Open
Description
When requesting info about model instances using Kaggle API, it returns a single result of the latest (current) version. I would expect that the API response will contain all versions.
For example:
Model request:
cURL request: curl https://www.kaggle.com/api/v1/models/tensorflow/ssd-mobilenet-v1/get -u *****:*****
response:
{
"id": 299,
"ref": "tensorflow/ssd-mobilenet-v1",
"title": "ssd_mobilenet_v1",
"subtitle": "Object detection model trained on the COCO dataset.",
"author": "TensorFlow",
"slug": "ssd-mobilenet-v1",
"isPrivate": false,
"description": "## Overview\n\nAn object detection model that has been released in the\n[Tensorflow detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md)\nand trained on the [COCO dataset](http://cocodataset.org).\n\nThis model is available at http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz.\n\nThe model is useful for out-of-the-box inference, but also useful for\ninitializing the models when training on novel datasets.",
"instances": [
{
"hasBaseModelInstanceInformation": false,
"id": 2478,
"slug": "fpn-640x640",
"framework": "tensorFlow2",
"fineTunable": false,
"overview": "SSD Mobilenet V1 Object detection model with FPN feature extractor, shared box\npredictor and focal loss, trained on COCO 2017 dataset with trainning images\nscaled to 640x640.",
"usage": "## Overview\n\nSSD with Mobilenet V1 FPN feature extractor, shared box predictor and focal loss\n(a mobile version of [Retinanet in Lin et al](https://arxiv.org/abs/1708.02002))\ninitialized from Imagenet classification checkpoint.\n\nTrained on [COCO 2017](https://cocodataset.org/) dataset (images scaled to\n640x640 resolution).\n\nModel created using the\n[TensorFlow Object Detection API](https://github.com/tensorflow/models/tree/master/research/object_detection)\n\nAn example detection result is shown below.\n\n\n\n#### Example use\n\n```\n# Apply image detector on a single image.\ndetector = hub.load(\u0022${URL}\u0022)\ndetector_output = detector(image_tensor)\nclass_ids = detector_output[\u0022detection_classes\u0022]\n```\n\n### Inputs\n\nA three-channel image of variable size - the model does **NOT** support\nbatching. The input tensor is a `tf.uint8` tensor with shape `[1, height, width,\n3]` with values in `[0, 255]`.\n\n### Outputs\n\nThe output dictionary contains:\n\n* `num_detections`: a `tf.int` tensor with only one value, the number of\n detections `[N]`.\n* `detection_boxes`: a `tf.float32` tensor of shape `[N, 4]` containing\n bounding box coordinates in the following order: `[ymin, xmin, ymax, xmax]`.\n* `detection_classes`: a `tf.int` tensor of shape `[N]` containing detection\n class index from the label file.\n* `detection_scores`: a `tf.float32` tensor of shape `[N]` containing\n detection scores.\n* `raw_detection_boxes`: a `tf.float32` tensor of shape `[1, M, 4]` containing\n decoded detection boxes without Non-Max suppression. `M` is the number of\n raw detections.\n* `raw_detection_scores`: a `tf.float32` tensor of shape `[1, M, 90]` and\n contains class score logits for raw detection boxes. `M` is the number of\n raw detections.\n* `detection_anchor_indices`: a `tf.float32` tensor of shape `[N]` and\n contains the anchor indices of the detections after NMS.\n* `detection_multiclass_scores`: a `tf.float32` tensor of shape `[1, N, 91]`\n and contains class score distribution (including background) for detection\n boxes in the image including background class.\n\n#### Source\n\nThe model\u0027s checkpoints are\n[publicly available](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md)\nas a part of the\n[TensorFlow Object Detection API](https://github.com/tensorflow/models/tree/master/research/object_detection).\n\n#### Metrics\n\nMetric | Value | Outputs\n------------------------- | ----- | -------\nmAP on COCO 2017 test set | 29.1 | Boxes",
"downloadUrl": "/models/tensorflow/ssd-mobilenet-v1/TensorFlow2/fpn-640x640/1/download",
"versionId": 3324,
"versionNumber": 1,
"trainingData": [
],
"url": "https://www.kaggle.com/models/tensorflow/ssd-mobilenet-v1/TensorFlow2/fpn-640x640",
"licenseName": "Apache 2.0",
"modelInstanceType": "unspecified",
"baseModelInstanceInformation": null,
"externalBaseModelUrl": ""
},
{
"hasBaseModelInstanceInformation": false,
"id": 2475,
"slug": "default",
"framework": "tfLite",
"fineTunable": false,
"overview": "TF Lite deployment of tensorflow/ssd_mobilenet_v1/1.",
"usage": "## Description\nPre-trained model optimized to work with TensorFlow Lite for Object detection.\n\nSee\n[Object detection overview](https://www.tensorflow.org/lite/examples/object_detection/overview)\npage for documentation and examples.",
