 + θ * q1_17_2 - (1 - θ) * q17_18_1 + + (1 - θ) * q1_17_1 - 1 cx[63] = - p18_2 / ((1) + (1) * p18_2) - p18_1 / ((1) + (1) * p18_1) - T(0.75) * q18_19_2 + - T(0.75) * q17_18_2 - T(0.25) * q18_19_1 + T(0.25) * q17_18_1 - 1 + p18_2 / (1 + p18_2) - p18_1 / (1 + p18_1) - θ * q18_19_2 + θ * q17_18_2 - (1 - θ) * q18_19_1 + + (1 - θ) * q17_18_1 - 1 cx[64] = - p19_2 / ((1) + (1) * p19_2) - p19_1 / ((1) + (1) * p19_1) - f19_20_2 + - T(0.75) * q18_19_2 + - T(0.25) * q18_19_1 + p19_2 / (1 + p19_2) - p19_1 / (1 + p19_1) - f19_20_2 + θ * q18_19_2 + (1 - θ) * q18_19_1 cx[65] = - p20_2 / ((1) + (1) * p20_2) - p20_1 / ((1) + (1) * p20_1) - T(0.75) * q20_21_2 + f19_20_2 - - T(0.25) * q20_21_1 + p20_2 / (1 + p20_2) - p20_1 / (1 + p20_1) - θ * q20_21_2 + f19_20_2 - (1 - θ) * q20_21_1 cx[66] = - p21_2 / ((1) + (1) * p21_2) - p21_1 / ((1) + (1) * p21_1) - T(0.75) * q21_22_2 + - T(0.75) * q20_21_2 - T(0.25) * q21_22_1 + T(0.25) * q20_21_1 - 1 + p21_2 / (1 + p21_2) - p21_1 / (1 + p21_1) - θ * q21_22_2 + θ * q20_21_2 - (1 - θ) * q21_22_1 + + (1 - θ) * q20_21_1 - 1 cx[67] = - p22_2 / ((1) + (1) * p22_2) - p22_1 / ((1) + (1) * p22_1) - T(0.75) * q22_23_2 + - T(0.75) * q21_22_2 - T(0.25) * q22_23_1 + T(0.25) * q21_22_1 - 1 - cx[68] = - p23_2 / ((1) + (1) * p23_2) - p23_1 / ((1) + (1) * p23_1) + - T(0.75) * q22_23_2 + - T(0.25) * q22_23_1 - out23_2 + p22_2 / (1 + p22_2) - p22_1 / (1 + p22_1) - θ * q22_23_2 + θ * q21_22_2 - (1 - θ) * q22_23_1 + + (1 - θ) * q21_22_1 - 1 + cx[68] = p23_2 / (1 + p23_2) - p23_1 / (1 + p23_1) + θ * q22_23_2 + (1 - θ) * q22_23_1 - out23_2 cx[69] = p3_2 * r3_4_2 - p4_2 cx[70] = p5_2 * r5_7_2 - p7_2 cx[71] = p19_2 * r19_20_2 - p20_2 - cx[72] = - p1_2 * p1_2 - p2_2 * p2_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_2 + p2_2)) * ((abs(q1_2_2))^T(1.8539)) - cx[73] = - p1_2 * p1_2 - p17_2 * p17_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_2 + p17_2)) * ((abs(q1_17_2))^T(1.8539)) - cx[74] = - p2_2 * p2_2 - p3_2 * p3_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p2_2 + p3_2)) * ((abs(q2_3_2))^T(1.8539)) - cx[75] = - p4_2 * p4_2 - p5_2 * p5_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p4_2 + p5_2)) * ((abs(q4_5_2))^T(1.8539)) - cx[76] = - p5_2 * p5_2 - p6_2 * p6_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p5_2 + p6_2)) * ((abs(q5_6_2))^T(1.8539)) - cx[77] = - p7_2 * p7_2 - p8_2 * p8_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p7_2 + p8_2)) * ((abs(q7_8_2))^T(1.8539)) - cx[78] = - p8_2 * p8_2 - p9_2 * p9_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_2 + p9_2)) * ((abs(q8_9_2))^T(1.8539)) - cx[79] = - p8_2 * p8_2 - p10_2 * p10_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_2 + p10_2)) * ((abs(q8_10_2))^T(1.8539)) - cx[80] = - p8_2 * p8_2 - p11_2 * p11_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_2 + p11_2)) * ((abs(q8_11_2))^T(1.8539)) - cx[81] = - p11_2 * p11_2 - p12_2 * p12_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p11_2 + p12_2)) * ((abs(q11_12_2))^T(1.8539)) - cx[82] = - p12_2 * p12_2 - p13_2 * p13_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p12_2 + p13_2)) * ((abs(q12_13_2))^T(1.8539)) - cx[83] = - p13_2 * p13_2 - p14_2 * p14_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_2 + p14_2)) * ((abs(q13_14_2))^T(1.8539)) - cx[84] = - p13_2 * p13_2 - p15_2 * p15_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_2 + p15_2)) * ((abs(q13_15_2))^T(1.8539)) - cx[85] = - p15_2 * p15_2 - p16_2 * p16_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p15_2 + p16_2)) * ((abs(q15_16_2))^T(1.8539)) - cx[86] = - p17_2 * p17_2 - p18_2 * p18_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p17_2 + p18_2)) * ((abs(q17_18_2))^T(1.8539)) - cx[87] = - p18_2 * p18_2 - p19_2 * p19_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p18_2 + p19_2)) * ((abs(q18_19_2))^T(1.8539)) - cx[88] = - p20_2 * p20_2 - p21_2 * p21_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p20_2 + p21_2)) * ((abs(q20_21_2))^T(1.8539)) - cx[89] = - p21_2 * p21_2 - p22_2 * p22_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p21_2 + p22_2)) * ((abs(q21_22_2))^T(1.8539)) - cx[90] = - p22_2 * p22_2 - p23_2 * p23_2 - - T(0.01) * ((1) + (T(0.5) * 1) * (p22_2 + p23_2)) * ((abs(q22_23_2))^T(1.8539)) + cx[72] = p1_2 * p1_2 - p2_2 * p2_2 - h * (1 + γ * (p1_2 + p2_2)) * (abs(q1_2_2)^α) + cx[73] = p1_2 * p1_2 - p17_2 * p17_2 - h * (1 + γ * (p1_2 + p17_2)) * (abs(q1_17_2)^α) + cx[74] = p2_2 * p2_2 - p3_2 * p3_2 - h * (1 + γ * (p2_2 + p3_2)) * (abs(q2_3_2)^α) + cx[75] = p4_2 * p4_2 - p5_2 * p5_2 - h * (1 + γ * (p4_2 + p5_2)) * (abs(q4_5_2)^α) + cx[76] = p5_2 * p5_2 - p6_2 * p6_2 - h * (1 + γ * (p5_2 + p6_2)) * (abs(q5_6_2)^α) + cx[77] = p7_2 * p7_2 - p8_2 * p8_2 - h * (1 + γ * (p7_2 + p8_2)) * (abs(q7_8_2)^α) + cx[78] = p8_2 * p8_2 - p9_2 * p9_2 - h * (1 + γ * (p8_2 + p9_2)) * (abs(q8_9_2)^α) + cx[79] = p8_2 * p8_2 - p10_2 * p10_2 - h * (1 + γ * (p8_2 + p10_2)) * (abs(q8_10_2)^α) + cx[80] = p8_2 * p8_2 - p11_2 * p11_2 - h * (1 + γ * (p8_2 + p11_2)) * (abs(q8_11_2)^α) + cx[81] = p11_2 * p11_2 - p12_2 * p12_2 - h * (1 + γ * (p11_2 + p12_2)) * (abs(q11_12_2)^α) + cx[82] = p12_2 * p12_2 - p13_2 * p13_2 - h * (1 + γ * (p12_2 + p13_2)) * (abs(q12_13_2)^α) + cx[83] = p13_2 * p13_2 - p14_2 * p14_2 - h * (1 + γ * (p13_2 + p14_2)) * (abs(q13_14_2)^α) + cx[84] = p13_2 * p13_2 - p15_2 * p15_2 - h * (1 + γ * (p13_2 + p15_2)) * (abs(q13_15_2)^α) + cx[85] = p15_2 * p15_2 - p16_2 * p16_2 - h * (1 + γ * (p15_2 + p16_2)) * (abs(q15_16_2)^α) + cx[86] = p17_2 * p17_2 - p18_2 * p18_2 - h * (1 + γ * (p17_2 + p18_2)) * (abs(q17_18_2)^α) + cx[87] = p18_2 * p18_2 - p19_2 * p19_2 - h * (1 + γ * (p18_2 + p19_2)) * (abs(q18_19_2)^α) + cx[88] = p20_2 * p20_2 - p21_2 * p21_2 - h * (1 + γ * (p20_2 + p21_2)) * (abs(q20_21_2)^α) + cx[89] = p21_2 * p21_2 - p22_2 * p22_2 - h * (1 + γ * (p21_2 + p22_2)) * (abs(q21_22_2)^α) + cx[90] = p22_2 * p22_2 - p23_2 * p23_2 - h * (1 + γ * (p22_2 + p23_2)) * (abs(q22_23_2)^α) + + # time step 3 + cx[91] = - p1_3 / ((1) + (1) * p1_3) - p1_2 / ((1) + (1) * p1_2) - T(0.75) * q1_17_3 - T(0.75) * q1_2_3 + - in1_3 - T(0.25) * q1_17_2 - T(0.25) * q1_2_2 + p1_3 / (1 + p1_3) - p1_2 / (1 + p1_2) - θ * q1_17_3 - θ * q1_2_3 + in1_3 - (1 - θ) * q1_17_2 - + (1 - θ) * q1_2_2 cx[92] = - p2_3 / ((1) + (1) * p2_3) - p2_2 / ((1) + (1) * p2_2) - T(0.75) * q2_3_3 + T(0.75) * q1_2_3 - - T(0.25) * q2_3_2 + T(0.25) * q1_2_2 - 1 - cx[93] = - p3_3 / ((1) + (1) * p3_3) - p3_2 / ((1) + (1) * p3_2) - f3_4_3 + - T(0.75) * q2_3_3 + - T(0.25) * q2_3_2 - cx[94] = - p4_3 / ((1) + (1) * p4_3) - p4_2 / ((1) + (1) * p4_2) - T(0.75) * q4_5_3 + f3_4_3 - - T(0.25) * q4_5_2 + p2_3 / (1 + p2_3) - p2_2 / (1 + p2_2) - θ * q2_3_3 + θ * q1_2_3 - (1 - θ) * q2_3_2 + + (1 - θ) * q1_2_2 - 1 + cx[93] = p3_3 / (1 + p3_3) - p3_2 / (1 + p3_2) - f3_4_3 + θ * q2_3_3 + (1 - θ) * q2_3_2 + cx[94] = p4_3 / (1 + p4_3) - p4_2 / (1 + p4_2) - θ * q4_5_3 + f3_4_3 - (1 - θ) * q4_5_2 cx[95] = - p5_3 / ((1) + (1) * p5_3) - p5_2 / ((1) + (1) * p5_2) - T(0.75) * q5_6_3 - f5_7_3 + - T(0.75) * q4_5_3 - T(0.25) * q5_6_2 + T(0.25) * q4_5_2 - cx[96] = - p6_3 / ((1) + (1) * p6_3) - p6_2 / ((1) + (1) * p6_2) + T(0.75) * q5_6_3 + T(0.25) * q5_6_2 - - 1 - cx[97] = - p7_3 / ((1) + (1) * p7_3) - p7_2 / ((1) + (1) * p7_2) - T(0.75) * q7_8_3 + f5_7_3 - - T(0.25) * q7_8_2 + p5_3 / (1 + p5_3) - p5_2 / (1 + p5_2) - θ * q5_6_3 - f5_7_3 + θ * q4_5_3 - (1 - θ) * q5_6_2 + + (1 - θ) * q4_5_2 + cx[96] = p6_3 / (1 + p6_3) - p6_2 / (1 + p6_2) + θ * q5_6_3 + (1 - θ) * q5_6_2 - 1 + cx[97] = p7_3 / (1 + p7_3) - p7_2 / (1 + p7_2) - θ * q7_8_3 + f5_7_3 - (1 - θ) * q7_8_2 cx[98] = - p8_3 / ((1) + (1) * p8_3) - p8_2 / ((1) + (1) * p8_2) - T(0.75) * q8_9_3 - T(0.75) * q8_10_3 - - T(0.75) * q8_11_3 + T(0.75) * q7_8_3 - T(0.25) * q8_9_2 - T(0.25) * q8_10_2 - - T(0.25) * q8_11_2 + T(0.25) * q7_8_2 - cx[99] = - p9_3 / ((1) + (1) * p9_3) - p9_2 / ((1) + (1) * p9_2) + T(0.75) * q8_9_3 + T(0.25) * q8_9_2 - cx[100] = - p10_3 / ((1) + (1) * p10_3) - p10_2 / ((1) + (1) * p10_2) + - T(0.75) * q8_10_3 + - T(0.25) * q8_10_2 - 1 + p8_3 / (1 + p8_3) - p8_2 / (1 + p8_2) - θ * q8_9_3 - θ * q8_10_3 - θ * q8_11_3 + θ * q7_8_3 - + (1 - θ) * q8_9_2 - (1 - θ) * q8_10_2 - (1 - θ) * q8_11_2 + (1 - θ) * q7_8_2 + cx[99] = p9_3 / (1 + p9_3) - p9_2 / (1 + p9_2) + θ * q8_9_3 + (1 - θ) * q8_9_2 + cx[100] = p10_3 / (1 + p10_3) - p10_2 / (1 + p10_2) + θ * q8_10_3 + (1 - θ) * q8_10_2 - 1 cx[101] = - p11_3 / ((1) + (1) * p11_3) - p11_2 / ((1) + (1) * p11_2) - T(0.75) * q11_12_3 + - T(0.75) * q8_11_3 - T(0.25) * q11_12_2 + T(0.25) * q8_11_2 + p11_3 / (1 + p11_3) - p11_2 / (1 + p11_2) - θ * q11_12_3 + θ * q8_11_3 - (1 - θ) * q11_12_2 + + (1 - θ) * q8_11_2 cx[102] = - p12_3 / ((1) + (1) * p12_3) - p12_2 / ((1) + (1) * p12_2) - T(0.75) * q12_13_3 + - T(0.75) * q11_12_3 - T(0.25) * q12_13_2 + T(0.25) * q11_12_2 + p12_3 / (1 + p12_3) - p12_2 / (1 + p12_2) - θ * q12_13_3 + θ * q11_12_3 - (1 - θ) * q12_13_2 + + (1 - θ) * q11_12_2 cx[103] = - p13_3 / ((1) + (1) * p13_3) - p13_2 / ((1) + (1) * p13_2) - T(0.75) * q13_14_3 - - T(0.75) * q13_15_3 + T(0.75) * q12_13_3 - T(0.25) * q13_14_2 - T(0.25) * q13_15_2 + - T(0.25) * q12_13_2 - 1 - cx[104] = - p14_3 / ((1) + (1) * p14_3) - p14_2 / ((1) + (1) * p14_2) + - T(0.75) * q13_14_3 + - T(0.25) * q13_14_2 + p13_3 / (1 + p13_3) - p13_2 / (1 + p13_2) - θ * q13_14_3 - θ * q13_15_3 + θ * q12_13_3 - + (1 - θ) * q13_14_2 - (1 - θ) * q13_15_2 + (1 - θ) * q12_13_2 - 1 + cx[104] = p14_3 / (1 + p14_3) - p14_2 / (1 + p14_2) + θ * q13_14_3 + (1 - θ) * q13_14_2 cx[105] = - p15_3 / ((1) + (1) * p15_3) - p15_2 / ((1) + (1) * p15_2) - T(0.75) * q15_16_3 + - T(0.75) * q13_15_3 - T(0.25) * q15_16_2 + T(0.25) * q13_15_2 - 1 + p15_3 / (1 + p15_3) - p15_2 / (1 + p15_2) - θ * q15_16_3 + θ * q13_15_3 - (1 - θ) * q15_16_2 + + (1 - θ) * q13_15_2 - 1 cx[106] = - p16_3 / ((1) + (1) * p16_3) - p16_2 / ((1) + (1) * p16_2) + - T(0.75) * q15_16_3 + - T(0.25) * q15_16_2 - out16_3 + p16_3 / (1 + p16_3) - p16_2 / (1 + p16_2) + θ * q15_16_3 + (1 - θ) * q15_16_2 - out16_3 cx[107] = - p17_3 / ((1) + (1) * p17_3) - p17_2 / ((1) + (1) * p17_2) - T(0.75) * q17_18_3 + - T(0.75) * q1_17_3 - T(0.25) * q17_18_2 + T(0.25) * q1_17_2 - 1 + p17_3 / (1 + p17_3) - p17_2 / (1 + p17_2) - θ * q17_18_3 + θ * q1_17_3 - (1 - θ) * q17_18_2 + + (1 - θ) * q1_17_2 - 1 cx[108] = - p18_3 / ((1) + (1) * p18_3) - p18_2 / ((1) + (1) * p18_2) - T(0.75) * q18_19_3 + - T(0.75) * q17_18_3 - T(0.25) * q18_19_2 + T(0.25) * q17_18_2 - 1 + p18_3 / (1 + p18_3) - p18_2 / (1 + p18_2) - θ * q18_19_3 + θ * q17_18_3 - (1 - θ) * q18_19_2 + + (1 - θ) * q17_18_2 - 1 cx[109] = - p19_3 / ((1) + (1) * p19_3) - p19_2 / ((1) + (1) * p19_2) - f19_20_3 + - T(0.75) * q18_19_3 + - T(0.25) * q18_19_2 + p19_3 / (1 + p19_3) - p19_2 / (1 + p19_2) - f19_20_3 + θ * q18_19_3 + (1 - θ) * q18_19_2 cx[110] = - p20_3 / ((1) + (1) * p20_3) - p20_2 / ((1) + (1) * p20_2) - T(0.75) * q20_21_3 + f19_20_3 - - T(0.25) * q20_21_2 + p20_3 / (1 + p20_3) - p20_2 / (1 + p20_2) - θ * q20_21_3 + f19_20_3 - (1 - θ) * q20_21_2 cx[111] = - p21_3 / ((1) + (1) * p21_3) - p21_2 / ((1) + (1) * p21_2) - T(0.75) * q21_22_3 + - T(0.75) * q20_21_3 - T(0.25) * q21_22_2 + T(0.25) * q20_21_2 - 1 + p21_3 / (1 + p21_3) - p21_2 / (1 + p21_2) - θ * q21_22_3 + θ * q20_21_3 - (1 - θ) * q21_22_2 + + (1 - θ) * q20_21_2 - 1 cx[112] = - p22_3 / ((1) + (1) * p22_3) - p22_2 / ((1) + (1) * p22_2) - T(0.75) * q22_23_3 + - T(0.75) * q21_22_3 - T(0.25) * q22_23_2 + T(0.25) * q21_22_2 - 1 + p22_3 / (1 + p22_3) - p22_2 / (1 + p22_2) - θ * q22_23_3 + θ * q21_22_3 - (1 - θ) * q22_23_2 + + (1 - θ) * q21_22_2 - 1 cx[113] = - p23_3 / ((1) + (1) * p23_3) - p23_2 / ((1) + (1) * p23_2) + - T(0.75) * q22_23_3 + - T(0.25) * q22_23_2 - out23_3 + p23_3 / (1 + p23_3) - p23_2 / (1 + p23_2) + θ * q22_23_3 + (1 - θ) * q22_23_2 - out23_3 cx[114] = p3_3 * r3_4_3 - p4_3 cx[115] = p5_3 * r5_7_3 - p7_3 cx[116] = p19_3 * r19_20_3 - p20_3 - cx[117] = - p1_3 * p1_3 - p2_3 * p2_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_3 + p2_3)) * ((abs(q1_2_3))^T(1.8539)) - cx[118] = - p1_3 * p1_3 - p17_3 * p17_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_3 + p17_3)) * ((abs(q1_17_3))^T(1.8539)) - cx[119] = - p2_3 * p2_3 - p3_3 * p3_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p2_3 + p3_3)) * ((abs(q2_3_3))^T(1.8539)) - cx[120] = - p4_3 * p4_3 - p5_3 * p5_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p4_3 + p5_3)) * ((abs(q4_5_3))^T(1.8539)) - cx[121] = - p5_3 * p5_3 - p6_3 * p6_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p5_3 + p6_3)) * ((abs(q5_6_3))^T(1.8539)) - cx[122] = - p7_3 * p7_3 - p8_3 * p8_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p7_3 + p8_3)) * ((abs(q7_8_3))^T(1.8539)) - cx[123] = - p8_3 * p8_3 - p9_3 * p9_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_3 + p9_3)) * ((abs(q8_9_3))^T(1.8539)) - cx[124] = - p8_3 * p8_3 - p10_3 * p10_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_3 + p10_3)) * ((abs(q8_10_3))^T(1.8539)) - cx[125] = - p8_3 * p8_3 - p11_3 * p11_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_3 + p11_3)) * ((abs(q8_11_3))^T(1.8539)) - cx[126] = - p11_3 * p11_3 - p12_3 * p12_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p11_3 + p12_3)) * ((abs(q11_12_3))^T(1.8539)) - cx[127] = - p12_3 * p12_3 - p13_3 * p13_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p12_3 + p13_3)) * ((abs(q12_13_3))^T(1.8539)) - cx[128] = - p13_3 * p13_3 - p14_3 * p14_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_3 + p14_3)) * ((abs(q13_14_3))^T(1.8539)) - cx[129] = - p13_3 * p13_3 - p15_3 * p15_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_3 + p15_3)) * ((abs(q13_15_3))^T(1.8539)) - cx[130] = - p15_3 * p15_3 - p16_3 * p16_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p15_3 + p16_3)) * ((abs(q15_16_3))^T(1.8539)) - cx[131] = - p17_3 * p17_3 - p18_3 * p18_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p17_3 + p18_3)) * ((abs(q17_18_3))^T(1.8539)) - cx[132] = - p18_3 * p18_3 - p19_3 * p19_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p18_3 + p19_3)) * ((abs(q18_19_3))^T(1.8539)) - cx[133] = - p20_3 * p20_3 - p21_3 * p21_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p20_3 + p21_3)) * ((abs(q20_21_3))^T(1.8539)) - cx[134] = - p21_3 * p21_3 - p22_3 * p22_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p21_3 + p22_3)) * ((abs(q21_22_3))^T(1.8539)) - cx[135] = - p22_3 * p22_3 - p23_3 * p23_3 - - T(0.01) * ((1) + (T(0.5) * 1) * (p22_3 + p23_3)) * ((abs(q22_23_3))^T(1.8539)) + cx[117] = p1_3 * p1_3 - p2_3 * p2_3 - h * (1 + γ * (p1_3 + p2_3)) * (abs(q1_2_3)^α) + cx[118] = p1_3 * p1_3 - p17_3 * p17_3 - h * (1 + γ * (p1_3 + p17_3)) * (abs(q1_17_3)^α) + cx[119] = p2_3 * p2_3 - p3_3 * p3_3 - h * (1 + γ * (p2_3 + p3_3)) * (abs(q2_3_3)^α) + cx[120] = p4_3 * p4_3 - p5_3 * p5_3 - h * (1 + γ * (p4_3 + p5_3)) * (abs(q4_5_3)^α) + cx[121] = p5_3 * p5_3 - p6_3 * p6_3 - h * (1 + γ * (p5_3 + p6_3)) * (abs(q5_6_3)^α) + cx[122] = p7_3 * p7_3 - p8_3 * p8_3 - h * (1 + γ * (p7_3 + p8_3)) * (abs(q7_8_3)^α) + cx[123] = p8_3 * p8_3 - p9_3 * p9_3 - h * (1 + γ * (p8_3 + p9_3)) * (abs(q8_9_3)^α) + cx[124] = p8_3 * p8_3 - p10_3 * p10_3 - h * (1 + γ * (p8_3 + p10_3)) * (abs(q8_10_3)^α) + cx[125] = p8_3 * p8_3 - p11_3 * p11_3 - h * (1 + γ * (p8_3 + p11_3)) * (abs(q8_11_3)^α) + cx[126] = p11_3 * p11_3 - p12_3 * p12_3 - h * (1 + γ * (p11_3 + p12_3)) * (abs(q11_12_3)^α) + cx[127] = p12_3 * p12_3 - p13_3 * p13_3 - h * (1 + γ * (p12_3 + p13_3)) * (abs(q12_13_3)^α) + cx[128] = p13_3 * p13_3 - p14_3 * p14_3 - h * (1 + γ * (p13_3 + p14_3)) * (abs(q13_14_3)^α) + cx[129] = p13_3 * p13_3 - p15_3 * p15_3 - h * (1 + γ * (p13_3 + p15_3)) * (abs(q13_15_3)^α) + cx[130] = p15_3 * p15_3 - p16_3 * p16_3 - h * (1 + γ * (p15_3 + p16_3)) * (abs(q15_16_3)^α) + cx[131] = p17_3 * p17_3 - p18_3 * p18_3 - h * (1 + γ * (p17_3 + p18_3)) * (abs(q17_18_3)^α) + cx[132] = p18_3 * p18_3 - p19_3 * p19_3 - h * (1 + γ * (p18_3 + p19_3)) * (abs(q18_19_3)^α) + cx[133] = p20_3 * p20_3 - p21_3 * p21_3 - h * (1 + γ * (p20_3 + p21_3)) * (abs(q20_21_3)^α) + cx[134] = p21_3 * p21_3 - p22_3 * p22_3 - h * (1 + γ * (p21_3 + p22_3)) * (abs(q21_22_3)^α) + cx[135] = p22_3 * p22_3 - p23_3 * p23_3 - h * (1 + γ * (p22_3 + p23_3)) * (abs(q22_23_3)^α) + + # time step 4 + cx[136] = - p1_4 / ((1) + (1) * p1_4) - p1_3 / ((1) + (1) * p1_3) - T(0.75) * q1_17_4 - T(0.75) * q1_2_4 + - in1_4 - T(0.25) * q1_17_3 - T(0.25) * q1_2_3 + p1_4 / (1 + p1_4) - p1_3 / (1 + p1_3) - θ * q1_17_4 - θ * q1_2_4 + in1_4 - (1 - θ) * q1_17_3 - + (1 - θ) * q1_2_3 cx[137] = - p2_4 / ((1) + (1) * p2_4) - p2_3 / ((1) + (1) * p2_3) - T(0.75) * q2_3_4 + T(0.75) * q1_2_4 - - T(0.25) * q2_3_3 + T(0.25) * q1_2_3 - 1 - cx[138] = - p3_4 / ((1) + (1) * p3_4) - p3_3 / ((1) + (1) * p3_3) - f3_4_4 + - T(0.75) * q2_3_4 + - T(0.25) * q2_3_3 - cx[139] = - p4_4 / ((1) + (1) * p4_4) - p4_3 / ((1) + (1) * p4_3) - T(0.75) * q4_5_4 + f3_4_4 - - T(0.25) * q4_5_3 + p2_4 / (1 + p2_4) - p2_3 / (1 + p2_3) - θ * q2_3_4 + θ * q1_2_4 - (1 - θ) * q2_3_3 + + (1 - θ) * q1_2_3 - 1 + cx[138] = p3_4 / (1 + p3_4) - p3_3 / (1 + p3_3) - f3_4_4 + θ * q2_3_4 + (1 - θ) * q2_3_3 + cx[139] = p4_4 / (1 + p4_4) - p4_3 / (1 + p4_3) - θ * q4_5_4 + f3_4_4 - (1 - θ) * q4_5_3 cx[140] = - p5_4 / ((1) + (1) * p5_4) - p5_3 / ((1) + (1) * p5_3) - T(0.75) * q5_6_4 - f5_7_4 + - T(0.75) * q4_5_4 - T(0.25) * q5_6_3 + T(0.25) * q4_5_3 - cx[141] = - p6_4 / ((1) + (1) * p6_4) - p6_3 / ((1) + (1) * p6_3) + T(0.75) * q5_6_4 + T(0.25) * q5_6_3 - - 1 - cx[142] = - p7_4 / ((1) + (1) * p7_4) - p7_3 / ((1) + (1) * p7_3) - T(0.75) * q7_8_4 + f5_7_4 - - T(0.25) * q7_8_3 + p5_4 / (1 + p5_4) - p5_3 / (1 + p5_3) - θ * q5_6_4 - f5_7_4 + θ * q4_5_4 - (1 - θ) * q5_6_3 + + (1 - θ) * q4_5_3 + cx[141] = p6_4 / (1 + p6_4) - p6_3 / (1 + p6_3) + θ * q5_6_4 + (1 - θ) * q5_6_3 - 1 + cx[142] = p7_4 / (1 + p7_4) - p7_3 / (1 + p7_3) - θ * q7_8_4 + f5_7_4 - (1 - θ) * q7_8_3 cx[143] = - p8_4 / ((1) + (1) * p8_4) - p8_3 / ((1) + (1) * p8_3) - T(0.75) * q8_9_4 - T(0.75) * q8_10_4 - - T(0.75) * q8_11_4 + T(0.75) * q7_8_4 - T(0.25) * q8_9_3 - T(0.25) * q8_10_3 - - T(0.25) * q8_11_3 + T(0.25) * q7_8_3 - cx[144] = - p9_4 / ((1) + (1) * p9_4) - p9_3 / ((1) + (1) * p9_3) + T(0.75) * q8_9_4 + T(0.25) * q8_9_3 - cx[145] = - p10_4 / ((1) + (1) * p10_4) - p10_3 / ((1) + (1) * p10_3) + - T(0.75) * q8_10_4 + - T(0.25) * q8_10_3 - 1 + p8_4 / (1 + p8_4) - p8_3 / (1 + p8_3) - θ * q8_9_4 - θ * q8_10_4 - θ * q8_11_4 + θ * q7_8_4 - + (1 - θ) * q8_9_3 - (1 - θ) * q8_10_3 - (1 - θ) * q8_11_3 + (1 - θ) * q7_8_3 + cx[144] = p9_4 / (1 + p9_4) - p9_3 / (1 + p9_3) + θ * q8_9_4 + (1 - θ) * q8_9_3 + cx[145] = p10_4 / (1 + p10_4) - p10_3 / (1 + p10_3) + θ * q8_10_4 + (1 - θ) * q8_10_3 - 1 cx[146] = - p11_4 / ((1) + (1) * p11_4) - p11_3 / ((1) + (1) * p11_3) - T(0.75) * q11_12_4 + - T(0.75) * q8_11_4 - T(0.25) * q11_12_3 + T(0.25) * q8_11_3 + p11_4 / (1 + p11_4) - p11_3 / (1 + p11_3) - θ * q11_12_4 + θ * q8_11_4 - (1 - θ) * q11_12_3 + + (1 - θ) * q8_11_3 cx[147] = - p12_4 / ((1) + (1) * p12_4) - p12_3 / ((1) + (1) * p12_3) - T(0.75) * q12_13_4 + - T(0.75) * q11_12_4 - T(0.25) * q12_13_3 + T(0.25) * q11_12_3 + p12_4 / (1 + p12_4) - p12_3 / (1 + p12_3) - θ * q12_13_4 + θ * q11_12_4 - (1 - θ) * q12_13_3 + + (1 - θ) * q11_12_3 cx[148] = - p13_4 / ((1) + (1) * p13_4) - p13_3 / ((1) + (1) * p13_3) - T(0.75) * q13_14_4 - - T(0.75) * q13_15_4 + T(0.75) * q12_13_4 - T(0.25) * q13_14_3 - T(0.25) * q13_15_3 + - T(0.25) * q12_13_3 - 1 - cx[149] = - p14_4 / ((1) + (1) * p14_4) - p14_3 / ((1) + (1) * p14_3) + - T(0.75) * q13_14_4 + - T(0.25) * q13_14_3 + p13_4 / (1 + p13_4) - p13_3 / (1 + p13_3) - θ * q13_14_4 - θ * q13_15_4 + θ * q12_13_4 - + (1 - θ) * q13_14_3 - (1 - θ) * q13_15_3 + (1 - θ) * q12_13_3 - 1 + cx[149] = p14_4 / (1 + p14_4) - p14_3 / (1 + p14_3) + θ * q13_14_4 + (1 - θ) * q13_14_3 cx[150] = - p15_4 / ((1) + (1) * p15_4) - p15_3 / ((1) + (1) * p15_3) - T(0.75) * q15_16_4 + - T(0.75) * q13_15_4 - T(0.25) * q15_16_3 + T(0.25) * q13_15_3 - 1 + p15_4 / (1 + p15_4) - p15_3 / (1 + p15_3) - θ * q15_16_4 + θ * q13_15_4 - (1 - θ) * q15_16_3 + + (1 - θ) * q13_15_3 - 1 cx[151] = - p16_4 / ((1) + (1) * p16_4) - p16_3 / ((1) + (1) * p16_3) + - T(0.75) * q15_16_4 + - T(0.25) * q15_16_3 - out16_4 + p16_4 / (1 + p16_4) - p16_3 / (1 + p16_3) + θ * q15_16_4 + (1 - θ) * q15_16_3 - out16_4 cx[152] = - p17_4 / ((1) + (1) * p17_4) - p17_3 / ((1) + (1) * p17_3) - T(0.75) * q17_18_4 + - T(0.75) * q1_17_4 - T(0.25) * q17_18_3 + T(0.25) * q1_17_3 - 1 + p17_4 / (1 + p17_4) - p17_3 / (1 + p17_3) - θ * q17_18_4 + θ * q1_17_4 - (1 - θ) * q17_18_3 + + (1 - θ) * q1_17_3 - 1 cx[153] = - p18_4 / ((1) + (1) * p18_4) - p18_3 / ((1) + (1) * p18_3) - T(0.75) * q18_19_4 + - T(0.75) * q17_18_4 - T(0.25) * q18_19_3 + T(0.25) * q17_18_3 - 1 + p18_4 / (1 + p18_4) - p18_3 / (1 + p18_3) - θ * q18_19_4 + θ * q17_18_4 - (1 - θ) * q18_19_3 + + (1 - θ) * q17_18_3 - 1 cx[154] = - p19_4 / ((1) + (1) * p19_4) - p19_3 / ((1) + (1) * p19_3) - f19_20_4 + - T(0.75) * q18_19_4 + - T(0.25) * q18_19_3 + p19_4 / (1 + p19_4) - p19_3 / (1 + p19_3) - f19_20_4 + θ * q18_19_4 + (1 - θ) * q18_19_3 cx[155] = - p20_4 / ((1) + (1) * p20_4) - p20_3 / ((1) + (1) * p20_3) - T(0.75) * q20_21_4 + f19_20_4 - - T(0.25) * q20_21_3 + p20_4 / (1 + p20_4) - p20_3 / (1 + p20_3) - θ * q20_21_4 + f19_20_4 - (1 - θ) * q20_21_3 cx[156] = - p21_4 / ((1) + (1) * p21_4) - p21_3 / ((1) + (1) * p21_3) - T(0.75) * q21_22_4 + - T(0.75) * q20_21_4 - T(0.25) * q21_22_3 + T(0.25) * q20_21_3 - 1 + p21_4 / (1 + p21_4) - p21_3 / (1 + p21_3) - θ * q21_22_4 + θ * q20_21_4 - (1 - θ) * q21_22_3 + + (1 - θ) * q20_21_3 - 1 cx[157] = - p22_4 / ((1) + (1) * p22_4) - p22_3 / ((1) + (1) * p22_3) - T(0.75) * q22_23_4 + - T(0.75) * q21_22_4 - T(0.25) * q22_23_3 + T(0.25) * q21_22_3 - 1 + p22_4 / (1 + p22_4) - p22_3 / (1 + p22_3) - θ * q22_23_4 + θ * q21_22_4 - (1 - θ) * q22_23_3 + + (1 - θ) * q21_22_3 - 1 cx[158] = - p23_4 / ((1) + (1) * p23_4) - p23_3 / ((1) + (1) * p23_3) + - T(0.75) * q22_23_4 + - T(0.25) * q22_23_3 - out23_4 + p23_4 / (1 + p23_4) - p23_3 / (1 + p23_3) + θ * q22_23_4 + (1 - θ) * q22_23_3 - out23_4 cx[159] = p3_4 * r3_4_4 - p4_4 cx[160] = p5_4 * r5_7_4 - p7_4 cx[161] = p19_4 * r19_20_4 - p20_4 - cx[162] = - p1_4 * p1_4 - p2_4 * p2_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_4 + p2_4)) * ((abs(q1_2_4))^T(1.8539)) - cx[163] = - p1_4 * p1_4 - p17_4 * p17_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_4 + p17_4)) * ((abs(q1_17_4))^T(1.8539)) - cx[164] = - p2_4 * p2_4 - p3_4 * p3_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p2_4 + p3_4)) * ((abs(q2_3_4))^T(1.8539)) - cx[165] = - p4_4 * p4_4 - p5_4 * p5_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p4_4 + p5_4)) * ((abs(q4_5_4))^T(1.8539)) - cx[166] = - p5_4 * p5_4 - p6_4 * p6_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p5_4 + p6_4)) * ((abs(q5_6_4))^T(1.8539)) - cx[167] = - p7_4 * p7_4 - p8_4 * p8_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p7_4 + p8_4)) * ((abs(q7_8_4))^T(1.8539)) - cx[168] = - p8_4 * p8_4 - p9_4 * p9_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_4 + p9_4)) * ((abs(q8_9_4))^T(1.8539)) - cx[169] = - p8_4 * p8_4 - p10_4 * p10_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_4 + p10_4)) * ((abs(q8_10_4))^T(1.8539)) - cx[170] = - p8_4 * p8_4 - p11_4 * p11_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_4 + p11_4)) * ((abs(q8_11_4))^T(1.8539)) - cx[171] = - p11_4 * p11_4 - p12_4 * p12_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p11_4 + p12_4)) * ((abs(q11_12_4))^T(1.8539)) - cx[172] = - p12_4 * p12_4 - p13_4 * p13_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p12_4 + p13_4)) * ((abs(q12_13_4))^T(1.8539)) - cx[173] = - p13_4 * p13_4 - p14_4 * p14_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_4 + p14_4)) * ((abs(q13_14_4))^T(1.8539)) - cx[174] = - p13_4 * p13_4 - p15_4 * p15_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_4 + p15_4)) * ((abs(q13_15_4))^T(1.8539)) - cx[175] = - p15_4 * p15_4 - p16_4 * p16_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p15_4 + p16_4)) * ((abs(q15_16_4))^T(1.8539)) - cx[176] = - p17_4 * p17_4 - p18_4 * p18_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p17_4 + p18_4)) * ((abs(q17_18_4))^T(1.8539)) - cx[177] = - p18_4 * p18_4 - p19_4 * p19_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p18_4 + p19_4)) * ((abs(q18_19_4))^T(1.8539)) - cx[178] = - p20_4 * p20_4 - p21_4 * p21_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p20_4 + p21_4)) * ((abs(q20_21_4))^T(1.8539)) - cx[179] = - p21_4 * p21_4 - p22_4 * p22_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p21_4 + p22_4)) * ((abs(q21_22_4))^T(1.8539)) - cx[180] = - p22_4 * p22_4 - p23_4 * p23_4 - - T(0.01) * ((1) + (T(0.5) * 1) * (p22_4 + p23_4)) * ((abs(q22_23_4))^T(1.8539)) + cx[162] = p1_4 * p1_4 - p2_4 * p2_4 - h * (1 + γ * (p1_4 + p2_4)) * (abs(q1_2_4)^α) + cx[163] = p1_4 * p1_4 - p17_4 * p17_4 - h * (1 + γ * (p1_4 + p17_4)) * (abs(q1_17_4)^α) + cx[164] = p2_4 * p2_4 - p3_4 * p3_4 - h * (1 + γ * (p2_4 + p3_4)) * (abs(q2_3_4)^α) + cx[165] = p4_4 * p4_4 - p5_4 * p5_4 - h * (1 + γ * (p4_4 + p5_4)) * (abs(q4_5_4)^α) + cx[166] = p5_4 * p5_4 - p6_4 * p6_4 - h * (1 + γ * (p5_4 + p6_4)) * (abs(q5_6_4)^α) + cx[167] = p7_4 * p7_4 - p8_4 * p8_4 - h * (1 + γ * (p7_4 + p8_4)) * (abs(q7_8_4)^α) + cx[168] = p8_4 * p8_4 - p9_4 * p9_4 - h * (1 + γ * (p8_4 + p9_4)) * (abs(q8_9_4)^α) + cx[169] = p8_4 * p8_4 - p10_4 * p10_4 - h * (1 + γ * (p8_4 + p10_4)) * (abs(q8_10_4)^α) + cx[170] = p8_4 * p8_4 - p11_4 * p11_4 - h * (1 + γ * (p8_4 + p11_4)) * (abs(q8_11_4)^α) + cx[171] = p11_4 * p11_4 - p12_4 * p12_4 - h * (1 + γ * (p11_4 + p12_4)) * (abs(q11_12_4)^α) + cx[172] = p12_4 * p12_4 - p13_4 * p13_4 - h * (1 + γ * (p12_4 + p13_4)) * (abs(q12_13_4)^α) + cx[173] = p13_4 * p13_4 - p14_4 * p14_4 - h * (1 + γ * (p13_4 + p14_4)) * (abs(q13_14_4)^α) + cx[174] = p13_4 * p13_4 - p15_4 * p15_4 - h * (1 + γ * (p13_4 + p15_4)) * (abs(q13_15_4)^α) + cx[175] = p15_4 * p15_4 - p16_4 * p16_4 - h * (1 + γ * (p15_4 + p16_4)) * (abs(q15_16_4)^α) + cx[176] = p17_4 * p17_4 - p18_4 * p18_4 - h * (1 + γ * (p17_4 + p18_4)) * (abs(q17_18_4)^α) + cx[177] = p18_4 * p18_4 - p19_4 * p19_4 - h * (1 + γ * (p18_4 + p19_4)) * (abs(q18_19_4)^α) + cx[178] = p20_4 * p20_4 - p21_4 * p21_4 - h * (1 + γ * (p20_4 + p21_4)) * (abs(q20_21_4)^α) + cx[179] = p21_4 * p21_4 - p22_4 * p22_4 - h * (1 + γ * (p21_4 + p22_4)) * (abs(q21_22_4)^α) + cx[180] = p22_4 * p22_4 - p23_4 * p23_4 - h * (1 + γ * (p22_4 + p23_4)) * (abs(q22_23_4)^α) + + # time step 5 + cx[181] = - p1_5 / ((1) + (1) * p1_5) - p1_4 / ((1) + (1) * p1_4) - T(0.75) * q1_17_5 - T(0.75) * q1_2_5 + - in1_5 - T(0.25) * q1_17_4 - T(0.25) * q1_2_4 + p1_5 / (1 + p1_5) - p1_4 / (1 + p1_4) - θ * q1_17_5 - θ * q1_2_5 + in1_5 - (1 - θ) * q1_17_4 - + (1 - θ) * q1_2_4 cx[182] = - p2_5 / ((1) + (1) * p2_5) - p2_4 / ((1) + (1) * p2_4) - T(0.75) * q2_3_5 + T(0.75) * q1_2_5 - - T(0.25) * q2_3_4 + T(0.25) * q1_2_4 - 1 - cx[183] = - p3_5 / ((1) + (1) * p3_5) - p3_4 / ((1) + (1) * p3_4) - f3_4_5 + - T(0.75) * q2_3_5 + - T(0.25) * q2_3_4 - cx[184] = - p4_5 / ((1) + (1) * p4_5) - p4_4 / ((1) + (1) * p4_4) - T(0.75) * q4_5_5 + f3_4_5 - - T(0.25) * q4_5_4 + p2_5 / (1 + p2_5) - p2_4 / (1 + p2_4) - θ * q2_3_5 + θ * q1_2_5 - (1 - θ) * q2_3_4 + + (1 - θ) * q1_2_4 - 1 + cx[183] = p3_5 / (1 + p3_5) - p3_4 / (1 + p3_4) - f3_4_5 + θ * q2_3_5 + (1 - θ) * q2_3_4 + cx[184] = p4_5 / (1 + p4_5) - p4_4 / (1 + p4_4) - θ * q4_5_5 + f3_4_5 - (1 - θ) * q4_5_4 cx[185] = - p5_5 / ((1) + (1) * p5_5) - p5_4 / ((1) + (1) * p5_4) - T(0.75) * q5_6_5 - f5_7_5 + - T(0.75) * q4_5_5 - T(0.25) * q5_6_4 + T(0.25) * q4_5_4 - cx[186] = - p6_5 / ((1) + (1) * p6_5) - p6_4 / ((1) + (1) * p6_4) + T(0.75) * q5_6_5 + T(0.25) * q5_6_4 - - 1 - cx[187] = - p7_5 / ((1) + (1) * p7_5) - p7_4 / ((1) + (1) * p7_4) - T(0.75) * q7_8_5 + f5_7_5 - - T(0.25) * q7_8_4 + p5_5 / (1 + p5_5) - p5_4 / (1 + p5_4) - θ * q5_6_5 - f5_7_5 + θ * q4_5_5 - (1 - θ) * q5_6_4 + + (1 - θ) * q4_5_4 + cx[186] = p6_5 / (1 + p6_5) - p6_4 / (1 + p6_4) + θ * q5_6_5 + (1 - θ) * q5_6_4 - 1 + cx[187] = p7_5 / (1 + p7_5) - p7_4 / (1 + p7_4) - θ * q7_8_5 + f5_7_5 - (1 - θ) * q7_8_4 cx[188] = - p8_5 / ((1) + (1) * p8_5) - p8_4 / ((1) + (1) * p8_4) - T(0.75) * q8_9_5 - T(0.75) * q8_10_5 - - T(0.75) * q8_11_5 + T(0.75) * q7_8_5 - T(0.25) * q8_9_4 - T(0.25) * q8_10_4 - - T(0.25) * q8_11_4 + T(0.25) * q7_8_4 - cx[189] = - p9_5 / ((1) + (1) * p9_5) - p9_4 / ((1) + (1) * p9_4) + T(0.75) * q8_9_5 + T(0.25) * q8_9_4 - cx[190] = - p10_5 / ((1) + (1) * p10_5) - p10_4 / ((1) + (1) * p10_4) + - T(0.75) * q8_10_5 + - T(0.25) * q8_10_4 - 1 + p8_5 / (1 + p8_5) - p8_4 / (1 + p8_4) - θ * q8_9_5 - θ * q8_10_5 - θ * q8_11_5 + θ * q7_8_5 - + (1 - θ) * q8_9_4 - (1 - θ) * q8_10_4 - (1 - θ) * q8_11_4 + (1 - θ) * q7_8_4 + cx[189] = p9_5 / (1 + p9_5) - p9_4 / (1 + p9_4) + θ * q8_9_5 + (1 - θ) * q8_9_4 + cx[190] = p10_5 / (1 + p10_5) - p10_4 / (1 + p10_4) + θ * q8_10_5 + (1 - θ) * q8_10_4 - 1 cx[191] = - p11_5 / ((1) + (1) * p11_5) - p11_4 / ((1) + (1) * p11_4) - T(0.75) * q11_12_5 + - T(0.75) * q8_11_5 - T(0.25) * q11_12_4 + T(0.25) * q8_11_4 + p11_5 / (1 + p11_5) - p11_4 / (1 + p11_4) - θ * q11_12_5 + θ * q8_11_5 - (1 - θ) * q11_12_4 + + (1 - θ) * q8_11_4 cx[192] = - p12_5 / ((1) + (1) * p12_5) - p12_4 / ((1) + (1) * p12_4) - T(0.75) * q12_13_5 + - T(0.75) * q11_12_5 - T(0.25) * q12_13_4 + T(0.25) * q11_12_4 + p12_5 / (1 + p12_5) - p12_4 / (1 + p12_4) - θ * q12_13_5 + θ * q11_12_5 - (1 - θ) * q12_13_4 + + (1 - θ) * q11_12_4 cx[193] = - p13_5 / ((1) + (1) * p13_5) - p13_4 / ((1) + (1) * p13_4) - T(0.75) * q13_14_5 - - T(0.75) * q13_15_5 + T(0.75) * q12_13_5 - T(0.25) * q13_14_4 - T(0.25) * q13_15_4 + - T(0.25) * q12_13_4 - 1 - cx[194] = - p14_5 / ((1) + (1) * p14_5) - p14_4 / ((1) + (1) * p14_4) + - T(0.75) * q13_14_5 + - T(0.25) * q13_14_4 + p13_5 / (1 + p13_5) - p13_4 / (1 + p13_4) - θ * q13_14_5 - θ * q13_15_5 + θ * q12_13_5 - + (1 - θ) * q13_14_4 - (1 - θ) * q13_15_4 + (1 - θ) * q12_13_4 - 1 + cx[194] = p14_5 / (1 + p14_5) - p14_4 / (1 + p14_4) + θ * q13_14_5 + (1 - θ) * q13_14_4 cx[195] = - p15_5 / ((1) + (1) * p15_5) - p15_4 / ((1) + (1) * p15_4) - T(0.75) * q15_16_5 + - T(0.75) * q13_15_5 - T(0.25) * q15_16_4 + T(0.25) * q13_15_4 - 1 + p15_5 / (1 + p15_5) - p15_4 / (1 + p15_4) - θ * q15_16_5 + θ * q13_15_5 - (1 - θ) * q15_16_4 + + (1 - θ) * q13_15_4 - 1 cx[196] = - p16_5 / ((1) + (1) * p16_5) - p16_4 / ((1) + (1) * p16_4) + - T(0.75) * q15_16_5 + - T(0.25) * q15_16_4 - out16_5 + p16_5 / (1 + p16_5) - p16_4 / (1 + p16_4) + θ * q15_16_5 + (1 - θ) * q15_16_4 - out16_5 cx[197] = - p17_5 / ((1) + (1) * p17_5) - p17_4 / ((1) + (1) * p17_4) - T(0.75) * q17_18_5 + - T(0.75) * q1_17_5 - T(0.25) * q17_18_4 + T(0.25) * q1_17_4 - 1 + p17_5 / (1 + p17_5) - p17_4 / (1 + p17_4) - θ * q17_18_5 + θ * q1_17_5 - (1 - θ) * q17_18_4 + + (1 - θ) * q1_17_4 - 1 cx[198] = - p18_5 / ((1) + (1) * p18_5) - p18_4 / ((1) + (1) * p18_4) - T(0.75) * q18_19_5 + - T(0.75) * q17_18_5 - T(0.25) * q18_19_4 + T(0.25) * q17_18_4 - 1 + p18_5 / (1 + p18_5) - p18_4 / (1 + p18_4) - θ * q18_19_5 + θ * q17_18_5 - (1 - θ) * q18_19_4 + + (1 - θ) * q17_18_4 - 1 cx[199] = - p19_5 / ((1) + (1) * p19_5) - p19_4 / ((1) + (1) * p19_4) - f19_20_5 + - T(0.75) * q18_19_5 + - T(0.25) * q18_19_4 + p19_5 / (1 + p19_5) - p19_4 / (1 + p19_4) - f19_20_5 + θ * q18_19_5 + (1 - θ) * q18_19_4 cx[200] = - p20_5 / ((1) + (1) * p20_5) - p20_4 / ((1) + (1) * p20_4) - T(0.75) * q20_21_5 + f19_20_5 - - T(0.25) * q20_21_4 + p20_5 / (1 + p20_5) - p20_4 / (1 + p20_4) - θ * q20_21_5 + f19_20_5 - (1 - θ) * q20_21_4 cx[201] = - p21_5 / ((1) + (1) * p21_5) - p21_4 / ((1) + (1) * p21_4) - T(0.75) * q21_22_5 + - T(0.75) * q20_21_5 - T(0.25) * q21_22_4 + T(0.25) * q20_21_4 - 1 + p21_5 / (1 + p21_5) - p21_4 / (1 + p21_4) - θ * q21_22_5 + θ * q20_21_5 - (1 - θ) * q21_22_4 + + (1 - θ) * q20_21_4 - 1 cx[202] = - p22_5 / ((1) + (1) * p22_5) - p22_4 / ((1) + (1) * p22_4) - T(0.75) * q22_23_5 + - T(0.75) * q21_22_5 - T(0.25) * q22_23_4 + T(0.25) * q21_22_4 - 1 + p22_5 / (1 + p22_5) - p22_4 / (1 + p22_4) - θ * q22_23_5 + θ * q21_22_5 - (1 - θ) * q22_23_4 + + (1 - θ) * q21_22_4 - 1 cx[203] = - p23_5 / ((1) + (1) * p23_5) - p23_4 / ((1) + (1) * p23_4) + - T(0.75) * q22_23_5 + - T(0.25) * q22_23_4 - out23_5 + p23_5 / (1 + p23_5) - p23_4 / (1 + p23_4) + θ * q22_23_5 + (1 - θ) * q22_23_4 - out23_5 cx[204] = p3_5 * r3_4_5 - p4_5 cx[205] = p5_5 * r5_7_5 - p7_5 cx[206] = p19_5 * r19_20_5 - p20_5 - cx[207] = - p1_5 * p1_5 - p2_5 * p2_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_5 + p2_5)) * ((abs(q1_2_5))^T(1.8539)) - cx[208] = - p1_5 * p1_5 - p17_5 * p17_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_5 + p17_5)) * ((abs(q1_17_5))^T(1.8539)) - cx[209] = - p2_5 * p2_5 - p3_5 * p3_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p2_5 + p3_5)) * ((abs(q2_3_5))^T(1.8539)) - cx[210] = - p4_5 * p4_5 - p5_5 * p5_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p4_5 + p5_5)) * ((abs(q4_5_5))^T(1.8539)) - cx[211] = - p5_5 * p5_5 - p6_5 * p6_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p5_5 + p6_5)) * ((abs(q5_6_5))^T(1.8539)) - cx[212] = - p7_5 * p7_5 - p8_5 * p8_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p7_5 + p8_5)) * ((abs(q7_8_5))^T(1.8539)) - cx[213] = - p8_5 * p8_5 - p9_5 * p9_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_5 + p9_5)) * ((abs(q8_9_5))^T(1.8539)) - cx[214] = - p8_5 * p8_5 - p10_5 * p10_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_5 + p10_5)) * ((abs(q8_10_5))^T(1.8539)) - cx[215] = - p8_5 * p8_5 - p11_5 * p11_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_5 + p11_5)) * ((abs(q8_11_5))^T(1.8539)) - cx[216] = - p11_5 * p11_5 - p12_5 * p12_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p11_5 + p12_5)) * ((abs(q11_12_5))^T(1.8539)) - cx[217] = - p12_5 * p12_5 - p13_5 * p13_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p12_5 + p13_5)) * ((abs(q12_13_5))^T(1.8539)) - cx[218] = - p13_5 * p13_5 - p14_5 * p14_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_5 + p14_5)) * ((abs(q13_14_5))^T(1.8539)) - cx[219] = - p13_5 * p13_5 - p15_5 * p15_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_5 + p15_5)) * ((abs(q13_15_5))^T(1.8539)) - cx[220] = - p15_5 * p15_5 - p16_5 * p16_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p15_5 + p16_5)) * ((abs(q15_16_5))^T(1.8539)) - cx[221] = - p17_5 * p17_5 - p18_5 * p18_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p17_5 + p18_5)) * ((abs(q17_18_5))^T(1.8539)) - cx[222] = - p18_5 * p18_5 - p19_5 * p19_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p18_5 + p19_5)) * ((abs(q18_19_5))^T(1.8539)) - cx[223] = - p20_5 * p20_5 - p21_5 * p21_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p20_5 + p21_5)) * ((abs(q20_21_5))^T(1.8539)) - cx[224] = - p21_5 * p21_5 - p22_5 * p22_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p21_5 + p22_5)) * ((abs(q21_22_5))^T(1.8539)) - cx[225] = - p22_5 * p22_5 - p23_5 * p23_5 - - T(0.01) * ((1) + (T(0.5) * 1) * (p22_5 + p23_5)) * ((abs(q22_23_5))^T(1.8539)) + cx[207] = p1_5 * p1_5 - p2_5 * p2_5 - h * (1 + γ * (p1_5 + p2_5)) * (abs(q1_2_5)^α) + cx[208] = p1_5 * p1_5 - p17_5 * p17_5 - h * (1 + γ * (p1_5 + p17_5)) * (abs(q1_17_5)^α) + cx[209] = p2_5 * p2_5 - p3_5 * p3_5 - h * (1 + γ * (p2_5 + p3_5)) * (abs(q2_3_5)^α) + cx[210] = p4_5 * p4_5 - p5_5 * p5_5 - h * (1 + γ * (p4_5 + p5_5)) * (abs(q4_5_5)^α) + cx[211] = p5_5 * p5_5 - p6_5 * p6_5 - h * (1 + γ * (p5_5 + p6_5)) * (abs(q5_6_5)^α) + cx[212] = p7_5 * p7_5 - p8_5 * p8_5 - h * (1 + γ * (p7_5 + p8_5)) * (abs(q7_8_5)^α) + cx[213] = p8_5 * p8_5 - p9_5 * p9_5 - h * (1 + γ * (p8_5 + p9_5)) * (abs(q8_9_5)^α) + cx[214] = p8_5 * p8_5 - p10_5 * p10_5 - h * (1 + γ * (p8_5 + p10_5)) * (abs(q8_10_5)^α) + cx[215] = p8_5 * p8_5 - p11_5 * p11_5 - h * (1 + γ * (p8_5 + p11_5)) * (abs(q8_11_5)^α) + cx[216] = p11_5 * p11_5 - p12_5 * p12_5 - h * (1 + γ * (p11_5 + p12_5)) * (abs(q11_12_5)^α) + cx[217] = p12_5 * p12_5 - p13_5 * p13_5 - h * (1 + γ * (p12_5 + p13_5)) * (abs(q12_13_5)^α) + cx[218] = p13_5 * p13_5 - p14_5 * p14_5 - h * (1 + γ * (p13_5 + p14_5)) * (abs(q13_14_5)^α) + cx[219] = p13_5 * p13_5 - p15_5 * p15_5 - h * (1 + γ * (p13_5 + p15_5)) * (abs(q13_15_5)^α) + cx[220] = p15_5 * p15_5 - p16_5 * p16_5 - h * (1 + γ * (p15_5 + p16_5)) * (abs(q15_16_5)^α) + cx[221] = p17_5 * p17_5 - p18_5 * p18_5 - h * (1 + γ * (p17_5 + p18_5)) * (abs(q17_18_5)^α) + cx[222] = p18_5 * p18_5 - p19_5 * p19_5 - h * (1 + γ * (p18_5 + p19_5)) * (abs(q18_19_5)^α) + cx[223] = p20_5 * p20_5 - p21_5 * p21_5 - h * (1 + γ * (p20_5 + p21_5)) * (abs(q20_21_5)^α) + cx[224] = p21_5 * p21_5 - p22_5 * p22_5 - h * (1 + γ * (p21_5 + p22_5)) * (abs(q21_22_5)^α) + cx[225] = p22_5 * p22_5 - p23_5 * p23_5 - h * (1 + γ * (p22_5 + p23_5)) * (abs(q22_23_5)^α) + + # time step 6 + cx[226] = - p1_6 / ((1) + (1) * p1_6) - p1_5 / ((1) + (1) * p1_5) - T(0.75) * q1_17_6 - T(0.75) * q1_2_6 + - in1_6 - T(0.25) * q1_17_5 - T(0.25) * q1_2_5 + p1_6 / (1 + p1_6) - p1_5 / (1 + p1_5) - θ * q1_17_6 - θ * q1_2_6 + in1_6 - (1 - θ) * q1_17_5 - + (1 - θ) * q1_2_5 cx[227] = - p2_6 / ((1) + (1) * p2_6) - p2_5 / ((1) + (1) * p2_5) - T(0.75) * q2_3_6 + T(0.75) * q1_2_6 - - T(0.25) * q2_3_5 + T(0.25) * q1_2_5 - 1 - cx[228] = - p3_6 / ((1) + (1) * p3_6) - p3_5 / ((1) + (1) * p3_5) - f3_4_6 + - T(0.75) * q2_3_6 + - T(0.25) * q2_3_5 - cx[229] = - p4_6 / ((1) + (1) * p4_6) - p4_5 / ((1) + (1) * p4_5) - T(0.75) * q4_5_6 + f3_4_6 - - T(0.25) * q4_5_5 + p2_6 / (1 + p2_6) - p2_5 / (1 + p2_5) - θ * q2_3_6 + θ * q1_2_6 - (1 - θ) * q2_3_5 + + (1 - θ) * q1_2_5 - 1 + cx[228] = p3_6 / (1 + p3_6) - p3_5 / (1 + p3_5) - f3_4_6 + θ * q2_3_6 + (1 - θ) * q2_3_5 + cx[229] = p4_6 / (1 + p4_6) - p4_5 / (1 + p4_5) - θ * q4_5_6 + f3_4_6 - (1 - θ) * q4_5_5 cx[230] = - p5_6 / ((1) + (1) * p5_6) - p5_5 / ((1) + (1) * p5_5) - T(0.75) * q5_6_6 - f5_7_6 + - T(0.75) * q4_5_6 - T(0.25) * q5_6_5 + T(0.25) * q4_5_5 - cx[231] = - p6_6 / ((1) + (1) * p6_6) - p6_5 / ((1) + (1) * p6_5) + T(0.75) * q5_6_6 + T(0.25) * q5_6_5 - - 1 - cx[232] = - p7_6 / ((1) + (1) * p7_6) - p7_5 / ((1) + (1) * p7_5) - T(0.75) * q7_8_6 + f5_7_6 - - T(0.25) * q7_8_5 + p5_6 / (1 + p5_6) - p5_5 / (1 + p5_5) - θ * q5_6_6 - f5_7_6 + θ * q4_5_6 - (1 - θ) * q5_6_5 + + (1 - θ) * q4_5_5 + cx[231] = p6_6 / (1 + p6_6) - p6_5 / (1 + p6_5) + θ * q5_6_6 + (1 - θ) * q5_6_5 - 1 + cx[232] = p7_6 / (1 + p7_6) - p7_5 / (1 + p7_5) - θ * q7_8_6 + f5_7_6 - (1 - θ) * q7_8_5 cx[233] = - p8_6 / ((1) + (1) * p8_6) - p8_5 / ((1) + (1) * p8_5) - T(0.75) * q8_9_6 - T(0.75) * q8_10_6 - - T(0.75) * q8_11_6 + T(0.75) * q7_8_6 - T(0.25) * q8_9_5 - T(0.25) * q8_10_5 - - T(0.25) * q8_11_5 + T(0.25) * q7_8_5 - cx[234] = - p9_6 / ((1) + (1) * p9_6) - p9_5 / ((1) + (1) * p9_5) + T(0.75) * q8_9_6 + T(0.25) * q8_9_5 - cx[235] = - p10_6 / ((1) + (1) * p10_6) - p10_5 / ((1) + (1) * p10_5) + - T(0.75) * q8_10_6 + - T(0.25) * q8_10_5 - 1 + p8_6 / (1 + p8_6) - p8_5 / (1 + p8_5) - θ * q8_9_6 - θ * q8_10_6 - θ * q8_11_6 + θ * q7_8_6 - + (1 - θ) * q8_9_5 - (1 - θ) * q8_10_5 - (1 - θ) * q8_11_5 + (1 - θ) * q7_8_5 + cx[234] = p9_6 / (1 + p9_6) - p9_5 / (1 + p9_5) + θ * q8_9_6 + (1 - θ) * q8_9_5 + cx[235] = p10_6 / (1 + p10_6) - p10_5 / (1 + p10_5) + θ * q8_10_6 + (1 - θ) * q8_10_5 - 1 cx[236] = - p11_6 / ((1) + (1) * p11_6) - p11_5 / ((1) + (1) * p11_5) - T(0.75) * q11_12_6 + - T(0.75) * q8_11_6 - T(0.25) * q11_12_5 + T(0.25) * q8_11_5 + p11_6 / (1 + p11_6) - p11_5 / (1 + p11_5) - θ * q11_12_6 + θ * q8_11_6 - (1 - θ) * q11_12_5 + + (1 - θ) * q8_11_5 cx[237] = - p12_6 / ((1) + (1) * p12_6) - p12_5 / ((1) + (1) * p12_5) - T(0.75) * q12_13_6 + - T(0.75) * q11_12_6 - T(0.25) * q12_13_5 + T(0.25) * q11_12_5 + p12_6 / (1 + p12_6) - p12_5 / (1 + p12_5) - θ * q12_13_6 + θ * q11_12_6 - (1 - θ) * q12_13_5 + + (1 - θ) * q11_12_5 cx[238] = - p13_6 / ((1) + (1) * p13_6) - p13_5 / ((1) + (1) * p13_5) - T(0.75) * q13_14_6 - - T(0.75) * q13_15_6 + T(0.75) * q12_13_6 - T(0.25) * q13_14_5 - T(0.25) * q13_15_5 + - T(0.25) * q12_13_5 - 1 - cx[239] = - p14_6 / ((1) + (1) * p14_6) - p14_5 / ((1) + (1) * p14_5) + - T(0.75) * q13_14_6 + - T(0.25) * q13_14_5 + p13_6 / (1 + p13_6) - p13_5 / (1 + p13_5) - θ * q13_14_6 - θ * q13_15_6 + θ * q12_13_6 - + (1 - θ) * q13_14_5 - (1 - θ) * q13_15_5 + (1 - θ) * q12_13_5 - 1 + cx[239] = p14_6 / (1 + p14_6) - p14_5 / (1 + p14_5) + θ * q13_14_6 + (1 - θ) * q13_14_5 cx[240] = - p15_6 / ((1) + (1) * p15_6) - p15_5 / ((1) + (1) * p15_5) - T(0.75) * q15_16_6 + - T(0.75) * q13_15_6 - T(0.25) * q15_16_5 + T(0.25) * q13_15_5 - 1 + p15_6 / (1 + p15_6) - p15_5 / (1 + p15_5) - θ * q15_16_6 + θ * q13_15_6 - (1 - θ) * q15_16_5 + + (1 - θ) * q13_15_5 - 1 cx[241] = - p16_6 / ((1) + (1) * p16_6) - p16_5 / ((1) + (1) * p16_5) + - T(0.75) * q15_16_6 + - T(0.25) * q15_16_5 - out16_6 + p16_6 / (1 + p16_6) - p16_5 / (1 + p16_5) + θ * q15_16_6 + (1 - θ) * q15_16_5 - out16_6 cx[242] = - p17_6 / ((1) + (1) * p17_6) - p17_5 / ((1) + (1) * p17_5) - T(0.75) * q17_18_6 + - T(0.75) * q1_17_6 - T(0.25) * q17_18_5 + T(0.25) * q1_17_5 - 1 + p17_6 / (1 + p17_6) - p17_5 / (1 + p17_5) - θ * q17_18_6 + θ * q1_17_6 - (1 - θ) * q17_18_5 + + (1 - θ) * q1_17_5 - 1 cx[243] = - p18_6 / ((1) + (1) * p18_6) - p18_5 / ((1) + (1) * p18_5) - T(0.75) * q18_19_6 + - T(0.75) * q17_18_6 - T(0.25) * q18_19_5 + T(0.25) * q17_18_5 - 1 + p18_6 / (1 + p18_6) - p18_5 / (1 + p18_5) - θ * q18_19_6 + θ * q17_18_6 - (1 - θ) * q18_19_5 + + (1 - θ) * q17_18_5 - 1 cx[244] = - p19_6 / ((1) + (1) * p19_6) - p19_5 / ((1) + (1) * p19_5) - f19_20_6 + - T(0.75) * q18_19_6 + - T(0.25) * q18_19_5 + p19_6 / (1 + p19_6) - p19_5 / (1 + p19_5) - f19_20_6 + θ * q18_19_6 + (1 - θ) * q18_19_5 cx[245] = - p20_6 / ((1) + (1) * p20_6) - p20_5 / ((1) + (1) * p20_5) - T(0.75) * q20_21_6 + f19_20_6 - - T(0.25) * q20_21_5 + p20_6 / (1 + p20_6) - p20_5 / (1 + p20_5) - θ * q20_21_6 + f19_20_6 - (1 - θ) * q20_21_5 cx[246] = - p21_6 / ((1) + (1) * p21_6) - p21_5 / ((1) + (1) * p21_5) - T(0.75) * q21_22_6 + - T(0.75) * q20_21_6 - T(0.25) * q21_22_5 + T(0.25) * q20_21_5 - 1 + p21_6 / (1 + p21_6) - p21_5 / (1 + p21_5) - θ * q21_22_6 + θ * q20_21_6 - (1 - θ) * q21_22_5 + + (1 - θ) * q20_21_5 - 1 cx[247] = - p22_6 / ((1) + (1) * p22_6) - p22_5 / ((1) + (1) * p22_5) - T(0.75) * q22_23_6 + - T(0.75) * q21_22_6 - T(0.25) * q22_23_5 + T(0.25) * q21_22_5 - 1 + p22_6 / (1 + p22_6) - p22_5 / (1 + p22_5) - θ * q22_23_6 + θ * q21_22_6 - (1 - θ) * q22_23_5 + + (1 - θ) * q21_22_5 - 1 cx[248] = - p23_6 / ((1) + (1) * p23_6) - p23_5 / ((1) + (1) * p23_5) + - T(0.75) * q22_23_6 + - T(0.25) * q22_23_5 - out23_6 + p23_6 / (1 + p23_6) - p23_5 / (1 + p23_5) + θ * q22_23_6 + (1 - θ) * q22_23_5 - out23_6 cx[249] = p3_6 * r3_4_6 - p4_6 cx[250] = p5_6 * r5_7_6 - p7_6 cx[251] = p19_6 * r19_20_6 - p20_6 - cx[252] = - p1_6 * p1_6 - p2_6 * p2_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_6 + p2_6)) * ((abs(q1_2_6))^T(1.8539)) - cx[253] = - p1_6 * p1_6 - p17_6 * p17_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_6 + p17_6)) * ((abs(q1_17_6))^T(1.8539)) - cx[254] = - p2_6 * p2_6 - p3_6 * p3_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p2_6 + p3_6)) * ((abs(q2_3_6))^T(1.8539)) - cx[255] = - p4_6 * p4_6 - p5_6 * p5_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p4_6 + p5_6)) * ((abs(q4_5_6))^T(1.8539)) - cx[256] = - p5_6 * p5_6 - p6_6 * p6_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p5_6 + p6_6)) * ((abs(q5_6_6))^T(1.8539)) - cx[257] = - p7_6 * p7_6 - p8_6 * p8_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p7_6 + p8_6)) * ((abs(q7_8_6))^T(1.8539)) - cx[258] = - p8_6 * p8_6 - p9_6 * p9_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_6 + p9_6)) * ((abs(q8_9_6))^T(1.8539)) - cx[259] = - p8_6 * p8_6 - p10_6 * p10_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_6 + p10_6)) * ((abs(q8_10_6))^T(1.8539)) - cx[260] = - p8_6 * p8_6 - p11_6 * p11_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_6 + p11_6)) * ((abs(q8_11_6))^T(1.8539)) - cx[261] = - p11_6 * p11_6 - p12_6 * p12_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p11_6 + p12_6)) * ((abs(q11_12_6))^T(1.8539)) - cx[262] = - p12_6 * p12_6 - p13_6 * p13_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p12_6 + p13_6)) * ((abs(q12_13_6))^T(1.8539)) - cx[263] = - p13_6 * p13_6 - p14_6 * p14_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_6 + p14_6)) * ((abs(q13_14_6))^T(1.8539)) - cx[264] = - p13_6 * p13_6 - p15_6 * p15_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_6 + p15_6)) * ((abs(q13_15_6))^T(1.8539)) - cx[265] = - p15_6 * p15_6 - p16_6 * p16_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p15_6 + p16_6)) * ((abs(q15_16_6))^T(1.8539)) - cx[266] = - p17_6 * p17_6 - p18_6 * p18_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p17_6 + p18_6)) * ((abs(q17_18_6))^T(1.8539)) - cx[267] = - p18_6 * p18_6 - p19_6 * p19_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p18_6 + p19_6)) * ((abs(q18_19_6))^T(1.8539)) - cx[268] = - p20_6 * p20_6 - p21_6 * p21_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p20_6 + p21_6)) * ((abs(q20_21_6))^T(1.8539)) - cx[269] = - p21_6 * p21_6 - p22_6 * p22_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p21_6 + p22_6)) * ((abs(q21_22_6))^T(1.8539)) - cx[270] = - p22_6 * p22_6 - p23_6 * p23_6 - - T(0.01) * ((1) + (T(0.5) * 1) * (p22_6 + p23_6)) * ((abs(q22_23_6))^T(1.8539)) + cx[252] = p1_6 * p1_6 - p2_6 * p2_6 - h * (1 + γ * (p1_6 + p2_6)) * (abs(q1_2_6)^α) + cx[253] = p1_6 * p1_6 - p17_6 * p17_6 - h * (1 + γ * (p1_6 + p17_6)) * (abs(q1_17_6)^α) + cx[254] = p2_6 * p2_6 - p3_6 * p3_6 - h * (1 + γ * (p2_6 + p3_6)) * (abs(q2_3_6)^α) + cx[255] = p4_6 * p4_6 - p5_6 * p5_6 - h * (1 + γ * (p4_6 + p5_6)) * (abs(q4_5_6)^α) + cx[256] = p5_6 * p5_6 - p6_6 * p6_6 - h * (1 + γ * (p5_6 + p6_6)) * (abs(q5_6_6)^α) + cx[257] = p7_6 * p7_6 - p8_6 * p8_6 - h * (1 + γ * (p7_6 + p8_6)) * (abs(q7_8_6)^α) + cx[258] = p8_6 * p8_6 - p9_6 * p9_6 - h * (1 + γ * (p8_6 + p9_6)) * (abs(q8_9_6)^α) + cx[259] = p8_6 * p8_6 - p10_6 * p10_6 - h * (1 + γ * (p8_6 + p10_6)) * (abs(q8_10_6)^α) + cx[260] = p8_6 * p8_6 - p11_6 * p11_6 - h * (1 + γ * (p8_6 + p11_6)) * (abs(q8_11_6)^α) + cx[261] = p11_6 * p11_6 - p12_6 * p12_6 - h * (1 + γ * (p11_6 + p12_6)) * (abs(q11_12_6)^α) + cx[262] = p12_6 * p12_6 - p13_6 * p13_6 - h * (1 + γ * (p12_6 + p13_6)) * (abs(q12_13_6)^α) + cx[263] = p13_6 * p13_6 - p14_6 * p14_6 - h * (1 + γ * (p13_6 + p14_6)) * (abs(q13_14_6)^α) + cx[264] = p13_6 * p13_6 - p15_6 * p15_6 - h * (1 + γ * (p13_6 + p15_6)) * (abs(q13_15_6)^α) + cx[265] = p15_6 * p15_6 - p16_6 * p16_6 - h * (1 + γ * (p15_6 + p16_6)) * (abs(q15_16_6)^α) + cx[266] = p17_6 * p17_6 - p18_6 * p18_6 - h * (1 + γ * (p17_6 + p18_6)) * (abs(q17_18_6)^α) + cx[267] = p18_6 * p18_6 - p19_6 * p19_6 - h * (1 + γ * (p18_6 + p19_6)) * (abs(q18_19_6)^α) + cx[268] = p20_6 * p20_6 - p21_6 * p21_6 - h * (1 + γ * (p20_6 + p21_6)) * (abs(q20_21_6)^α) + cx[269] = p21_6 * p21_6 - p22_6 * p22_6 - h * (1 + γ * (p21_6 + p22_6)) * (abs(q21_22_6)^α) + cx[270] = p22_6 * p22_6 - p23_6 * p23_6 - h * (1 + γ * (p22_6 + p23_6)) * (abs(q22_23_6)^α) + + # time step 7 + cx[271] = - p1_7 / ((1) + (1) * p1_7) - p1_6 / ((1) + (1) * p1_6) - T(0.75) * q1_17_7 - T(0.75) * q1_2_7 + - in1_7 - T(0.25) * q1_17_6 - T(0.25) * q1_2_6 + p1_7 / (1 + p1_7) - p1_6 / (1 + p1_6) - θ * q1_17_7 - θ * q1_2_7 + in1_7 - (1 - θ) * q1_17_6 - + (1 - θ) * q1_2_6 cx[272] = - p2_7 / ((1) + (1) * p2_7) - p2_6 / ((1) + (1) * p2_6) - T(0.75) * q2_3_7 + T(0.75) * q1_2_7 - - T(0.25) * q2_3_6 + T(0.25) * q1_2_6 - 1 - cx[273] = - p3_7 / ((1) + (1) * p3_7) - p3_6 / ((1) + (1) * p3_6) - f3_4_7 + - T(0.75) * q2_3_7 + - T(0.25) * q2_3_6 - cx[274] = - p4_7 / ((1) + (1) * p4_7) - p4_6 / ((1) + (1) * p4_6) - T(0.75) * q4_5_7 + f3_4_7 - - T(0.25) * q4_5_6 + p2_7 / (1 + p2_7) - p2_6 / (1 + p2_6) - θ * q2_3_7 + θ * q1_2_7 - (1 - θ) * q2_3_6 + + (1 - θ) * q1_2_6 - 1 + cx[273] = p3_7 / (1 + p3_7) - p3_6 / (1 + p3_6) - f3_4_7 + θ * q2_3_7 + (1 - θ) * q2_3_6 + cx[274] = p4_7 / (1 + p4_7) - p4_6 / (1 + p4_6) - θ * q4_5_7 + f3_4_7 - (1 - θ) * q4_5_6 cx[275] = - p5_7 / ((1) + (1) * p5_7) - p5_6 / ((1) + (1) * p5_6) - T(0.75) * q5_6_7 - f5_7_7 + - T(0.75) * q4_5_7 - T(0.25) * q5_6_6 + T(0.25) * q4_5_6 - cx[276] = - p6_7 / ((1) + (1) * p6_7) - p6_6 / ((1) + (1) * p6_6) + T(0.75) * q5_6_7 + T(0.25) * q5_6_6 - - 1 - cx[277] = - p7_7 / ((1) + (1) * p7_7) - p7_6 / ((1) + (1) * p7_6) - T(0.75) * q7_8_7 + f5_7_7 - - T(0.25) * q7_8_6 + p5_7 / (1 + p5_7) - p5_6 / (1 + p5_6) - θ * q5_6_7 - f5_7_7 + θ * q4_5_7 - (1 - θ) * q5_6_6 + + (1 - θ) * q4_5_6 + cx[276] = p6_7 / (1 + p6_7) - p6_6 / (1 + p6_6) + θ * q5_6_7 + (1 - θ) * q5_6_6 - 1 + cx[277] = p7_7 / (1 + p7_7) - p7_6 / (1 + p7_6) - θ * q7_8_7 + f5_7_7 - (1 - θ) * q7_8_6 cx[278] = - p8_7 / ((1) + (1) * p8_7) - p8_6 / ((1) + (1) * p8_6) - T(0.75) * q8_9_7 - T(0.75) * q8_10_7 - - T(0.75) * q8_11_7 + T(0.75) * q7_8_7 - T(0.25) * q8_9_6 - T(0.25) * q8_10_6 - - T(0.25) * q8_11_6 + T(0.25) * q7_8_6 - cx[279] = - p9_7 / ((1) + (1) * p9_7) - p9_6 / ((1) + (1) * p9_6) + T(0.75) * q8_9_7 + T(0.25) * q8_9_6 - cx[280] = - p10_7 / ((1) + (1) * p10_7) - p10_6 / ((1) + (1) * p10_6) + - T(0.75) * q8_10_7 + - T(0.25) * q8_10_6 - 1 + p8_7 / (1 + p8_7) - p8_6 / (1 + p8_6) - θ * q8_9_7 - θ * q8_10_7 - θ * q8_11_7 + θ * q7_8_7 - + (1 - θ) * q8_9_6 - (1 - θ) * q8_10_6 - (1 - θ) * q8_11_6 + (1 - θ) * q7_8_6 + cx[279] = p9_7 / (1 + p9_7) - p9_6 / (1 + p9_6) + θ * q8_9_7 + (1 - θ) * q8_9_6 + cx[280] = p10_7 / (1 + p10_7) - p10_6 / (1 + p10_6) + θ * q8_10_7 + (1 - θ) * q8_10_6 - 1 cx[281] = - p11_7 / ((1) + (1) * p11_7) - p11_6 / ((1) + (1) * p11_6) - T(0.75) * q11_12_7 + - T(0.75) * q8_11_7 - T(0.25) * q11_12_6 + T(0.25) * q8_11_6 + p11_7 / (1 + p11_7) - p11_6 / (1 + p11_6) - θ * q11_12_7 + θ * q8_11_7 - (1 - θ) * q11_12_6 + + (1 - θ) * q8_11_6 cx[282] = - p12_7 / ((1) + (1) * p12_7) - p12_6 / ((1) + (1) * p12_6) - T(0.75) * q12_13_7 + - T(0.75) * q11_12_7 - T(0.25) * q12_13_6 + T(0.25) * q11_12_6 + p12_7 / (1 + p12_7) - p12_6 / (1 + p12_6) - θ * q12_13_7 + θ * q11_12_7 - (1 - θ) * q12_13_6 + + (1 - θ) * q11_12_6 cx[283] = - p13_7 / ((1) + (1) * p13_7) - p13_6 / ((1) + (1) * p13_6) - T(0.75) * q13_14_7 - - T(0.75) * q13_15_7 + T(0.75) * q12_13_7 - T(0.25) * q13_14_6 - T(0.25) * q13_15_6 + - T(0.25) * q12_13_6 - 1 - cx[284] = - p14_7 / ((1) + (1) * p14_7) - p14_6 / ((1) + (1) * p14_6) + - T(0.75) * q13_14_7 + - T(0.25) * q13_14_6 + p13_7 / (1 + p13_7) - p13_6 / (1 + p13_6) - θ * q13_14_7 - θ * q13_15_7 + θ * q12_13_7 - + (1 - θ) * q13_14_6 - (1 - θ) * q13_15_6 + (1 - θ) * q12_13_6 - 1 + cx[284] = p14_7 / (1 + p14_7) - p14_6 / (1 + p14_6) + θ * q13_14_7 + (1 - θ) * q13_14_6 cx[285] = - p15_7 / ((1) + (1) * p15_7) - p15_6 / ((1) + (1) * p15_6) - T(0.75) * q15_16_7 + - T(0.75) * q13_15_7 - T(0.25) * q15_16_6 + T(0.25) * q13_15_6 - 1 + p15_7 / (1 + p15_7) - p15_6 / (1 + p15_6) - θ * q15_16_7 + θ * q13_15_7 - (1 - θ) * q15_16_6 + + (1 - θ) * q13_15_6 - 1 cx[286] = - p16_7 / ((1) + (1) * p16_7) - p16_6 / ((1) + (1) * p16_6) + - T(0.75) * q15_16_7 + - T(0.25) * q15_16_6 - out16_7 + p16_7 / (1 + p16_7) - p16_6 / (1 + p16_6) + θ * q15_16_7 + (1 - θ) * q15_16_6 - out16_7 cx[287] = - p17_7 / ((1) + (1) * p17_7) - p17_6 / ((1) + (1) * p17_6) - T(0.75) * q17_18_7 + - T(0.75) * q1_17_7 - T(0.25) * q17_18_6 + T(0.25) * q1_17_6 - 1 + p17_7 / (1 + p17_7) - p17_6 / (1 + p17_6) - θ * q17_18_7 + θ * q1_17_7 - (1 - θ) * q17_18_6 + + (1 - θ) * q1_17_6 - 1 cx[288] = - p18_7 / ((1) + (1) * p18_7) - p18_6 / ((1) + (1) * p18_6) - T(0.75) * q18_19_7 + - T(0.75) * q17_18_7 - T(0.25) * q18_19_6 + T(0.25) * q17_18_6 - 1 + p18_7 / (1 + p18_7) - p18_6 / (1 + p18_6) - θ * q18_19_7 + θ * q17_18_7 - (1 - θ) * q18_19_6 + + (1 - θ) * q17_18_6 - 1 cx[289] = - p19_7 / ((1) + (1) * p19_7) - p19_6 / ((1) + (1) * p19_6) - f19_20_7 + - T(0.75) * q18_19_7 + - T(0.25) * q18_19_6 + p19_7 / (1 + p19_7) - p19_6 / (1 + p19_6) - f19_20_7 + θ * q18_19_7 + (1 - θ) * q18_19_6 cx[290] = - p20_7 / ((1) + (1) * p20_7) - p20_6 / ((1) + (1) * p20_6) - T(0.75) * q20_21_7 + f19_20_7 - - T(0.25) * q20_21_6 + p20_7 / (1 + p20_7) - p20_6 / (1 + p20_6) - θ * q20_21_7 + f19_20_7 - (1 - θ) * q20_21_6 cx[291] = - p21_7 / ((1) + (1) * p21_7) - p21_6 / ((1) + (1) * p21_6) - T(0.75) * q21_22_7 + - T(0.75) * q20_21_7 - T(0.25) * q21_22_6 + T(0.25) * q20_21_6 - 1 + p21_7 / (1 + p21_7) - p21_6 / (1 + p21_6) - θ * q21_22_7 + θ * q20_21_7 - (1 - θ) * q21_22_6 + + (1 - θ) * q20_21_6 - 1 cx[292] = - p22_7 / ((1) + (1) * p22_7) - p22_6 / ((1) + (1) * p22_6) - T(0.75) * q22_23_7 + - T(0.75) * q21_22_7 - T(0.25) * q22_23_6 + T(0.25) * q21_22_6 - 1 + p22_7 / (1 + p22_7) - p22_6 / (1 + p22_6) - θ * q22_23_7 + θ * q21_22_7 - (1 - θ) * q22_23_6 + + (1 - θ) * q21_22_6 - 1 cx[293] = - p23_7 / ((1) + (1) * p23_7) - p23_6 / ((1) + (1) * p23_6) + - T(0.75) * q22_23_7 + - T(0.25) * q22_23_6 - out23_7 + p23_7 / (1 + p23_7) - p23_6 / (1 + p23_6) + θ * q22_23_7 + (1 - θ) * q22_23_6 - out23_7 cx[294] = p3_7 * r3_4_7 - p4_7 cx[295] = p5_7 * r5_7_7 - p7_7 cx[296] = p19_7 * r19_20_7 - p20_7 - cx[297] = - p1_7 * p1_7 - p2_7 * p2_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_7 + p2_7)) * ((abs(q1_2_7))^T(1.8539)) - cx[298] = - p1_7 * p1_7 - p17_7 * p17_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_7 + p17_7)) * ((abs(q1_17_7))^T(1.8539)) - cx[299] = - p2_7 * p2_7 - p3_7 * p3_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p2_7 + p3_7)) * ((abs(q2_3_7))^T(1.8539)) - cx[300] = - p4_7 * p4_7 - p5_7 * p5_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p4_7 + p5_7)) * ((abs(q4_5_7))^T(1.8539)) - cx[301] = - p5_7 * p5_7 - p6_7 * p6_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p5_7 + p6_7)) * ((abs(q5_6_7))^T(1.8539)) - cx[302] = - p7_7 * p7_7 - p8_7 * p8_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p7_7 + p8_7)) * ((abs(q7_8_7))^T(1.8539)) - cx[303] = - p8_7 * p8_7 - p9_7 * p9_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_7 + p9_7)) * ((abs(q8_9_7))^T(1.8539)) - cx[304] = - p8_7 * p8_7 - p10_7 * p10_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_7 + p10_7)) * ((abs(q8_10_7))^T(1.8539)) - cx[305] = - p8_7 * p8_7 - p11_7 * p11_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_7 + p11_7)) * ((abs(q8_11_7))^T(1.8539)) - cx[306] = - p11_7 * p11_7 - p12_7 * p12_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p11_7 + p12_7)) * ((abs(q11_12_7))^T(1.8539)) - cx[307] = - p12_7 * p12_7 - p13_7 * p13_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p12_7 + p13_7)) * ((abs(q12_13_7))^T(1.8539)) - cx[308] = - p13_7 * p13_7 - p14_7 * p14_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_7 + p14_7)) * ((abs(q13_14_7))^T(1.8539)) - cx[309] = - p13_7 * p13_7 - p15_7 * p15_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_7 + p15_7)) * ((abs(q13_15_7))^T(1.8539)) - cx[310] = - p15_7 * p15_7 - p16_7 * p16_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p15_7 + p16_7)) * ((abs(q15_16_7))^T(1.8539)) - cx[311] = - p17_7 * p17_7 - p18_7 * p18_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p17_7 + p18_7)) * ((abs(q17_18_7))^T(1.8539)) - cx[312] = - p18_7 * p18_7 - p19_7 * p19_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p18_7 + p19_7)) * ((abs(q18_19_7))^T(1.8539)) - cx[313] = - p20_7 * p20_7 - p21_7 * p21_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p20_7 + p21_7)) * ((abs(q20_21_7))^T(1.8539)) - cx[314] = - p21_7 * p21_7 - p22_7 * p22_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p21_7 + p22_7)) * ((abs(q21_22_7))^T(1.8539)) - cx[315] = - p22_7 * p22_7 - p23_7 * p23_7 - - T(0.01) * ((1) + (T(0.5) * 1) * (p22_7 + p23_7)) * ((abs(q22_23_7))^T(1.8539)) + cx[297] = p1_7 * p1_7 - p2_7 * p2_7 - h * (1 + γ * (p1_7 + p2_7)) * (abs(q1_2_7)^α) + cx[298] = p1_7 * p1_7 - p17_7 * p17_7 - h * (1 + γ * (p1_7 + p17_7)) * (abs(q1_17_7)^α) + cx[299] = p2_7 * p2_7 - p3_7 * p3_7 - h * (1 + γ * (p2_7 + p3_7)) * (abs(q2_3_7)^α) + cx[300] = p4_7 * p4_7 - p5_7 * p5_7 - h * (1 + γ * (p4_7 + p5_7)) * (abs(q4_5_7)^α) + cx[301] = p5_7 * p5_7 - p6_7 * p6_7 - h * (1 + γ * (p5_7 + p6_7)) * (abs(q5_6_7)^α) + cx[302] = p7_7 * p7_7 - p8_7 * p8_7 - h * (1 + γ * (p7_7 + p8_7)) * (abs(q7_8_7)^α) + cx[303] = p8_7 * p8_7 - p9_7 * p9_7 - h * (1 + γ * (p8_7 + p9_7)) * (abs(q8_9_7)^α) + cx[304] = p8_7 * p8_7 - p10_7 * p10_7 - h * (1 + γ * (p8_7 + p10_7)) * (abs(q8_10_7)^α) + cx[305] = p8_7 * p8_7 - p11_7 * p11_7 - h * (1 + γ * (p8_7 + p11_7)) * (abs(q8_11_7)^α) + cx[306] = p11_7 * p11_7 - p12_7 * p12_7 - h * (1 + γ * (p11_7 + p12_7)) * (abs(q11_12_7)^α) + cx[307] = p12_7 * p12_7 - p13_7 * p13_7 - h * (1 + γ * (p12_7 + p13_7)) * (abs(q12_13_7)^α) + cx[308] = p13_7 * p13_7 - p14_7 * p14_7 - h * (1 + γ * (p13_7 + p14_7)) * (abs(q13_14_7)^α) + cx[309] = p13_7 * p13_7 - p15_7 * p15_7 - h * (1 + γ * (p13_7 + p15_7)) * (abs(q13_15_7)^α) + cx[310] = p15_7 * p15_7 - p16_7 * p16_7 - h * (1 + γ * (p15_7 + p16_7)) * (abs(q15_16_7)^α) + cx[311] = p17_7 * p17_7 - p18_7 * p18_7 - h * (1 + γ * (p17_7 + p18_7)) * (abs(q17_18_7)^α) + cx[312] = p18_7 * p18_7 - p19_7 * p19_7 - h * (1 + γ * (p18_7 + p19_7)) * (abs(q18_19_7)^α) + cx[313] = p20_7 * p20_7 - p21_7 * p21_7 - h * (1 + γ * (p20_7 + p21_7)) * (abs(q20_21_7)^α) + cx[314] = p21_7 * p21_7 - p22_7 * p22_7 - h * (1 + γ * (p21_7 + p22_7)) * (abs(q21_22_7)^α) + cx[315] = p22_7 * p22_7 - p23_7 * p23_7 - h * (1 + γ * (p22_7 + p23_7)) * (abs(q22_23_7)^α) + + # time step 8 + cx[316] = - p1_8 / ((1) + (1) * p1_8) - p1_7 / ((1) + (1) * p1_7) - T(0.75) * q1_17_8 - T(0.75) * q1_2_8 + - in1_8 - T(0.25) * q1_17_7 - T(0.25) * q1_2_7 + p1_8 / (1 + p1_8) - p1_7 / (1 + p1_7) - θ * q1_17_8 - θ * q1_2_8 + in1_8 - (1 - θ) * q1_17_7 - + (1 - θ) * q1_2_7 cx[317] = - p2_8 / ((1) + (1) * p2_8) - p2_7 / ((1) + (1) * p2_7) - T(0.75) * q2_3_8 + T(0.75) * q1_2_8 - - T(0.25) * q2_3_7 + T(0.25) * q1_2_7 - 1 - cx[318] = - p3_8 / ((1) + (1) * p3_8) - p3_7 / ((1) + (1) * p3_7) - f3_4_8 + - T(0.75) * q2_3_8 + - T(0.25) * q2_3_7 - cx[319] = - p4_8 / ((1) + (1) * p4_8) - p4_7 / ((1) + (1) * p4_7) - T(0.75) * q4_5_8 + f3_4_8 - - T(0.25) * q4_5_7 + p2_8 / (1 + p2_8) - p2_7 / (1 + p2_7) - θ * q2_3_8 + θ * q1_2_8 - (1 - θ) * q2_3_7 + + (1 - θ) * q1_2_7 - 1 + cx[318] = p3_8 / (1 + p3_8) - p3_7 / (1 + p3_7) - f3_4_8 + θ * q2_3_8 + (1 - θ) * q2_3_7 + cx[319] = p4_8 / (1 + p4_8) - p4_7 / (1 + p4_7) - θ * q4_5_8 + f3_4_8 - (1 - θ) * q4_5_7 cx[320] = - p5_8 / ((1) + (1) * p5_8) - p5_7 / ((1) + (1) * p5_7) - T(0.75) * q5_6_8 - f5_7_8 + - T(0.75) * q4_5_8 - T(0.25) * q5_6_7 + T(0.25) * q4_5_7 - cx[321] = - p6_8 / ((1) + (1) * p6_8) - p6_7 / ((1) + (1) * p6_7) + T(0.75) * q5_6_8 + T(0.25) * q5_6_7 - - 1 - cx[322] = - p7_8 / ((1) + (1) * p7_8) - p7_7 / ((1) + (1) * p7_7) - T(0.75) * q7_8_8 + f5_7_8 - - T(0.25) * q7_8_7 + p5_8 / (1 + p5_8) - p5_7 / (1 + p5_7) - θ * q5_6_8 - f5_7_8 + θ * q4_5_8 - (1 - θ) * q5_6_7 + + (1 - θ) * q4_5_7 + cx[321] = p6_8 / (1 + p6_8) - p6_7 / (1 + p6_7) + θ * q5_6_8 + (1 - θ) * q5_6_7 - 1 + cx[322] = p7_8 / (1 + p7_8) - p7_7 / (1 + p7_7) - θ * q7_8_8 + f5_7_8 - (1 - θ) * q7_8_7 cx[323] = - p8_8 / ((1) + (1) * p8_8) - p8_7 / ((1) + (1) * p8_7) - T(0.75) * q8_9_8 - T(0.75) * q8_10_8 - - T(0.75) * q8_11_8 + T(0.75) * q7_8_8 - T(0.25) * q8_9_7 - T(0.25) * q8_10_7 - - T(0.25) * q8_11_7 + T(0.25) * q7_8_7 - cx[324] = - p9_8 / ((1) + (1) * p9_8) - p9_7 / ((1) + (1) * p9_7) + T(0.75) * q8_9_8 + T(0.25) * q8_9_7 - cx[325] = - p10_8 / ((1) + (1) * p10_8) - p10_7 / ((1) + (1) * p10_7) + - T(0.75) * q8_10_8 + - T(0.25) * q8_10_7 - 1 + p8_8 / (1 + p8_8) - p8_7 / (1 + p8_7) - θ * q8_9_8 - θ * q8_10_8 - θ * q8_11_8 + θ * q7_8_8 - + (1 - θ) * q8_9_7 - (1 - θ) * q8_10_7 - (1 - θ) * q8_11_7 + (1 - θ) * q7_8_7 + cx[324] = p9_8 / (1 + p9_8) - p9_7 / (1 + p9_7) + θ * q8_9_8 + (1 - θ) * q8_9_7 + cx[325] = p10_8 / (1 + p10_8) - p10_7 / (1 + p10_7) + θ * q8_10_8 + (1 - θ) * q8_10_7 - 1 cx[326] = - p11_8 / ((1) + (1) * p11_8) - p11_7 / ((1) + (1) * p11_7) - T(0.75) * q11_12_8 + - T(0.75) * q8_11_8 - T(0.25) * q11_12_7 + T(0.25) * q8_11_7 + p11_8 / (1 + p11_8) - p11_7 / (1 + p11_7) - θ * q11_12_8 + θ * q8_11_8 - (1 - θ) * q11_12_7 + + (1 - θ) * q8_11_7 cx[327] = - p12_8 / ((1) + (1) * p12_8) - p12_7 / ((1) + (1) * p12_7) - T(0.75) * q12_13_8 + - T(0.75) * q11_12_8 - T(0.25) * q12_13_7 + T(0.25) * q11_12_7 + p12_8 / (1 + p12_8) - p12_7 / (1 + p12_7) - θ * q12_13_8 + θ * q11_12_8 - (1 - θ) * q12_13_7 + + (1 - θ) * q11_12_7 cx[328] = - p13_8 / ((1) + (1) * p13_8) - p13_7 / ((1) + (1) * p13_7) - T(0.75) * q13_14_8 - - T(0.75) * q13_15_8 + T(0.75) * q12_13_8 - T(0.25) * q13_14_7 - T(0.25) * q13_15_7 + - T(0.25) * q12_13_7 - 1 - cx[329] = - p14_8 / ((1) + (1) * p14_8) - p14_7 / ((1) + (1) * p14_7) + - T(0.75) * q13_14_8 + - T(0.25) * q13_14_7 + p13_8 / (1 + p13_8) - p13_7 / (1 + p13_7) - θ * q13_14_8 - θ * q13_15_8 + θ * q12_13_8 - + (1 - θ) * q13_14_7 - (1 - θ) * q13_15_7 + (1 - θ) * q12_13_7 - 1 + cx[329] = p14_8 / (1 + p14_8) - p14_7 / (1 + p14_7) + θ * q13_14_8 + (1 - θ) * q13_14_7 cx[330] = - p15_8 / ((1) + (1) * p15_8) - p15_7 / ((1) + (1) * p15_7) - T(0.75) * q15_16_8 + - T(0.75) * q13_15_8 - T(0.25) * q15_16_7 + T(0.25) * q13_15_7 - 1 + p15_8 / (1 + p15_8) - p15_7 / (1 + p15_7) - θ * q15_16_8 + θ * q13_15_8 - (1 - θ) * q15_16_7 + + (1 - θ) * q13_15_7 - 1 cx[331] = - p16_8 / ((1) + (1) * p16_8) - p16_7 / ((1) + (1) * p16_7) + - T(0.75) * q15_16_8 + - T(0.25) * q15_16_7 - out16_8 + p16_8 / (1 + p16_8) - p16_7 / (1 + p16_7) + θ * q15_16_8 + (1 - θ) * q15_16_7 - out16_8 cx[332] = - p17_8 / ((1) + (1) * p17_8) - p17_7 / ((1) + (1) * p17_7) - T(0.75) * q17_18_8 + - T(0.75) * q1_17_8 - T(0.25) * q17_18_7 + T(0.25) * q1_17_7 - 1 + p17_8 / (1 + p17_8) - p17_7 / (1 + p17_7) - θ * q17_18_8 + θ * q1_17_8 - (1 - θ) * q17_18_7 + + (1 - θ) * q1_17_7 - 1 cx[333] = - p18_8 / ((1) + (1) * p18_8) - p18_7 / ((1) + (1) * p18_7) - T(0.75) * q18_19_8 + - T(0.75) * q17_18_8 - T(0.25) * q18_19_7 + T(0.25) * q17_18_7 - 1 + p18_8 / (1 + p18_8) - p18_7 / (1 + p18_7) - θ * q18_19_8 + θ * q17_18_8 - (1 - θ) * q18_19_7 + + (1 - θ) * q17_18_7 - 1 cx[334] = - p19_8 / ((1) + (1) * p19_8) - p19_7 / ((1) + (1) * p19_7) - f19_20_8 + - T(0.75) * q18_19_8 + - T(0.25) * q18_19_7 + p19_8 / (1 + p19_8) - p19_7 / (1 + p19_7) - f19_20_8 + θ * q18_19_8 + (1 - θ) * q18_19_7 cx[335] = - p20_8 / ((1) + (1) * p20_8) - p20_7 / ((1) + (1) * p20_7) - T(0.75) * q20_21_8 + f19_20_8 - - T(0.25) * q20_21_7 + p20_8 / (1 + p20_8) - p20_7 / (1 + p20_7) - θ * q20_21_8 + f19_20_8 - (1 - θ) * q20_21_7 cx[336] = - p21_8 / ((1) + (1) * p21_8) - p21_7 / ((1) + (1) * p21_7) - T(0.75) * q21_22_8 + - T(0.75) * q20_21_8 - T(0.25) * q21_22_7 + T(0.25) * q20_21_7 - 1 + p21_8 / (1 + p21_8) - p21_7 / (1 + p21_7) - θ * q21_22_8 + θ * q20_21_8 - (1 - θ) * q21_22_7 + + (1 - θ) * q20_21_7 - 1 cx[337] = - p22_8 / ((1) + (1) * p22_8) - p22_7 / ((1) + (1) * p22_7) - T(0.75) * q22_23_8 + - T(0.75) * q21_22_8 - T(0.25) * q22_23_7 + T(0.25) * q21_22_7 - 1 + p22_8 / (1 + p22_8) - p22_7 / (1 + p22_7) - θ * q22_23_8 + θ * q21_22_8 - (1 - θ) * q22_23_7 + + (1 - θ) * q21_22_7 - 1 cx[338] = - p23_8 / ((1) + (1) * p23_8) - p23_7 / ((1) + (1) * p23_7) + - T(0.75) * q22_23_8 + - T(0.25) * q22_23_7 - out23_8 + p23_8 / (1 + p23_8) - p23_7 / (1 + p23_7) + θ * q22_23_8 + (1 - θ) * q22_23_7 - out23_8 cx[339] = p3_8 * r3_4_8 - p4_8 cx[340] = p5_8 * r5_7_8 - p7_8 cx[341] = p19_8 * r19_20_8 - p20_8 - cx[342] = - p1_8 * p1_8 - p2_8 * p2_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_8 + p2_8)) * ((abs(q1_2_8))^T(1.8539)) - cx[343] = - p1_8 * p1_8 - p17_8 * p17_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p1_8 + p17_8)) * ((abs(q1_17_8))^T(1.8539)) - cx[344] = - p2_8 * p2_8 - p3_8 * p3_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p2_8 + p3_8)) * ((abs(q2_3_8))^T(1.8539)) - cx[345] = - p4_8 * p4_8 - p5_8 * p5_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p4_8 + p5_8)) * ((abs(q4_5_8))^T(1.8539)) - cx[346] = - p5_8 * p5_8 - p6_8 * p6_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p5_8 + p6_8)) * ((abs(q5_6_8))^T(1.8539)) - cx[347] = - p7_8 * p7_8 - p8_8 * p8_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p7_8 + p8_8)) * ((abs(q7_8_8))^T(1.8539)) - cx[348] = - p8_8 * p8_8 - p9_8 * p9_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_8 + p9_8)) * ((abs(q8_9_8))^T(1.8539)) - cx[349] = - p8_8 * p8_8 - p10_8 * p10_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_8 + p10_8)) * ((abs(q8_10_8))^T(1.8539)) - cx[350] = - p8_8 * p8_8 - p11_8 * p11_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p8_8 + p11_8)) * ((abs(q8_11_8))^T(1.8539)) - cx[351] = - p11_8 * p11_8 - p12_8 * p12_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p11_8 + p12_8)) * ((abs(q11_12_8))^T(1.8539)) - cx[352] = - p12_8 * p12_8 - p13_8 * p13_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p12_8 + p13_8)) * ((abs(q12_13_8))^T(1.8539)) - cx[353] = - p13_8 * p13_8 - p14_8 * p14_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_8 + p14_8)) * ((abs(q13_14_8))^T(1.8539)) - cx[354] = - p13_8 * p13_8 - p15_8 * p15_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p13_8 + p15_8)) * ((abs(q13_15_8))^T(1.8539)) - cx[355] = - p15_8 * p15_8 - p16_8 * p16_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p15_8 + p16_8)) * ((abs(q15_16_8))^T(1.8539)) - cx[356] = - p17_8 * p17_8 - p18_8 * p18_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p17_8 + p18_8)) * ((abs(q17_18_8))^T(1.8539)) - cx[357] = - p18_8 * p18_8 - p19_8 * p19_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p18_8 + p19_8)) * ((abs(q18_19_8))^T(1.8539)) - cx[358] = - p20_8 * p20_8 - p21_8 * p21_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p20_8 + p21_8)) * ((abs(q20_21_8))^T(1.8539)) - cx[359] = - p21_8 * p21_8 - p22_8 * p22_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p21_8 + p22_8)) * ((abs(q21_22_8))^T(1.8539)) - cx[360] = - p22_8 * p22_8 - p23_8 * p23_8 - - T(0.01) * ((1) + (T(0.5) * 1) * (p22_8 + p23_8)) * ((abs(q22_23_8))^T(1.8539)) + cx[342] = p1_8 * p1_8 - p2_8 * p2_8 - h * (1 + γ * (p1_8 + p2_8)) * (abs(q1_2_8)^α) + cx[343] = p1_8 * p1_8 - p17_8 * p17_8 - h * (1 + γ * (p1_8 + p17_8)) * (abs(q1_17_8)^α) + cx[344] = p2_8 * p2_8 - p3_8 * p3_8 - h * (1 + γ * (p2_8 + p3_8)) * (abs(q2_3_8)^α) + cx[345] = p4_8 * p4_8 - p5_8 * p5_8 - h * (1 + γ * (p4_8 + p5_8)) * (abs(q4_5_8)^α) + cx[346] = p5_8 * p5_8 - p6_8 * p6_8 - h * (1 + γ * (p5_8 + p6_8)) * (abs(q5_6_8)^α) + cx[347] = p7_8 * p7_8 - p8_8 * p8_8 - h * (1 + γ * (p7_8 + p8_8)) * (abs(q7_8_8)^α) + cx[348] = p8_8 * p8_8 - p9_8 * p9_8 - h * (1 + γ * (p8_8 + p9_8)) * (abs(q8_9_8)^α) + cx[349] = p8_8 * p8_8 - p10_8 * p10_8 - h * (1 + γ * (p8_8 + p10_8)) * (abs(q8_10_8)^α) + cx[350] = p8_8 * p8_8 - p11_8 * p11_8 - h * (1 + γ * (p8_8 + p11_8)) * (abs(q8_11_8)^α) + cx[351] = p11_8 * p11_8 - p12_8 * p12_8 - h * (1 + γ * (p11_8 + p12_8)) * (abs(q11_12_8)^α) + cx[352] = p12_8 * p12_8 - p13_8 * p13_8 - h * (1 + γ * (p12_8 + p13_8)) * (abs(q12_13_8)^α) + cx[353] = p13_8 * p13_8 - p14_8 * p14_8 - h * (1 + γ * (p13_8 + p14_8)) * (abs(q13_14_8)^α) + cx[354] = p13_8 * p13_8 - p15_8 * p15_8 - h * (1 + γ * (p13_8 + p15_8)) * (abs(q13_15_8)^α) + cx[355] = p15_8 * p15_8 - p16_8 * p16_8 - h * (1 + γ * (p15_8 + p16_8)) * (abs(q15_16_8)^α) + cx[356] = p17_8 * p17_8 - p18_8 * p18_8 - h * (1 + γ * (p17_8 + p18_8)) * (abs(q17_18_8)^α) + cx[357] = p18_8 * p18_8 - p19_8 * p19_8 - h * (1 + γ * (p18_8 + p19_8)) * (abs(q18_19_8)^α) + cx[358] = p20_8 * p20_8 - p21_8 * p21_8 - h * (1 + γ * (p20_8 + p21_8)) * (abs(q20_21_8)^α) + cx[359] = p21_8 * p21_8 - p22_8 * p22_8 - h * (1 + γ * (p21_8 + p22_8)) * (abs(q21_22_8)^α) + cx[360] = p22_8 * p22_8 - p23_8 * p23_8 - h * (1 + γ * (p22_8 + p23_8)) * (abs(q22_23_8)^α) + return cx end lvar = T[ From 115b4fd2eb5e84ac53c698d5307e35ab7aa128ae Mon Sep 17 00:00:00 2001 From: Guillaume Dalle <22795598+gdalle@users.noreply.github.com> Date: Fri, 14 Jun 2024 13:48:15 +0200 Subject: [PATCH 3/3] Finish parsing --- src/ADNLPProblems/britgas.jl | 2121 ++-------------------------------- 1 file changed, 96 insertions(+), 2025 deletions(-) diff --git a/src/ADNLPProblems/britgas.jl b/src/ADNLPProblems/britgas.jl index 82452d1d..270c18c1 100644 --- a/src/ADNLPProblems/britgas.jl +++ b/src/ADNLPProblems/britgas.jl @@ -47,28 +47,17 @@ function britgas(; n::Int = default_nvar, type::Type{T} = Float64, kwargs...) wh (21, 22), (22, 23), ] - q_outneighbors = [i => Int[] for i = 1:23] - q_inneighbors = [i => Int[] for i = 1:23] - for (i, j) in q_ind - push!(q_outneighbors[i], j) - push!(q_inneighbors[j], i) - end - q_neighbors = [vcat(q_inneighbors[i], q_outneighbors[i]) for i in 1:23] # f and r variables are indexed with some pairs from 1:23 × 1:23 fr_ind = [(3, 4), (5, 7), (19, 20)] - fr_outneighbors = [i => Int[] for i = 1:23] - fr_inneighbors = [i => Int[] for i = 1:23] - for (i, j) in fr_ind - push!(fr_outneighbors[i], j) - push!(fr_inneighbors[j], i) - end - fr_neighbors = [vcat(fr_inneighbors[i], outneighbors[i]) for i in 1:23] # in and out variables are indexed with some indices from 1:23 in_ind = [1] out_ind = [16, 23] + # in some constraints we remove one + ones_ind = [2, 6, 10, 13, 15, 17, 18, 21, 22] + function f(x) f_1 = view(x, 379:381) r_1 = view(x, 382:384) @@ -93,458 +82,7 @@ function britgas(; n::Int = default_nvar, type::Type{T} = Float64, kwargs...) wh o = sum(mapreduce(_britgas_obj, +, f_[t], r_[t]) for t = 1:8) return o end - x0 = T[ - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - ] + x0 = ones(T, 450) function c!(cx, x) p_0 = view(x, 1:23) p_1 = view(x, 24:46) @@ -556,1572 +94,105 @@ function britgas(; n::Int = default_nvar, type::Type{T} = Float64, kwargs...) wh p_7 = view(x, 162:184) p_8 = view(x, 185:207) - q_0 = Dict(q_ind .=> view(x, 208:226)) - q_1 = Dict(q_ind .=> view(x, 227:245)) - q_2 = Dict(q_ind .=> view(x, 246:264)) - q_3 = Dict(q_ind .=> view(x, 265:283)) - q_4 = Dict(q_ind .=> view(x, 284:302)) - q_5 = Dict(q_ind .=> view(x, 303:321)) - q_6 = Dict(q_ind .