"downloadUrl": "/models/tensorflow/ssd-mobilenet-v1/TfLite/default/1/download",
"versionId": 3320,
"versionNumber": 1,
"trainingData": [
],
"url": "https://www.kaggle.com/models/tensorflow/ssd-mobilenet-v1/TfLite/default",
"licenseName": "Apache 2.0",
"modelInstanceType": "unspecified",
"baseModelInstanceInformation": null,
"externalBaseModelUrl": ""
},
{
"hasBaseModelInstanceInformation": false,
"id": 2477,
"slug": "metadata",
"framework": "tfLite",
"fineTunable": false,
"overview": "TF Lite deployment of tensorflow/ssd_mobilenet_v1/2.",
"usage": "## Description\n\nPre-trained model optimized to work with TensorFlow Lite for Object detection.\nThis model contains both TFLite model metadata and the label file.\n[TFLite metadata](https://www.tensorflow.org/lite/convert/metadata) is a rich\nmodel description including both human and machine readable information.\n\nSee\n[Object detection overview](https://www.tensorflow.org/lite/examples/object_detection/overview)\npage for documentation and examples.\n\n### Release Notes\n\nv2 - updated the models with better metadata information",
"downloadUrl": "/models/tensorflow/ssd-mobilenet-v1/TfLite/metadata/2/download",
"versionId": 3323,
"versionNumber": 2,
"trainingData": [
],
"url": "https://www.kaggle.com/models/tensorflow/ssd-mobilenet-v1/TfLite/metadata",
"licenseName": "Apache 2.0",
"modelInstanceType": "unspecified",
"baseModelInstanceInformation": null,
"externalBaseModelUrl": ""
},
{
"hasBaseModelInstanceInformation": false,
"id": 2476,
"slug": "default",
"framework": "tfJs",
"fineTunable": false,
"overview": "TF.js deployment of tensorflow/ssd_mobilenet_v1/1.",
"usage": "## Origin\n\nThis model is published on NPM as `@tensorflow-models/coco-ssd`.\n\nSee the [NPM documentation](https://www.npmjs.com/package/@tensorflow-models/coco-ssd)\nfor how to load and use the model in JavaScript.",
"downloadUrl": "/models/tensorflow/ssd-mobilenet-v1/TfJs/default/1/download",
"versionId": 3321,
"versionNumber": 1,
"trainingData": [
],
"url": "https://www.kaggle.com/models/tensorflow/ssd-mobilenet-v1/TfJs/default",
"licenseName": "Apache 2.0",
"modelInstanceType": "unspecified",
"baseModelInstanceInformation": null,
"externalBaseModelUrl": ""
}
],
"tags": [
{
"nameNullable": "image",
"descriptionNullable": null,
"fullPathNullable": "data type \u003e image",
"ref": "image",
"name": "image",
"hasName": true,
"description": "",
"hasDescription": false,
"fullPath": "data type \u003e image",
"hasFullPath": true,
"competitionCount": 379,
"datasetCount": 7233,
"scriptCount": 5590,
"totalCount": 13202
},
{
"nameNullable": "object detection",
"descriptionNullable": "",
"fullPathNullable": "task \u003e object-detection",
"ref": "object detection",
"name": "object detection",
"hasName": true,
"description": "",
"hasDescription": true,
"fullPath": "task \u003e object-detection",
"hasFullPath": true,
"competitionCount": 5,
"datasetCount": 480,
"scriptCount": 231,
"totalCount": 716
}
],
"publishTime": "2020-10-06T00:00:00Z",
"provenanceSources": "https://github.com/tensorflow/tfhub.dev/tree/master/assets/docs/tensorflow",
"url": "https://www.kaggle.com/models/tensorflow/ssd-mobilenet-v1"
}
Model instance request:
cURL request:
curl https://www.kaggle.com/api/v1/models/tensorflow/ssd-mobilenet-v1/tfLite/metadata/get -u *****:****
response:
{
"hasBaseModelInstanceInformation": false,
"id": 2477,
"slug": "metadata",
"framework": "tfLite",
"fineTunable": false,
"overview": "TF Lite deployment of tensorflow/ssd_mobilenet_v1/2.",
"usage": "## Description\n\nPre-trained model optimized to work with TensorFlow Lite for Object detection.\nThis model contains both TFLite model metadata and the label file.\n[TFLite metadata](https://www.tensorflow.org/lite/convert/metadata) is a rich\nmodel description including both human and machine readable information.\n\nSee\n[Object detection overview](https://www.tensorflow.org/lite/examples/object_detection/overview)\npage for documentation and examples.\n\n### Release Notes\n\nv2 - updated the models with better metadata information",
"downloadUrl": "/models/tensorflow/ssd-mobilenet-v1/TfLite/metadata/2/download",
"versionId": 3323,
"versionNumber": 2,
"trainingData": [
],
"url": "https://www.kaggle.com/models/tensorflow/ssd-mobilenet-v1/TfLite/metadata",
"licenseName": "Apache 2.0",
"modelInstanceType": "unspecified",
"baseModelInstanceInformation": null,
"externalBaseModelUrl": ""
}
As you can see, the response contains only the latest version "versionNumber":2