=> view(x, 322:340)) - q_7 = Dict(q_ind .=> view(x, 341:359)) - q_8 = Dict(q_ind .=> view(x, 360:378)) + q_0 = view(x, 208:226) + q_1 = view(x, 227:245) + q_2 = view(x, 246:264) + q_3 = view(x, 265:283) + q_4 = view(x, 284:302) + q_5 = view(x, 303:321) + q_6 = view(x, 322:340) + q_7 = view(x, 341:359) + q_8 = view(x, 360:378) - f_1 = Dict(fr_ind .=> view(x, 379:381)) - r_1 = Dict(fr_ind .=> view(x, 382:384)) - f_2 = Dict(fr_ind .=> view(x, 385:387)) - r_2 = Dict(fr_ind .=> view(x, 388:390)) - f_3 = Dict(fr_ind .=> view(x, 391:393)) - r_3 = Dict(fr_ind .=> view(x, 394:396)) - f_4 = Dict(fr_ind .=> view(x, 397:399)) - r_4 = Dict(fr_ind .=> view(x, 400:402)) - f_5 = Dict(fr_ind .=> view(x, 403:405)) - r_5 = Dict(fr_ind .=> view(x, 406:408)) - f_6 = Dict(fr_ind .=> view(x, 409:411)) - r_6 = Dict(fr_ind .=> view(x, 412:414)) - f_7 = Dict(fr_ind .=> view(x, 415:417)) - r_7 = Dict(fr_ind .=> view(x, 418:420)) - f_8 = Dict(fr_ind .=> view(x, 421:423)) - r_8 = Dict(fr_ind .=> view(x, 424:426)) + f_1 = view(x, 379:381) + r_1 = view(x, 382:384) + f_2 = view(x, 385:387) + r_2 = view(x, 388:390) + f_3 = view(x, 391:393) + r_3 = view(x, 394:396) + f_4 = view(x, 397:399) + r_4 = view(x, 400:402) + f_5 = view(x, 403:405) + r_5 = view(x, 406:408) + f_6 = view(x, 409:411) + r_6 = view(x, 412:414) + f_7 = view(x, 415:417) + r_7 = view(x, 418:420) + f_8 = view(x, 421:423) + r_8 = view(x, 424:426) - in_1 = Dict.(in_ind .=> view(x, 427:427)) - out_1 = Dict(out_ind .=> view(x, 428:429)) - in_2 = Dict.(in_ind .=> view(x, 430:430)) - out_2 = Dict(out_ind .=> view(x, 431:432)) - in_3 = Dict.(in_ind .=> view(x, 433:433)) - out_3 = Dict(out_ind .=> view(x, 434:435)) - in_4 = Dict.(in_ind .=> view(x, 436:436)) - out_4 = Dict(out_ind .=> view(x, 437:438)) - in_5 = Dict.(in_ind .=> view(x, 439:439)) - out_5 = Dict(out_ind .=> view(x, 440:441)) - in_6 = Dict.(in_ind .=> view(x, 442:442)) - out_6 = Dict(out_ind .=> view(x, 443:444)) - in_7 = Dict.(in_ind .=> view(x, 445:445)) - out_7 = Dict(out_ind .=> view(x, 446:447)) - in_8 = Dict.(in_ind .=> view(x, 448:448)) - out_8 = Dict(out_ind .=> view(x, 449:450)) + in_1 = view(x, 427:427) + out_1 = view(x, 428:429) + in_2 = view(x, 430:430) + out_2 = view(x, 431:432) + in_3 = view(x, 433:433) + out_3 = view(x, 434:435) + in_4 = view(x, 436:436) + out_4 = view(x, 437:438) + in_5 = view(x, 439:439) + out_5 = view(x, 440:441) + in_6 = view(x, 442:442) + out_6 = view(x, 443:444) + in_7 = view(x, 445:445) + out_7 = view(x, 446:447) + in_8 = view(x, 448:448) + out_8 = view(x, 449:450) # multi-step variables - p_ = [p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8] - q_ = [q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8] - f_ = [f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8] - r_ = [r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8] - in_ = [in_1, in_2, in_3, in_4, in_5, in_6, in_7, in_8] - out_ = [out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8] - - # time step 1 - - cx[1] = - p_1[1] / (1 + p_1[1]) - p_0[1] / (1 + p_0[1]) - θ * q1_17_1 - θ * q1_2_1 + in_1[1] - - (1 - θ) * q1_17_0 - (1 - θ) * q1_2_0 - - cx[1] = - p1_1 / (1 + p1_1) - p1_0 / (1 + p1_0) - θ * q1_17_1 - θ * q1_2_1 + in1_1 - (1 - θ) * q1_17_0 - - (1 - θ) * q1_2_0 - cx[2] = - p2_1 / (1 + p2_1) - p2_0 / (1 + p2_0) - θ * q2_3_1 + θ * q1_2_1 - (1 - θ) * q2_3_0 + - (1 - θ) * q1_2_0 - 1 - cx[3] = p3_1 / (1 + p3_1) - p3_0 / (1 + p3_0) - f3_4_1 + θ * q2_3_1 + (1 - θ) * q2_3_0 - cx[4] = p4_1 / (1 + p4_1) - p4_0 / (1 + p4_0) - θ * q4_5_1 + f3_4_1 - (1 - θ) * q4_5_0 - cx[5] = - p5_1 / (1 + p5_1) - p5_0 / (1 + p5_0) - θ * q5_6_1 - f5_7_1 + θ * q4_5_1 - (1 - θ) * q5_6_0 + - (1 - θ) * q4_5_0 - cx[6] = p6_1 / (1 + p6_1) - p6_0 / (1 + p6_0) + θ * q5_6_1 + (1 - θ) * q5_6_0 - 1 - cx[7] = p7_1 / (1 + p7_1) - p7_0 / (1 + p7_0) - θ * q7_8_1 + f5_7_1 - (1 - θ) * q7_8_0 - cx[8] = - p8_1 / (1 + p8_1) - p8_0 / (1 + p8_0) - θ * q8_9_1 - θ * q8_10_1 - θ * q8_11_1 + θ * q7_8_1 - - (1 - θ) * q8_9_0 - (1 - θ) * q8_10_0 - (1 - θ) * q8_11_0 + (1 - θ) * q7_8_0 - cx[9] = p9_1 / (1 + p9_1) - p9_0 / (1 + p9_0) + θ * q8_9_1 + (1 - θ) * q8_9_0 - cx[10] = p10_1 / (1 + p10_1) - p10_0 / (1 + p10_0) + θ * q8_10_1 + (1 - θ) * q8_10_0 - 1 - cx[11] = - p11_1 / (1 + p11_1) - p11_0 / (1 + p11_0) - θ * q11_12_1 + θ * q8_11_1 - (1 - θ) * q11_12_0 + - (1 - θ) * q8_11_0 - cx[12] = - p12_1 / (1 + p12_1) - p12_0 / (1 + p12_0) - θ * q12_13_1 + θ * q11_12_1 - (1 - θ) * q12_13_0 + - (1 - θ) * q11_12_0 - cx[13] = - p13_1 / (1 + p13_1) - p13_0 / (1 + p13_0) - θ * q13_14_1 - θ * q13_15_1 + θ * q12_13_1 - - (1 - θ) * q13_14_0 - (1 - θ) * q13_15_0 + (1 - θ) * q12_13_0 - 1 - cx[14] = p14_1 / (1 + p14_1) - p14_0 / (1 + p14_0) + θ * q13_14_1 + (1 - θ) * q13_14_0 - cx[15] = - p15_1 / (1 + p15_1) - p15_0 / (1 + p15_0) - θ * q15_16_1 + θ * q13_15_1 - (1 - θ) * q15_16_0 + - (1 - θ) * q13_15_0 - 1 - cx[16] = p16_1 / (1 + p16_1) - p16_0 / (1 + p16_0) + θ * q15_16_1 + (1 - θ) * q15_16_0 - out16_1 - cx[17] = - p17_1 / (1 + p17_1) - p17_0 / (1 + p17_0) - θ * q17_18_1 + θ * q1_17_1 - (1 - θ) * q17_18_0 + - (1 - θ) * q1_17_0 - 1 - cx[18] = - p18_1 / (1 + p18_1) - p18_0 / (1 + p18_0) - θ * q18_19_1 + θ * q17_18_1 - (1 - θ) * q18_19_0 + - (1 - θ) * q17_18_0 - 1 - cx[19] = - p19_1 / (1 + p19_1) - p19_0 / (1 + p19_0) - f19_20_1 + θ * q18_19_1 + (1 - θ) * q18_19_0 - cx[20] = - p20_1 / (1 + p20_1) - p20_0 / (1 + p20_0) - θ * q20_21_1 + f19_20_1 - (1 - θ) * q20_21_0 - cx[21] = - p21_1 / (1 + p21_1) - p21_0 / (1 + p21_0) - θ * q21_22_1 + θ * q20_21_1 - (1 - θ) * q21_22_0 + - (1 - θ) * q20_21_0 - 1 - cx[22] = - p22_1 / (1 + p22_1) - p22_0 / (1 + p22_0) - θ * q22_23_1 + θ * q21_22_1 - (1 - θ) * q22_23_0 + - (1 - θ) * q21_22_0 - 1 - cx[23] = p23_1 / (1 + p23_1) - p23_0 / (1 + p23_0) + θ * q22_23_1 + (1 - θ) * q22_23_0 - out23_1 - cx[24] = p3_1 * r3_4_1 - p4_1 - cx[25] = p5_1 * r5_7_1 - p7_1 - cx[26] = p19_1 * r19_20_1 - p20_1 - cx[27] = p1_1 * p1_1 - p2_1 * p2_1 - h * (1 + γ * (p1_1 + p2_1)) * (abs(q1_2_1)^α) - cx[28] = p1_1 * p1_1 - p17_1 * p17_1 - h * (1 + γ * (p1_1 + p17_1)) * (abs(q1_17_1)^α) - cx[29] = p2_1 * p2_1 - p3_1 * p3_1 - h * (1 + γ * (p2_1 + p3_1)) * (abs(q2_3_1)^α) - cx[30] = p4_1 * p4_1 - p5_1 * p5_1 - h * (1 + γ * (p4_1 + p5_1)) * (abs(q4_5_1)^α) - cx[31] = p5_1 * p5_1 - p6_1 * p6_1 - h * (1 + γ * (p5_1 + p6_1)) * (abs(q5_6_1)^α) - cx[32] = p7_1 * p7_1 - p8_1 * p8_1 - h * (1 + γ * (p7_1 + p8_1)) * (abs(q7_8_1)^α) - cx[33] = p8_1 * p8_1 - p9_1 * p9_1 - h * (1 + γ * (p8_1 + p9_1)) * (abs(q8_9_1)^α) - cx[34] = p8_1 * p8_1 - p10_1 * p10_1 - h * (1 + γ * (p8_1 + p10_1)) * (abs(q8_10_1)^α) - cx[35] = p8_1 * p8_1 - p11_1 * p11_1 - h * (1 + γ * (p8_1 + p11_1)) * (abs(q8_11_1)^α) - cx[36] = p11_1 * p11_1 - p12_1 * p12_1 - h * (1 + γ * (p11_1 + p12_1)) * (abs(q11_12_1)^α) - cx[37] = p12_1 * p12_1 - p13_1 * p13_1 - h * (1 + γ * (p12_1 + p13_1)) * (abs(q12_13_1)^α) - cx[38] = p13_1 * p13_1 - p14_1 * p14_1 - h * (1 + γ * (p13_1 + p14_1)) * (abs(q13_14_1)^α) - cx[39] = p13_1 * p13_1 - p15_1 * p15_1 - h * (1 + γ * (p13_1 + p15_1)) * (abs(q13_15_1)^α) - cx[40] = p15_1 * p15_1 - p16_1 * p16_1 - h * (1 + γ * (p15_1 + p16_1)) * (abs(q15_16_1)^α) - cx[41] = p17_1 * p17_1 - p18_1 * p18_1 - h * (1 + γ * (p17_1 + p18_1)) * (abs(q17_18_1)^α) - cx[42] = p18_1 * p18_1 - p19_1 * p19_1 - h * (1 + γ * (p18_1 + p19_1)) * (abs(q18_19_1)^α) - cx[43] = p20_1 * p20_1 - p21_1 * p21_1 - h * (1 + γ * (p20_1 + p21_1)) * (abs(q20_21_1)^α) - cx[44] = p21_1 * p21_1 - p22_1 * p22_1 - h * (1 + γ * (p21_1 + p22_1)) * (abs(q21_22_1)^α) - cx[45] = p22_1 * p22_1 - p23_1 * p23_1 - h * (1 + γ * (p22_1 + p23_1)) * (abs(q22_23_1)^α) - - # time step 2 - - cx[46] = - p1_2 / (1 + p1_2) - p1_1 / (1 + p1_1) - θ * q1_17_2 - θ * q1_2_2 + in1_2 - (1 - θ) * q1_17_1 - - (1 - θ) * q1_2_1 - cx[47] = - p2_2 / (1 + p2_2) - p2_1 / (1 + p2_1) - θ * q2_3_2 + θ * q1_2_2 - (1 - θ) * q2_3_1 + - (1 - θ) * q1_2_1 - 1 - cx[48] = p3_2 / (1 + p3_2) - p3_1 / (1 + p3_1) - f3_4_2 + θ * q2_3_2 + (1 - θ) * q2_3_1 - cx[49] = p4_2 / (1 + p4_2) - p4_1 / (1 + p4_1) - θ * q4_5_2 + f3_4_2 - (1 - θ) * q4_5_1 - cx[50] = - p5_2 / (1 + p5_2) - p5_1 / (1 + p5_1) - θ * q5_6_2 - f5_7_2 + θ * q4_5_2 - (1 - θ) * q5_6_1 + - (1 - θ) * q4_5_1 - cx[51] = p6_2 / (1 + p6_2) - p6_1 / (1 + p6_1) + θ * q5_6_2 + (1 - θ) * q5_6_1 - 1 - cx[52] = p7_2 / (1 + p7_2) - p7_1 / (1 + p7_1) - θ * q7_8_2 + f5_7_2 - (1 - θ) * q7_8_1 - cx[53] = - p8_2 / (1 + p8_2) - p8_1 / (1 + p8_1) - θ * q8_9_2 - θ * q8_10_2 - θ * q8_11_2 + θ * q7_8_2 - - (1 - θ) * q8_9_1 - (1 - θ) * q8_10_1 - (1 - θ) * q8_11_1 + (1 - θ) * q7_8_1 - cx[54] = p9_2 / (1 + p9_2) - p9_1 / (1 + p9_1) + θ * q8_9_2 + (1 - θ) * q8_9_1 - cx[55] = p10_2 / (1 + p10_2) - p10_1 / (1 + p10_1) + θ * q8_10_2 + (1 - θ) * q8_10_1 - 1 - cx[56] = - p11_2 / (1 + p11_2) - p11_1 / (1 + p11_1) - θ * q11_12_2 + θ * q8_11_2 - (1 - θ) * q11_12_1 + - (1 - θ) * q8_11_1 - cx[57] = - p12_2 / (1 + p12_2) - p12_1 / (1 + p12_1) - θ * q12_13_2 + θ * q11_12_2 - (1 - θ) * q12_13_1 + - (1 - θ) * q11_12_1 - cx[58] = - p13_2 / (1 + p13_2) - p13_1 / (1 + p13_1) - θ * q13_14_2 - θ * q13_15_2 + θ * q12_13_2 - - (1 - θ) * q13_14_1 - (1 - θ) * q13_15_1 + (1 - θ) * q12_13_1 - 1 - cx[59] = p14_2 / (1 + p14_2) - p14_1 / (1 + p14_1) + θ * q13_14_2 + (1 - θ) * q13_14_1 - cx[60] = - p15_2 / (1 + p15_2) - p15_1 / (1 + p15_1) - θ * q15_16_2 + θ * q13_15_2 - (1 - θ) * q15_16_1 + - (1 - θ) * q13_15_1 - 1 - cx[61] = p16_2 / (1 + p16_2) - p16_1 / (1 + p16_1) + θ * q15_16_2 + (1 - θ) * q15_16_1 - out16_2 - cx[62] = - p17_2 / (1 + p17_2) - p17_1 / (1 + p17_1) - θ * q17_18_2 + θ * q1_17_2 - (1 - θ) * q17_18_1 + - (1 - θ) * q1_17_1 - 1 - cx[63] = - p18_2 / (1 + p18_2) - p18_1 / (1 + p18_1) - θ * q18_19_2 + θ * q17_18_2 - (1 - θ) * q18_19_1 + - (1 - θ) * q17_18_1 - 1 - cx[64] = - p19_2 / (1 + p19_2) - p19_1 / (1 + p19_1) - f19_20_2 + θ * q18_19_2 + (1 - θ) * q18_19_1 - cx[65] = - p20_2 / (1 + p20_2) - p20_1 / (1 + p20_1) - θ * q20_21_2 + f19_20_2 - (1 - θ) * q20_21_1 - cx[66] = - p21_2 / (1 + p21_2) - p21_1 / (1 + p21_1) - θ * q21_22_2 + θ * q20_21_2 - (1 - θ) * q21_22_1 + - (1 - θ) * q20_21_1 - 1 - cx[67] = - p22_2 / (1 + p22_2) - p22_1 / (1 + p22_1) - θ * q22_23_2 + θ * q21_22_2 - (1 - θ) * q22_23_1 + - (1 - θ) * q21_22_1 - 1 - cx[68] = p23_2 / (1 + p23_2) - p23_1 / (1 + p23_1) + θ * q22_23_2 + (1 - θ) * q22_23_1 - out23_2 - cx[69] = p3_2 * r3_4_2 - p4_2 - cx[70] = p5_2 * r5_7_2 - p7_2 - cx[71] = p19_2 * r19_20_2 - p20_2 - cx[72] = p1_2 * p1_2 - p2_2 * p2_2 - h * (1 + γ * (p1_2 + p2_2)) * (abs(q1_2_2)^α) - cx[73] = p1_2 * p1_2 - p17_2 * p17_2 - h * (1 + γ * (p1_2 + p17_2)) * (abs(q1_17_2)^α) - cx[74] = p2_2 * p2_2 - p3_2 * p3_2 - h * (1 + γ * (p2_2 + p3_2)) * (abs(q2_3_2)^α) - cx[75] = p4_2 * p4_2 - p5_2 * p5_2 - h * (1 + γ * (p4_2 + p5_2)) * (abs(q4_5_2)^α) - cx[76] = p5_2 * p5_2 - p6_2 * p6_2 - h * (1 + γ * (p5_2 + p6_2)) * (abs(q5_6_2)^α) - cx[77] = p7_2 * p7_2 - p8_2 * p8_2 - h * (1 + γ * (p7_2 + p8_2)) * (abs(q7_8_2)^α) - cx[78] = p8_2 * p8_2 - p9_2 * p9_2 - h * (1 + γ * (p8_2 + p9_2)) * (abs(q8_9_2)^α) - cx[79] = p8_2 * p8_2 - p10_2 * p10_2 - h * (1 + γ * (p8_2 + p10_2)) * (abs(q8_10_2)^α) - cx[80] = p8_2 * p8_2 - p11_2 * p11_2 - h * (1 + γ * (p8_2 + p11_2)) * (abs(q8_11_2)^α) - cx[81] = p11_2 * p11_2 - p12_2 * p12_2 - h * (1 + γ * (p11_2 + p12_2)) * (abs(q11_12_2)^α) - cx[82] = p12_2 * p12_2 - p13_2 * p13_2 - h * (1 + γ * (p12_2 + p13_2)) * (abs(q12_13_2)^α) - cx[83] = p13_2 * p13_2 - p14_2 * p14_2 - h * (1 + γ * (p13_2 + p14_2)) * (abs(q13_14_2)^α) - cx[84] = p13_2 * p13_2 - p15_2 * p15_2 - h * (1 + γ * (p13_2 + p15_2)) * (abs(q13_15_2)^α) - cx[85] = p15_2 * p15_2 - p16_2 * p16_2 - h * (1 + γ * (p15_2 + p16_2)) * (abs(q15_16_2)^α) - cx[86] = p17_2 * p17_2 - p18_2 * p18_2 - h * (1 + γ * (p17_2 + p18_2)) * (abs(q17_18_2)^α) - cx[87] = p18_2 * p18_2 - p19_2 * p19_2 - h * (1 + γ * (p18_2 + p19_2)) * (abs(q18_19_2)^α) - cx[88] = p20_2 * p20_2 - p21_2 * p21_2 - h * (1 + γ * (p20_2 + p21_2)) * (abs(q20_21_2)^α) - cx[89] = p21_2 * p21_2 - p22_2 * p22_2 - h * (1 + γ * (p21_2 + p22_2)) * (abs(q21_22_2)^α) - cx[90] = p22_2 * p22_2 - p23_2 * p23_2 - h * (1 + γ * (p22_2 + p23_2)) * (abs(q22_23_2)^α) - - # time step 3 - - cx[91] = - p1_3 / (1 + p1_3) - p1_2 / (1 + p1_2) - θ * q1_17_3 - θ * q1_2_3 + in1_3 - (1 - θ) * q1_17_2 - - (1 - θ) * q1_2_2 - cx[92] = - p2_3 / (1 + p2_3) - p2_2 / (1 + p2_2) - θ * q2_3_3 + θ * q1_2_3 - (1 - θ) * q2_3_2 + - (1 - θ) * q1_2_2 - 1 - cx[93] = p3_3 / (1 + p3_3) - p3_2 / (1 + p3_2) - f3_4_3 + θ * q2_3_3 + (1 - θ) * q2_3_2 - cx[94] = p4_3 / (1 + p4_3) - p4_2 / (1 + p4_2) - θ * q4_5_3 + f3_4_3 - (1 - θ) * q4_5_2 - cx[95] = - p5_3 / (1 + p5_3) - p5_2 / (1 + p5_2) - θ * q5_6_3 - f5_7_3 + θ * q4_5_3 - (1 - θ) * q5_6_2 + - (1 - θ) * q4_5_2 - cx[96] = p6_3 / (1 + p6_3) - p6_2 / (1 + p6_2) + θ * q5_6_3 + (1 - θ) * q5_6_2 - 1 - cx[97] = p7_3 / (1 + p7_3) - p7_2 / (1 + p7_2) - θ * q7_8_3 + f5_7_3 - (1 - θ) * q7_8_2 - cx[98] = - p8_3 / (1 + p8_3) - p8_2 / (1 + p8_2) - θ * q8_9_3 - θ * q8_10_3 - θ * q8_11_3 + θ * q7_8_3 - - (1 - θ) * q8_9_2 - (1 - θ) * q8_10_2 - (1 - θ) * q8_11_2 + (1 - θ) * q7_8_2 - cx[99] = p9_3 / (1 + p9_3) - p9_2 / (1 + p9_2) + θ * q8_9_3 + (1 - θ) * q8_9_2 - cx[100] = p10_3 / (1 + p10_3) - p10_2 / (1 + p10_2) + θ * q8_10_3 + (1 - θ) * q8_10_2 - 1 - cx[101] = - p11_3 / (1 + p11_3) - p11_2 / (1 + p11_2) - θ * q11_12_3 + θ * q8_11_3 - (1 - θ) * q11_12_2 + - (1 - θ) * q8_11_2 - cx[102] = - p12_3 / (1 + p12_3) - p12_2 / (1 + p12_2) - θ * q12_13_3 + θ * q11_12_3 - (1 - θ) * q12_13_2 + - (1 - θ) * q11_12_2 - cx[103] = - p13_3 / (1 + p13_3) - p13_2 / (1 + p13_2) - θ * q13_14_3 - θ * q13_15_3 + θ * q12_13_3 - - (1 - θ) * q13_14_2 - (1 - θ) * q13_15_2 + (1 - θ) * q12_13_2 - 1 - cx[104] = p14_3 / (1 + p14_3) - p14_2 / (1 + p14_2) + θ * q13_14_3 + (1 - θ) * q13_14_2 - cx[105] = - p15_3 / (1 + p15_3) - p15_2 / (1 + p15_2) - θ * q15_16_3 + θ * q13_15_3 - (1 - θ) * q15_16_2 + - (1 - θ) * q13_15_2 - 1 - cx[106] = - p16_3 / (1 + p16_3) - p16_2 / (1 + p16_2) + θ * q15_16_3 + (1 - θ) * q15_16_2 - out16_3 - cx[107] = - p17_3 / (1 + p17_3) - p17_2 / (1 + p17_2) - θ * q17_18_3 + θ * q1_17_3 - (1 - θ) * q17_18_2 + - (1 - θ) * q1_17_2 - 1 - cx[108] = - p18_3 / (1 + p18_3) - p18_2 / (1 + p18_2) - θ * q18_19_3 + θ * q17_18_3 - (1 - θ) * q18_19_2 + - (1 - θ) * q17_18_2 - 1 - cx[109] = - p19_3 / (1 + p19_3) - p19_2 / (1 + p19_2) - f19_20_3 + θ * q18_19_3 + (1 - θ) * q18_19_2 - cx[110] = - p20_3 / (1 + p20_3) - p20_2 / (1 + p20_2) - θ * q20_21_3 + f19_20_3 - (1 - θ) * q20_21_2 - cx[111] = - p21_3 / (1 + p21_3) - p21_2 / (1 + p21_2) - θ * q21_22_3 + θ * q20_21_3 - (1 - θ) * q21_22_2 + - (1 - θ) * q20_21_2 - 1 - cx[112] = - p22_3 / (1 + p22_3) - p22_2 / (1 + p22_2) - θ * q22_23_3 + θ * q21_22_3 - (1 - θ) * q22_23_2 + - (1 - θ) * q21_22_2 - 1 - cx[113] = - p23_3 / (1 + p23_3) - p23_2 / (1 + p23_2) + θ * q22_23_3 + (1 - θ) * q22_23_2 - out23_3 - cx[114] = p3_3 * r3_4_3 - p4_3 - cx[115] = p5_3 * r5_7_3 - p7_3 - cx[116] = p19_3 * r19_20_3 - p20_3 - cx[117] = p1_3 * p1_3 - p2_3 * p2_3 - h * (1 + γ * (p1_3 + p2_3)) * (abs(q1_2_3)^α) - cx[118] = p1_3 * p1_3 - p17_3 * p17_3 - h * (1 + γ * (p1_3 + p17_3)) * (abs(q1_17_3)^α) - cx[119] = p2_3 * p2_3 - p3_3 * p3_3 - h * (1 + γ * (p2_3 + p3_3)) * (abs(q2_3_3)^α) - cx[120] = p4_3 * p4_3 - p5_3 * p5_3 - h * (1 + γ * (p4_3 + p5_3)) * (abs(q4_5_3)^α) - cx[121] = p5_3 * p5_3 - p6_3 * p6_3 - h * (1 + γ * (p5_3 + p6_3)) * (abs(q5_6_3)^α) - cx[122] = p7_3 * p7_3 - p8_3 * p8_3 - h * (1 + γ * (p7_3 + p8_3)) * (abs(q7_8_3)^α) - cx[123] = p8_3 * p8_3 - p9_3 * p9_3 - h * (1 + γ * (p8_3 + p9_3)) * (abs(q8_9_3)^α) - cx[124] = p8_3 * p8_3 - p10_3 * p10_3 - h * (1 + γ * (p8_3 + p10_3)) * (abs(q8_10_3)^α) - cx[125] = p8_3 * p8_3 - p11_3 * p11_3 - h * (1 + γ * (p8_3 + p11_3)) * (abs(q8_11_3)^α) - cx[126] = p11_3 * p11_3 - p12_3 * p12_3 - h * (1 + γ * (p11_3 + p12_3)) * (abs(q11_12_3)^α) - cx[127] = p12_3 * p12_3 - p13_3 * p13_3 - h * (1 + γ * (p12_3 + p13_3)) * (abs(q12_13_3)^α) - cx[128] = p13_3 * p13_3 - p14_3 * p14_3 - h * (1 + γ * (p13_3 + p14_3)) * (abs(q13_14_3)^α) - cx[129] = p13_3 * p13_3 - p15_3 * p15_3 - h * (1 + γ * (p13_3 + p15_3)) * (abs(q13_15_3)^α) - cx[130] = p15_3 * p15_3 - p16_3 * p16_3 - h * (1 + γ * (p15_3 + p16_3)) * (abs(q15_16_3)^α) - cx[131] = p17_3 * p17_3 - p18_3 * p18_3 - h * (1 + γ * (p17_3 + p18_3)) * (abs(q17_18_3)^α) - cx[132] = p18_3 * p18_3 - p19_3 * p19_3 - h * (1 + γ * (p18_3 + p19_3)) * (abs(q18_19_3)^α) - cx[133] = p20_3 * p20_3 - p21_3 * p21_3 - h * (1 + γ * (p20_3 + p21_3)) * (abs(q20_21_3)^α) - cx[134] = p21_3 * p21_3 - p22_3 * p22_3 - h * (1 + γ * (p21_3 + p22_3)) * (abs(q21_22_3)^α) - cx[135] = p22_3 * p22_3 - p23_3 * p23_3 - h * (1 + γ * (p22_3 + p23_3)) * (abs(q22_23_3)^α) - - # time step 4 - - cx[136] = - p1_4 / (1 + p1_4) - p1_3 / (1 + p1_3) - θ * q1_17_4 - θ * q1_2_4 + in1_4 - (1 - θ) * q1_17_3 - - (1 - θ) * q1_2_3 - cx[137] = - p2_4 / (1 + p2_4) - p2_3 / (1 + p2_3) - θ * q2_3_4 + θ * q1_2_4 - (1 - θ) * q2_3_3 + - (1 - θ) * q1_2_3 - 1 - cx[138] = p3_4 / (1 + p3_4) - p3_3 / (1 + p3_3) - f3_4_4 + θ * q2_3_4 + (1 - θ) * q2_3_3 - cx[139] = p4_4 / (1 + p4_4) - p4_3 / (1 + p4_3) - θ * q4_5_4 + f3_4_4 - (1 - θ) * q4_5_3 - cx[140] = - p5_4 / (1 + p5_4) - p5_3 / (1 + p5_3) - θ * q5_6_4 - f5_7_4 + θ * q4_5_4 - (1 - θ) * q5_6_3 + - (1 - θ) * q4_5_3 - cx[141] = p6_4 / (1 + p6_4) - p6_3 / (1 + p6_3) + θ * q5_6_4 + (1 - θ) * q5_6_3 - 1 - cx[142] = p7_4 / (1 + p7_4) - p7_3 / (1 + p7_3) - θ * q7_8_4 + f5_7_4 - (1 - θ) * q7_8_3 - cx[143] = - p8_4 / (1 + p8_4) - p8_3 / (1 + p8_3) - θ * q8_9_4 - θ * q8_10_4 - θ * q8_11_4 + θ * q7_8_4 - - (1 - θ) * q8_9_3 - (1 - θ) * q8_10_3 - (1 - θ) * q8_11_3 + (1 - θ) * q7_8_3 - cx[144] = p9_4 / (1 + p9_4) - p9_3 / (1 + p9_3) + θ * q8_9_4 + (1 - θ) * q8_9_3 - cx[145] = p10_4 / (1 + p10_4) - p10_3 / (1 + p10_3) + θ * q8_10_4 + (1 - θ) * q8_10_3 - 1 - cx[146] = - p11_4 / (1 + p11_4) - p11_3 / (1 + p11_3) - θ * q11_12_4 + θ * q8_11_4 - (1 - θ) * q11_12_3 + - (1 - θ) * q8_11_3 - cx[147] = - p12_4 / (1 + p12_4) - p12_3 / (1 + p12_3) - θ * q12_13_4 + θ * q11_12_4 - (1 - θ) * q12_13_3 + - (1 - θ) * q11_12_3 - cx[148] = - p13_4 / (1 + p13_4) - p13_3 / (1 + p13_3) - θ * q13_14_4 - θ * q13_15_4 + θ * q12_13_4 - - (1 - θ) * q13_14_3 - (1 - θ) * q13_15_3 + (1 - θ) * q12_13_3 - 1 - cx[149] = p14_4 / (1 + p14_4) - p14_3 / (1 + p14_3) + θ * q13_14_4 + (1 - θ) * q13_14_3 - cx[150] = - p15_4 / (1 + p15_4) - p15_3 / (1 + p15_3) - θ * q15_16_4 + θ * q13_15_4 - (1 - θ) * q15_16_3 + - (1 - θ) * q13_15_3 - 1 - cx[151] = - p16_4 / (1 + p16_4) - p16_3 / (1 + p16_3) + θ * q15_16_4 + (1 - θ) * q15_16_3 - out16_4 - cx[152] = - p17_4 / (1 + p17_4) - p17_3 / (1 + p17_3) - θ * q17_18_4 + θ * q1_17_4 - (1 - θ) * q17_18_3 + - (1 - θ) * q1_17_3 - 1 - cx[153] = - p18_4 / (1 + p18_4) - p18_3 / (1 + p18_3) - θ * q18_19_4 + θ * q17_18_4 - (1 - θ) * q18_19_3 + - (1 - θ) * q17_18_3 - 1 - cx[154] = - p19_4 / (1 + p19_4) - p19_3 / (1 + p19_3) - f19_20_4 + θ * q18_19_4 + (1 - θ) * q18_19_3 - cx[155] = - p20_4 / (1 + p20_4) - p20_3 / (1 + p20_3) - θ * q20_21_4 + f19_20_4 - (1 - θ) * q20_21_3 - cx[156] = - p21_4 / (1 + p21_4) - p21_3 / (1 + p21_3) - θ * q21_22_4 + θ * q20_21_4 - (1 - θ) * q21_22_3 + - (1 - θ) * q20_21_3 - 1 - cx[157] = - p22_4 / (1 + p22_4) - p22_3 / (1 + p22_3) - θ * q22_23_4 + θ * q21_22_4 - (1 - θ) * q22_23_3 + - (1 - θ) * q21_22_3 - 1 - cx[158] = - p23_4 / (1 + p23_4) - p23_3 / (1 + p23_3) + θ * q22_23_4 + (1 - θ) * q22_23_3 - out23_4 - cx[159] = p3_4 * r3_4_4 - p4_4 - cx[160] = p5_4 * r5_7_4 - p7_4 - cx[161] = p19_4 * r19_20_4 - p20_4 - cx[162] = p1_4 * p1_4 - p2_4 * p2_4 - h * (1 + γ * (p1_4 + p2_4)) * (abs(q1_2_4)^α) - cx[163] = p1_4 * p1_4 - p17_4 * p17_4 - h * (1 + γ * (p1_4 + p17_4)) * (abs(q1_17_4)^α) - cx[164] = p2_4 * p2_4 - p3_4 * p3_4 - h * (1 + γ * (p2_4 + p3_4)) * (abs(q2_3_4)^α) - cx[165] = p4_4 * p4_4 - p5_4 * p5_4 - h * (1 + γ * (p4_4 + p5_4)) * (abs(q4_5_4)^α) - cx[166] = p5_4 * p5_4 - p6_4 * p6_4 - h * (1 + γ * (p5_4 + p6_4)) * (abs(q5_6_4)^α) - cx[167] = p7_4 * p7_4 - p8_4 * p8_4 - h * (1 + γ * (p7_4 + p8_4)) * (abs(q7_8_4)^α) - cx[168] = p8_4 * p8_4 - p9_4 * p9_4 - h * (1 + γ * (p8_4 + p9_4)) * (abs(q8_9_4)^α) - cx[169] = p8_4 * p8_4 - p10_4 * p10_4 - h * (1 + γ * (p8_4 + p10_4)) * (abs(q8_10_4)^α) - cx[170] = p8_4 * p8_4 - p11_4 * p11_4 - h * (1 + γ * (p8_4 + p11_4)) * (abs(q8_11_4)^α) - cx[171] = p11_4 * p11_4 - p12_4 * p12_4 - h * (1 + γ * (p11_4 + p12_4)) * (abs(q11_12_4)^α) - cx[172] = p12_4 * p12_4 - p13_4 * p13_4 - h * (1 + γ * (p12_4 + p13_4)) * (abs(q12_13_4)^α) - cx[173] = p13_4 * p13_4 - p14_4 * p14_4 - h * (1 + γ * (p13_4 + p14_4)) * (abs(q13_14_4)^α) - cx[174] = p13_4 * p13_4 - p15_4 * p15_4 - h * (1 + γ * (p13_4 + p15_4)) * (abs(q13_15_4)^α) - cx[175] = p15_4 * p15_4 - p16_4 * p16_4 - h * (1 + γ * (p15_4 + p16_4)) * (abs(q15_16_4)^α) - cx[176] = p17_4 * p17_4 - p18_4 * p18_4 - h * (1 + γ * (p17_4 + p18_4)) * (abs(q17_18_4)^α) - cx[177] = p18_4 * p18_4 - p19_4 * p19_4 - h * (1 + γ * (p18_4 + p19_4)) * (abs(q18_19_4)^α) - cx[178] = p20_4 * p20_4 - p21_4 * p21_4 - h * (1 + γ * (p20_4 + p21_4)) * (abs(q20_21_4)^α) - cx[179] = p21_4 * p21_4 - p22_4 * p22_4 - h * (1 + γ * (p21_4 + p22_4)) * (abs(q21_22_4)^α) - cx[180] = p22_4 * p22_4 - p23_4 * p23_4 - h * (1 + γ * (p22_4 + p23_4)) * (abs(q22_23_4)^α) - - # time step 5 - - cx[181] = - p1_5 / (1 + p1_5) - p1_4 / (1 + p1_4) - θ * q1_17_5 - θ * q1_2_5 + in1_5 - (1 - θ) * q1_17_4 - - (1 - θ) * q1_2_4 - cx[182] = - p2_5 / (1 + p2_5) - p2_4 / (1 + p2_4) - θ * q2_3_5 + θ * q1_2_5 - (1 - θ) * q2_3_4 + - (1 - θ) * q1_2_4 - 1 - cx[183] = p3_5 / (1 + p3_5) - p3_4 / (1 + p3_4) - f3_4_5 + θ * q2_3_5 + (1 - θ) * q2_3_4 - cx[184] = p4_5 / (1 + p4_5) - p4_4 / (1 + p4_4) - θ * q4_5_5 + f3_4_5 - (1 - θ) * q4_5_4 - cx[185] = - p5_5 / (1 + p5_5) - p5_4 / (1 + p5_4) - θ * q5_6_5 - f5_7_5 + θ * q4_5_5 - (1 - θ) * q5_6_4 + - (1 - θ) * q4_5_4 - cx[186] = p6_5 / (1 + p6_5) - p6_4 / (1 + p6_4) + θ * q5_6_5 + (1 - θ) * q5_6_4 - 1 - cx[187] = p7_5 / (1 + p7_5) - p7_4 / (1 + p7_4) - θ * q7_8_5 + f5_7_5 - (1 - θ) * q7_8_4 - cx[188] = - p8_5 / (1 + p8_5) - p8_4 / (1 + p8_4) - θ * q8_9_5 - θ * q8_10_5 - θ * q8_11_5 + θ * q7_8_5 - - (1 - θ) * q8_9_4 - (1 - θ) * q8_10_4 - (1 - θ) * q8_11_4 + (1 - θ) * q7_8_4 - cx[189] = p9_5 / (1 + p9_5) - p9_4 / (1 + p9_4) + θ * q8_9_5 + (1 - θ) * q8_9_4 - cx[190] = p10_5 / (1 + p10_5) - p10_4 / (1 + p10_4) + θ * q8_10_5 + (1 - θ) * q8_10_4 - 1 - cx[191] = - p11_5 / (1 + p11_5) - p11_4 / (1 + p11_4) - θ * q11_12_5 + θ * q8_11_5 - (1 - θ) * q11_12_4 + - (1 - θ) * q8_11_4 - cx[192] = - p12_5 / (1 + p12_5) - p12_4 / (1 + p12_4) - θ * q12_13_5 + θ * q11_12_5 - (1 - θ) * q12_13_4 + - (1 - θ) * q11_12_4 - cx[193] = - p13_5 / (1 + p13_5) - p13_4 / (1 + p13_4) - θ * q13_14_5 - θ * q13_15_5 + θ * q12_13_5 - - (1 - θ) * q13_14_4 - (1 - θ) * q13_15_4 + (1 - θ) * q12_13_4 - 1 - cx[194] = p14_5 / (1 + p14_5) - p14_4 / (1 + p14_4) + θ * q13_14_5 + (1 - θ) * q13_14_4 - cx[195] = - p15_5 / (1 + p15_5) - p15_4 / (1 + p15_4) - θ * q15_16_5 + θ * q13_15_5 - (1 - θ) * q15_16_4 + - (1 - θ) * q13_15_4 - 1 - cx[196] = - p16_5 / (1 + p16_5) - p16_4 / (1 + p16_4) + θ * q15_16_5 + (1 - θ) * q15_16_4 - out16_5 - cx[197] = - p17_5 / (1 + p17_5) - p17_4 / (1 + p17_4) - θ * q17_18_5 + θ * q1_17_5 - (1 - θ) * q17_18_4 + - (1 - θ) * q1_17_4 - 1 - cx[198] = - p18_5 / (1 + p18_5) - p18_4 / (1 + p18_4) - θ * q18_19_5 + θ * q17_18_5 - (1 - θ) * q18_19_4 + - (1 - θ) * q17_18_4 - 1 - cx[199] = - p19_5 / (1 + p19_5) - p19_4 / (1 + p19_4) - f19_20_5 + θ * q18_19_5 + (1 - θ) * q18_19_4 - cx[200] = - p20_5 / (1 + p20_5) - p20_4 / (1 + p20_4) - θ * q20_21_5 + f19_20_5 - (1 - θ) * q20_21_4 - cx[201] = - p21_5 / (1 + p21_5) - p21_4 / (1 + p21_4) - θ * q21_22_5 + θ * q20_21_5 - (1 - θ) * q21_22_4 + - (1 - θ) * q20_21_4 - 1 - cx[202] = - p22_5 / (1 + p22_5) - p22_4 / (1 + p22_4) - θ * q22_23_5 + θ * q21_22_5 - (1 - θ) * q22_23_4 + - (1 - θ) * q21_22_4 - 1 - cx[203] = - p23_5 / (1 + p23_5) - p23_4 / (1 + p23_4) + θ * q22_23_5 + (1 - θ) * q22_23_4 - out23_5 - cx[204] = p3_5 * r3_4_5 - p4_5 - cx[205] = p5_5 * r5_7_5 - p7_5 - cx[206] = p19_5 * r19_20_5 - p20_5 - cx[207] = p1_5 * p1_5 - p2_5 * p2_5 - h * (1 + γ * (p1_5 + p2_5)) * (abs(q1_2_5)^α) - cx[208] = p1_5 * p1_5 - p17_5 * p17_5 - h * (1 + γ * (p1_5 + p17_5)) * (abs(q1_17_5)^α) - cx[209] = p2_5 * p2_5 - p3_5 * p3_5 - h * (1 + γ * (p2_5 + p3_5)) * (abs(q2_3_5)^α) - cx[210] = p4_5 * p4_5 - p5_5 * p5_5 - h * (1 + γ * (p4_5 + p5_5)) * (abs(q4_5_5)^α) - cx[211] = p5_5 * p5_5 - p6_5 * p6_5 - h * (1 + γ * (p5_5 + p6_5)) * (abs(q5_6_5)^α) - cx[212] = p7_5 * p7_5 - p8_5 * p8_5 - h * (1 + γ * (p7_5 + p8_5)) * (abs(q7_8_5)^α) - cx[213] = p8_5 * p8_5 - p9_5 * p9_5 - h * (1 + γ * (p8_5 + p9_5)) * (abs(q8_9_5)^α) - cx[214] = p8_5 * p8_5 - p10_5 * p10_5 - h * (1 + γ * (p8_5 + p10_5)) * (abs(q8_10_5)^α) - cx[215] = p8_5 * p8_5 - p11_5 * p11_5 - h * (1 + γ * (p8_5 + p11_5)) * (abs(q8_11_5)^α) - cx[216] = p11_5 * p11_5 - p12_5 * p12_5 - h * (1 + γ * (p11_5 + p12_5)) * (abs(q11_12_5)^α) - cx[217] = p12_5 * p12_5 - p13_5 * p13_5 - h * (1 + γ * (p12_5 + p13_5)) * (abs(q12_13_5)^α) - cx[218] = p13_5 * p13_5 - p14_5 * p14_5 - h * (1 + γ * (p13_5 + p14_5)) * (abs(q13_14_5)^α) - cx[219] = p13_5 * p13_5 - p15_5 * p15_5 - h * (1 + γ * (p13_5 + p15_5)) * (abs(q13_15_5)^α) - cx[220] = p15_5 * p15_5 - p16_5 * p16_5 - h * (1 + γ * (p15_5 + p16_5)) * (abs(q15_16_5)^α) - cx[221] = p17_5 * p17_5 - p18_5 * p18_5 - h * (1 + γ * (p17_5 + p18_5)) * (abs(q17_18_5)^α) - cx[222] = p18_5 * p18_5 - p19_5 * p19_5 - h * (1 + γ * (p18_5 + p19_5)) * (abs(q18_19_5)^α) - cx[223] = p20_5 * p20_5 - p21_5 * p21_5 - h * (1 + γ * (p20_5 + p21_5)) * (abs(q20_21_5)^α) - cx[224] = p21_5 * p21_5 - p22_5 * p22_5 - h * (1 + γ * (p21_5 + p22_5)) * (abs(q21_22_5)^α) - cx[225] = p22_5 * p22_5 - p23_5 * p23_5 - h * (1 + γ * (p22_5 + p23_5)) * (abs(q22_23_5)^α) - - # time step 6 - - cx[226] = - p1_6 / (1 + p1_6) - p1_5 / (1 + p1_5) - θ * q1_17_6 - θ * q1_2_6 + in1_6 - (1 - θ) * q1_17_5 - - (1 - θ) * q1_2_5 - cx[227] = - p2_6 / (1 + p2_6) - p2_5 / (1 + p2_5) - θ * q2_3_6 + θ * q1_2_6 - (1 - θ) * q2_3_5 + - (1 - θ) * q1_2_5 - 1 - cx[228] = p3_6 / (1 + p3_6) - p3_5 / (1 + p3_5) - f3_4_6 + θ * q2_3_6 + (1 - θ) * q2_3_5 - cx[229] = p4_6 / (1 + p4_6) - p4_5 / (1 + p4_5) - θ * q4_5_6 + f3_4_6 - (1 - θ) * q4_5_5 - cx[230] = - p5_6 / (1 + p5_6) - p5_5 / (1 + p5_5) - θ * q5_6_6 - f5_7_6 + θ * q4_5_6 - (1 - θ) * q5_6_5 + - (1 - θ) * q4_5_5 - cx[231] = p6_6 / (1 + p6_6) - p6_5 / (1 + p6_5) + θ * q5_6_6 + (1 - θ) * q5_6_5 - 1 - cx[232] = p7_6 / (1 + p7_6) - p7_5 / (1 + p7_5) - θ * q7_8_6 + f5_7_6 - (1 - θ) * q7_8_5 - cx[233] = - p8_6 / (1 + p8_6) - p8_5 / (1 + p8_5) - θ * q8_9_6 - θ * q8_10_6 - θ * q8_11_6 + θ * q7_8_6 - - (1 - θ) * q8_9_5 - (1 - θ) * q8_10_5 - (1 - θ) * q8_11_5 + (1 - θ) * q7_8_5 - cx[234] = p9_6 / (1 + p9_6) - p9_5 / (1 + p9_5) + θ * q8_9_6 + (1 - θ) * q8_9_5 - cx[235] = p10_6 / (1 + p10_6) - p10_5 / (1 + p10_5) + θ * q8_10_6 + (1 - θ) * q8_10_5 - 1 - cx[236] = - p11_6 / (1 + p11_6) - p11_5 / (1 + p11_5) - θ * q11_12_6 + θ * q8_11_6 - (1 - θ) * q11_12_5 + - (1 - θ) * q8_11_5 - cx[237] = - p12_6 / (1 + p12_6) - p12_5 / (1 + p12_5) - θ * q12_13_6 + θ * q11_12_6 - (1 - θ) * q12_13_5 + - (1 - θ) * q11_12_5 - cx[238] = - p13_6 / (1 + p13_6) - p13_5 / (1 + p13_5) - θ * q13_14_6 - θ * q13_15_6 + θ * q12_13_6 - - (1 - θ) * q13_14_5 - (1 - θ) * q13_15_5 + (1 - θ) * q12_13_5 - 1 - cx[239] = p14_6 / (1 + p14_6) - p14_5 / (1 + p14_5) + θ * q13_14_6 + (1 - θ) * q13_14_5 - cx[240] = - p15_6 / (1 + p15_6) - p15_5 / (1 + p15_5) - θ * q15_16_6 + θ * q13_15_6 - (1 - θ) * q15_16_5 + - (1 - θ) * q13_15_5 - 1 - cx[241] = - p16_6 / (1 + p16_6) - p16_5 / (1 + p16_5) + θ * q15_16_6 + (1 - θ) * q15_16_5 - out16_6 - cx[242] = - p17_6 / (1 + p17_6) - p17_5 / (1 + p17_5) - θ * q17_18_6 + θ * q1_17_6 - (1 - θ) * q17_18_5 + - (1 - θ) * q1_17_5 - 1 - cx[243] = - p18_6 / (1 + p18_6) - p18_5 / (1 + p18_5) - θ * q18_19_6 + θ * q17_18_6 - (1 - θ) * q18_19_5 + - (1 - θ) * q17_18_5 - 1 - cx[244] = - p19_6 / (1 + p19_6) - p19_5 / (1 + p19_5) - f19_20_6 + θ * q18_19_6 + (1 - θ) * q18_19_5 - cx[245] = - p20_6 / (1 + p20_6) - p20_5 / (1 + p20_5) - θ * q20_21_6 + f19_20_6 - (1 - θ) * q20_21_5 - cx[246] = - p21_6 / (1 + p21_6) - p21_5 / (1 + p21_5) - θ * q21_22_6 + θ * q20_21_6 - (1 - θ) * q21_22_5 + - (1 - θ) * q20_21_5 - 1 - cx[247] = - p22_6 / (1 + p22_6) - p22_5 / (1 + p22_5) - θ * q22_23_6 + θ * q21_22_6 - (1 - θ) * q22_23_5 + - (1 - θ) * q21_22_5 - 1 - cx[248] = - p23_6 / (1 + p23_6) - p23_5 / (1 + p23_5) + θ * q22_23_6 + (1 - θ) * q22_23_5 - out23_6 - cx[249] = p3_6 * r3_4_6 - p4_6 - cx[250] = p5_6 * r5_7_6 - p7_6 - cx[251] = p19_6 * r19_20_6 - p20_6 - cx[252] = p1_6 * p1_6 - p2_6 * p2_6 - h * (1 + γ * (p1_6 + p2_6)) * (abs(q1_2_6)^α) - cx[253] = p1_6 * p1_6 - p17_6 * p17_6 - h * (1 + γ * (p1_6 + p17_6)) * (abs(q1_17_6)^α) - cx[254] = p2_6 * p2_6 - p3_6 * p3_6 - h * (1 + γ * (p2_6 + p3_6)) * (abs(q2_3_6)^α) - cx[255] = p4_6 * p4_6 - p5_6 * p5_6 - h * (1 + γ * (p4_6 + p5_6)) * (abs(q4_5_6)^α) - cx[256] = p5_6 * p5_6 - p6_6 * p6_6 - h * (1 + γ * (p5_6 + p6_6)) * (abs(q5_6_6)^α) - cx[257] = p7_6 * p7_6 - p8_6 * p8_6 - h * (1 + γ * (p7_6 + p8_6)) * (abs(q7_8_6)^α) - cx[258] = p8_6 * p8_6 - p9_6 * p9_6 - h * (1 + γ * (p8_6 + p9_6)) * (abs(q8_9_6)^α) - cx[259] = p8_6 * p8_6 - p10_6 * p10_6 - h * (1 + γ * (p8_6 + p10_6)) * (abs(q8_10_6)^α) - cx[260] = p8_6 * p8_6 - p11_6 * p11_6 - h * (1 + γ * (p8_6 + p11_6)) * (abs(q8_11_6)^α) - cx[261] = p11_6 * p11_6 - p12_6 * p12_6 - h * (1 + γ * (p11_6 + p12_6)) * (abs(q11_12_6)^α) - cx[262] = p12_6 * p12_6 - p13_6 * p13_6 - h * (1 + γ * (p12_6 + p13_6)) * (abs(q12_13_6)^α) - cx[263] = p13_6 * p13_6 - p14_6 * p14_6 - h * (1 + γ * (p13_6 + p14_6)) * (abs(q13_14_6)^α) - cx[264] = p13_6 * p13_6 - p15_6 * p15_6 - h * (1 + γ * (p13_6 + p15_6)) * (abs(q13_15_6)^α) - cx[265] = p15_6 * p15_6 - p16_6 * p16_6 - h * (1 + γ * (p15_6 + p16_6)) * (abs(q15_16_6)^α) - cx[266] = p17_6 * p17_6 - p18_6 * p18_6 - h * (1 + γ * (p17_6 + p18_6)) * (abs(q17_18_6)^α) - cx[267] = p18_6 * p18_6 - p19_6 * p19_6 - h * (1 + γ * (p18_6 + p19_6)) * (abs(q18_19_6)^α) - cx[268] = p20_6 * p20_6 - p21_6 * p21_6 - h * (1 + γ * (p20_6 + p21_6)) * (abs(q20_21_6)^α) - cx[269] = p21_6 * p21_6 - p22_6 * p22_6 - h * (1 + γ * (p21_6 + p22_6)) * (abs(q21_22_6)^α) - cx[270] = p22_6 * p22_6 - p23_6 * p23_6 - h * (1 + γ * (p22_6 + p23_6)) * (abs(q22_23_6)^α) - - # time step 7 - - cx[271] = - p1_7 / (1 + p1_7) - p1_6 / (1 + p1_6) - θ * q1_17_7 - θ * q1_2_7 + in1_7 - (1 - θ) * q1_17_6 - - (1 - θ) * q1_2_6 - cx[272] = - p2_7 / (1 + p2_7) - p2_6 / (1 + p2_6) - θ * q2_3_7 + θ * q1_2_7 - (1 - θ) * q2_3_6 + - (1 - θ) * q1_2_6 - 1 - cx[273] = p3_7 / (1 + p3_7) - p3_6 / (1 + p3_6) - f3_4_7 + θ * q2_3_7 + (1 - θ) * q2_3_6 - cx[274] = p4_7 / (1 + p4_7) - p4_6 / (1 + p4_6) - θ * q4_5_7 + f3_4_7 - (1 - θ) * q4_5_6 - cx[275] = - p5_7 / (1 + p5_7) - p5_6 / (1 + p5_6) - θ * q5_6_7 - f5_7_7 + θ * q4_5_7 - (1 - θ) * q5_6_6 + - (1 - θ) * q4_5_6 - cx[276] = p6_7 / (1 + p6_7) - p6_6 / (1 + p6_6) + θ * q5_6_7 + (1 - θ) * q5_6_6 - 1 - cx[277] = p7_7 / (1 + p7_7) - p7_6 / (1 + p7_6) - θ * q7_8_7 + f5_7_7 - (1 - θ) * q7_8_6 - cx[278] = - p8_7 / (1 + p8_7) - p8_6 / (1 + p8_6) - θ * q8_9_7 - θ * q8_10_7 - θ * q8_11_7 + θ * q7_8_7 - - (1 - θ) * q8_9_6 - (1 - θ) * q8_10_6 - (1 - θ) * q8_11_6 + (1 - θ) * q7_8_6 - cx[279] = p9_7 / (1 + p9_7) - p9_6 / (1 + p9_6) + θ * q8_9_7 + (1 - θ) * q8_9_6 - cx[280] = p10_7 / (1 + p10_7) - p10_6 / (1 + p10_6) + θ * q8_10_7 + (1 - θ) * q8_10_6 - 1 - cx[281] = - p11_7 / (1 + p11_7) - p11_6 / (1 + p11_6) - θ * q11_12_7 + θ * q8_11_7 - (1 - θ) * q11_12_6 + - (1 - θ) * q8_11_6 - cx[282] = - p12_7 / (1 + p12_7) - p12_6 / (1 + p12_6) - θ * q12_13_7 + θ * q11_12_7 - (1 - θ) * q12_13_6 + - (1 - θ) * q11_12_6 - cx[283] = - p13_7 / (1 + p13_7) - p13_6 / (1 + p13_6) - θ * q13_14_7 - θ * q13_15_7 + θ * q12_13_7 - - (1 - θ) * q13_14_6 - (1 - θ) * q13_15_6 + (1 - θ) * q12_13_6 - 1 - cx[284] = p14_7 / (1 + p14_7) - p14_6 / (1 + p14_6) + θ * q13_14_7 + (1 - θ) * q13_14_6 - cx[285] = - p15_7 / (1 + p15_7) - p15_6 / (1 + p15_6) - θ * q15_16_7 + θ * q13_15_7 - (1 - θ) * q15_16_6 + - (1 - θ) * q13_15_6 - 1 - cx[286] = - p16_7 / (1 + p16_7) - p16_6 / (1 + p16_6) + θ * q15_16_7 + (1 - θ) * q15_16_6 - out16_7 - cx[287] = - p17_7 / (1 + p17_7) - p17_6 / (1 + p17_6) - θ * q17_18_7 + θ * q1_17_7 - (1 - θ) * q17_18_6 + - (1 - θ) * q1_17_6 - 1 - cx[288] = - p18_7 / (1 + p18_7) - p18_6 / (1 + p18_6) - θ * q18_19_7 + θ * q17_18_7 - (1 - θ) * q18_19_6 + - (1 - θ) * q17_18_6 - 1 - cx[289] = - p19_7 / (1 + p19_7) - p19_6 / (1 + p19_6) - f19_20_7 + θ * q18_19_7 + (1 - θ) * q18_19_6 - cx[290] = - p20_7 / (1 + p20_7) - p20_6 / (1 + p20_6) - θ * q20_21_7 + f19_20_7 - (1 - θ) * q20_21_6 - cx[291] = - p21_7 / (1 + p21_7) - p21_6 / (1 + p21_6) - θ * q21_22_7 + θ * q20_21_7 - (1 - θ) * q21_22_6 + - (1 - θ) * q20_21_6 - 1 - cx[292] = - p22_7 / (1 + p22_7) - p22_6 / (1 + p22_6) - θ * q22_23_7 + θ * q21_22_7 - (1 - θ) * q22_23_6 + - (1 - θ) * q21_22_6 - 1 - cx[293] = - p23_7 / (1 + p23_7) - p23_6 / (1 + p23_6) + θ * q22_23_7 + (1 - θ) * q22_23_6 - out23_7 - cx[294] = p3_7 * r3_4_7 - p4_7 - cx[295] = p5_7 * r5_7_7 - p7_7 - cx[296] = p19_7 * r19_20_7 - p20_7 - cx[297] = p1_7 * p1_7 - p2_7 * p2_7 - h * (1 + γ * (p1_7 + p2_7)) * (abs(q1_2_7)^α) - cx[298] = p1_7 * p1_7 - p17_7 * p17_7 - h * (1 + γ * (p1_7 + p17_7)) * (abs(q1_17_7)^α) - cx[299] = p2_7 * p2_7 - p3_7 * p3_7 - h * (1 + γ * (p2_7 + p3_7)) * (abs(q2_3_7)^α) - cx[300] = p4_7 * p4_7 - p5_7 * p5_7 - h * (1 + γ * (p4_7 + p5_7)) * (abs(q4_5_7)^α) - cx[301] = p5_7 * p5_7 - p6_7 * p6_7 - h * (1 + γ * (p5_7 + p6_7)) * (abs(q5_6_7)^α) - cx[302] = p7_7 * p7_7 - p8_7 * p8_7 - h * (1 + γ * (p7_7 + p8_7)) * (abs(q7_8_7)^α) - cx[303] = p8_7 * p8_7 - p9_7 * p9_7 - h * (1 + γ * (p8_7 + p9_7)) * (abs(q8_9_7)^α) - cx[304] = p8_7 * p8_7 - p10_7 * p10_7 - h * (1 + γ * (p8_7 + p10_7)) * (abs(q8_10_7)^α) - cx[305] = p8_7 * p8_7 - p11_7 * p11_7 - h * (1 + γ * (p8_7 + p11_7)) * (abs(q8_11_7)^α) - cx[306] = p11_7 * p11_7 - p12_7 * p12_7 - h * (1 + γ * (p11_7 + p12_7)) * (abs(q11_12_7)^α) - cx[307] = p12_7 * p12_7 - p13_7 * p13_7 - h * (1 + γ * (p12_7 + p13_7)) * (abs(q12_13_7)^α) - cx[308] = p13_7 * p13_7 - p14_7 * p14_7 - h * (1 + γ * (p13_7 + p14_7)) * (abs(q13_14_7)^α) - cx[309] = p13_7 * p13_7 - p15_7 * p15_7 - h * (1 + γ * (p13_7 + p15_7)) * (abs(q13_15_7)^α) - cx[310] = p15_7 * p15_7 - p16_7 * p16_7 - h * (1 + γ * (p15_7 + p16_7)) * (abs(q15_16_7)^α) - cx[311] = p17_7 * p17_7 - p18_7 * p18_7 - h * (1 + γ * (p17_7 + p18_7)) * (abs(q17_18_7)^α) - cx[312] = p18_7 * p18_7 - p19_7 * p19_7 - h * (1 + γ * (p18_7 + p19_7)) * (abs(q18_19_7)^α) - cx[313] = p20_7 * p20_7 - p21_7 * p21_7 - h * (1 + γ * (p20_7 + p21_7)) * (abs(q20_21_7)^α) - cx[314] = p21_7 * p21_7 - p22_7 * p22_7 - h * (1 + γ * (p21_7 + p22_7)) * (abs(q21_22_7)^α) - cx[315] = p22_7 * p22_7 - p23_7 * p23_7 - h * (1 + γ * (p22_7 + p23_7)) * (abs(q22_23_7)^α) - - # time step 8 - - cx[316] = - p1_8 / (1 + p1_8) - p1_7 / (1 + p1_7) - θ * q1_17_8 - θ * q1_2_8 + in1_8 - (1 - θ) * q1_17_7 - - (1 - θ) * q1_2_7 - cx[317] = - p2_8 / (1 + p2_8) - p2_7 / (1 + p2_7) - θ * q2_3_8 + θ * q1_2_8 - (1 - θ) * q2_3_7 + - (1 - θ) * q1_2_7 - 1 - cx[318] = p3_8 / (1 + p3_8) - p3_7 / (1 + p3_7) - f3_4_8 + θ * q2_3_8 + (1 - θ) * q2_3_7 - cx[319] = p4_8 / (1 + p4_8) - p4_7 / (1 + p4_7) - θ * q4_5_8 + f3_4_8 - (1 - θ) * q4_5_7 - cx[320] = - p5_8 / (1 + p5_8) - p5_7 / (1 + p5_7) - θ * q5_6_8 - f5_7_8 + θ * q4_5_8 - (1 - θ) * q5_6_7 + - (1 - θ) * q4_5_7 - cx[321] = p6_8 / (1 + p6_8) - p6_7 / (1 + p6_7) + θ * q5_6_8 + (1 - θ) * q5_6_7 - 1 - cx[322] = p7_8 / (1 + p7_8) - p7_7 / (1 + p7_7) - θ * q7_8_8 + f5_7_8 - (1 - θ) * q7_8_7 - cx[323] = - p8_8 / (1 + p8_8) - p8_7 / (1 + p8_7) - θ * q8_9_8 - θ * q8_10_8 - θ * q8_11_8 + θ * q7_8_8 - - (1 - θ) * q8_9_7 - (1 - θ) * q8_10_7 - (1 - θ) * q8_11_7 + (1 - θ) * q7_8_7 - cx[324] = p9_8 / (1 + p9_8) - p9_7 / (1 + p9_7) + θ * q8_9_8 + (1 - θ) * q8_9_7 - cx[325] = p10_8 / (1 + p10_8) - p10_7 / (1 + p10_7) + θ * q8_10_8 + (1 - θ) * q8_10_7 - 1 - cx[326] = - p11_8 / (1 + p11_8) - p11_7 / (1 + p11_7) - θ * q11_12_8 + θ * q8_11_8 - (1 - θ) * q11_12_7 + - (1 - θ) * q8_11_7 - cx[327] = - p12_8 / (1 + p12_8) - p12_7 / (1 + p12_7) - θ * q12_13_8 + θ * q11_12_8 - (1 - θ) * q12_13_7 + - (1 - θ) * q11_12_7 - cx[328] = - p13_8 / (1 + p13_8) - p13_7 / (1 + p13_7) - θ * q13_14_8 - θ * q13_15_8 + θ * q12_13_8 - - (1 - θ) * q13_14_7 - (1 - θ) * q13_15_7 + (1 - θ) * q12_13_7 - 1 - cx[329] = p14_8 / (1 + p14_8) - p14_7 / (1 + p14_7) + θ * q13_14_8 + (1 - θ) * q13_14_7 - cx[330] = - p15_8 / (1 + p15_8) - p15_7 / (1 + p15_7) - θ * q15_16_8 + θ * q13_15_8 - (1 - θ) * q15_16_7 + - (1 - θ) * q13_15_7 - 1 - cx[331] = - p16_8 / (1 + p16_8) - p16_7 / (1 + p16_7) + θ * q15_16_8 + (1 - θ) * q15_16_7 - out16_8 - cx[332] = - p17_8 / (1 + p17_8) - p17_7 / (1 + p17_7) - θ * q17_18_8 + θ * q1_17_8 - (1 - θ) * q17_18_7 + - (1 - θ) * q1_17_7 - 1 - cx[333] = - p18_8 / (1 + p18_8) - p18_7 / (1 + p18_7) - θ * q18_19_8 + θ * q17_18_8 - (1 - θ) * q18_19_7 + - (1 - θ) * q17_18_7 - 1 - cx[334] = - p19_8 / (1 + p19_8) - p19_7 / (1 + p19_7) - f19_20_8 + θ * q18_19_8 + (1 - θ) * q18_19_7 - cx[335] = - p20_8 / (1 + p20_8) - p20_7 / (1 + p20_7) - θ * q20_21_8 + f19_20_8 - (1 - θ) * q20_21_7 - cx[336] = - p21_8 / (1 + p21_8) - p21_7 / (1 + p21_7) - θ * q21_22_8 + θ * q20_21_8 - (1 - θ) * q21_22_7 + - (1 - θ) * q20_21_7 - 1 - cx[337] = - p22_8 / (1 + p22_8) - p22_7 / (1 + p22_7) - θ * q22_23_8 + θ * q21_22_8 - (1 - θ) * q22_23_7 + - (1 - θ) * q21_22_7 - 1 - cx[338] = - p23_8 / (1 + p23_8) - p23_7 / (1 + p23_7) + θ * q22_23_8 + (1 - θ) * q22_23_7 - out23_8 - cx[339] = p3_8 * r3_4_8 - p4_8 - cx[340] = p5_8 * r5_7_8 - p7_8 - cx[341] = p19_8 * r19_20_8 - p20_8 - cx[342] = p1_8 * p1_8 - p2_8 * p2_8 - h * (1 + γ * (p1_8 + p2_8)) * (abs(q1_2_8)^α) - cx[343] = p1_8 * p1_8 - p17_8 * p17_8 - h * (1 + γ * (p1_8 + p17_8)) * (abs(q1_17_8)^α) - cx[344] = p2_8 * p2_8 - p3_8 * p3_8 - h * (1 + γ * (p2_8 + p3_8)) * (abs(q2_3_8)^α) - cx[345] = p4_8 * p4_8 - p5_8 * p5_8 - h * (1 + γ * (p4_8 + p5_8)) * (abs(q4_5_8)^α) - cx[346] = p5_8 * p5_8 - p6_8 * p6_8 - h * (1 + γ * (p5_8 + p6_8)) * (abs(q5_6_8)^α) - cx[347] = p7_8 * p7_8 - p8_8 * p8_8 - h * (1 + γ * (p7_8 + p8_8)) * (abs(q7_8_8)^α) - cx[348] = p8_8 * p8_8 - p9_8 * p9_8 - h * (1 + γ * (p8_8 + p9_8)) * (abs(q8_9_8)^α) - cx[349] = p8_8 * p8_8 - p10_8 * p10_8 - h * (1 + γ * (p8_8 + p10_8)) * (abs(q8_10_8)^α) - cx[350] = p8_8 * p8_8 - p11_8 * p11_8 - h * (1 + γ * (p8_8 + p11_8)) * (abs(q8_11_8)^α) - cx[351] = p11_8 * p11_8 - p12_8 * p12_8 - h * (1 + γ * (p11_8 + p12_8)) * (abs(q11_12_8)^α) - cx[352] = p12_8 * p12_8 - p13_8 * p13_8 - h * (1 + γ * (p12_8 + p13_8)) * (abs(q12_13_8)^α) - cx[353] = p13_8 * p13_8 - p14_8 * p14_8 - h * (1 + γ * (p13_8 + p14_8)) * (abs(q13_14_8)^α) - cx[354] = p13_8 * p13_8 - p15_8 * p15_8 - h * (1 + γ * (p13_8 + p15_8)) * (abs(q13_15_8)^α) - cx[355] = p15_8 * p15_8 - p16_8 * p16_8 - h * (1 + γ * (p15_8 + p16_8)) * (abs(q15_16_8)^α) - cx[356] = p17_8 * p17_8 - p18_8 * p18_8 - h * (1 + γ * (p17_8 + p18_8)) * (abs(q17_18_8)^α) - cx[357] = p18_8 * p18_8 - p19_8 * p19_8 - h * (1 + γ * (p18_8 + p19_8)) * (abs(q18_19_8)^α) - cx[358] = p20_8 * p20_8 - p21_8 * p21_8 - h * (1 + γ * (p20_8 + p21_8)) * (abs(q20_21_8)^α) - cx[359] = p21_8 * p21_8 - p22_8 * p22_8 - h * (1 + γ * (p21_8 + p22_8)) * (abs(q21_22_8)^α) - cx[360] = p22_8 * p22_8 - p23_8 * p23_8 - h * (1 + γ * (p22_8 + p23_8)) * (abs(q22_23_8)^α) + p = (p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8) + q = (q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8) + r = (r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8) + in_ = (in_1, in_2, in_3, in_4, in_5, in_6, in_7, in_8) + out_ = (out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8) + + for t = 1:8 + pt, qt, rt, int, outt = p[t], q[t], r[t], in_[t], out_[t] + p_prev = t == 1 ? p_0 : p[t - 1] + q_prev = t == 1 ? q_0 : q[t - 1] + + mt = 1 + (t - 1) * 45 + + # 23 constraints + for i = 1:23 + cx[mt + i] = pt[i] / (1 + pt[i]) - p_prev[i] / (1 + p_prev[i]) - 1 + end + for (k, (i, j)) in enumerate(q_ind) + c[mt + i] -= (θ * qt[k] + (1 - θ) * q_prev[k]) + c[mt + j] += (θ * qt[k] + (1 - θ) * q_prev[k]) + end + for (k, i) in enumerate(in_ind) + c[mt + i] += int[j] + end + for (k, i) in enumerate(out_ind) + c[mt + i] -= outt[k] + end + for (k, i) in enumerate(ones_ind) + c[mt + i] -= 1 + end + + # 3 constraints + for (k, (i, j)) in enumerate(fr_ind) + cx[mt + 24 + k] = pt[i] * rt[k] - pt[j] + end + + # 19 constraints + for (k, (i, j)) in enumerate(q_ind) + cx[mt + 28 + k] = pt[i]^2 - pt[j]^2 - h * (1 + γ * (pt[i] + pt[j])) * (abs(qt[k])^α) + end + end return cx end - lvar = T[ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 1.0e-16, - 0.0, - 0.0, - 0.0, - 1.0, - 1.0, - 1.0, - 0.0, - 0.0, - 0.0, - 1.0, - 1.0, - 1.0, - 0.0, - 0.0, - 0.0, - 1.0, - 1.0, - 1.0, - 0.0, - 0.0, - 0.0, - 1.0, - 1.0, - 1.0, - 0.0, - 0.0, - 0.0, - 1.0, - 1.0, - 1.0, - 0.0, - 0.0, - 0.0, - 1.0, - 1.0, - 1.0, - 0.0, - 0.0, - 0.0, - 1.0, - 1.0, - 1.0, - 0.0, - 0.0, - 0.0, - 1.0, - 1.0, - 1.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - ] - uvar = T[ - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - 10.0, - 10.0, - 10.0, - Inf, - Inf, - Inf, - 10.0, - 10.0, - 10.0, - Inf, - Inf, - Inf, - 10.0, - 10.0, - 10.0, - Inf, - Inf, - Inf, - 10.0, - 10.0, - 10.0, - Inf, - Inf, - Inf, - 10.0, - 10.0, - 10.0, - Inf, - Inf, - Inf, - 10.0, - 10.0, - 10.0, - Inf, - Inf, - Inf, - 10.0, - 10.0, - 10.0, - Inf, - Inf, - Inf, - 10.0, - 10.0, - 10.0, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - Inf, - ] + lvar = vcat( # + zeros(T, 23 * 9), # p + fill(1e-16, 19 * 9), # q + repeat(vcat(zeros(T, 3), ones(T, 3)), 8), # f and r + ) + uvar = vcat( # + fill(typemax(T), 23 * 9), # p + fill(typemax(T), 19 * 9), # q + repeat(vcat(fill(typemax(T), 3), 10 .* ones(T, 3)), 8)fill(typemax(T), 3 * 8), + ) lcon = zeros(T, 360) ucon = zeros(T, 360)