-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparking_ppo_attn_beta_continuous.py
552 lines (476 loc) · 21.7 KB
/
parking_ppo_attn_beta_continuous.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_ataripy
import argparse
import os
import random
import time
from distutils.util import strtobool
import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch import Tensor
from torch.distributions.beta import Beta
from torch.utils.tensorboard import SummaryWriter
def parse_args():
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
help="the name of this experiment")
parser.add_argument("--seed", type=int, default=123296,
help="seed of the experiment")
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, `torch.backends.cudnn.deterministic=False`")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="if toggled, this experiment will be tracked with Weights and Biases")
parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
help="the wandb's project name")
parser.add_argument("--wandb-entity", type=str, default=None,
help="the entity (team) of wandb's project")
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="whether to capture videos of the agent performances (check out `videos` folder)")
# Algorithm specific arguments
parser.add_argument("--env-id", type=str, default="Parking-v0",
help="the id of the environment")
parser.add_argument("--total-timesteps", type=int, default=1000000,
help="total timesteps of the experiments")
parser.add_argument("--learning-rate", type=float, default=2.5e-4,
help="the learning rate of the optimizer")
parser.add_argument("--num-envs", type=int, default=16,
help="the number of parallel game environments")
parser.add_argument("--num-steps", type=int, default=1024,
help="the number of steps to run in each environment per policy rollout")
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--gamma", type=float, default=0.99,
help="the discount factor gamma")
parser.add_argument("--gae-lambda", type=float, default=0.95,
help="the lambda for the general advantage estimation")
parser.add_argument("--num-minibatches", type=int, default=8,
help="the number of mini-batches")
parser.add_argument("--update-epochs", type=int, default=6,
help="the K epochs to update the policy")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles advantages normalization")
parser.add_argument("--clip-coef", type=float, default=0.1,
help="the surrogate clipping coefficient")
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
parser.add_argument("--ent-coef", type=float, default=0.01,
help="coefficient of the entropy")
parser.add_argument("--vf-coef", type=float, default=0.5,
help="coefficient of the value function")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None,
help="the target KL divergence threshold")
args = parser.parse_args()
args.batch_size = int(args.num_envs * args.num_steps)
args.minibatch_size = int(args.batch_size // args.num_minibatches)
# fmt: on
return args
def make_env(env_id, seed, idx, capture_video, run_name):
def thunk():
env = gym.make(
id=env_id,
render_mode="no_render",
observation_type="vector",
action_type="continuous",
)
env = gym.wrappers.RecordEpisodeStatistics(env)
if capture_video:
if idx == 0:
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
env = gym.wrappers.FrameStack(env, 8)
env.action_space.seed(seed)
env.observation_space.seed(seed)
return env
return thunk
class MLP(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super().__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
class MultiheadAttention(nn.Module):
def __init__(self, embed_dim, num_heads, dropout=0.0):
super().__init__()
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
self.dropout = nn.Dropout(p=dropout)
# Linear transformations for queries, keys, and values
self.W_q = nn.Linear(embed_dim, embed_dim)
self.W_k = nn.Linear(embed_dim, embed_dim)
self.W_v = nn.Linear(embed_dim, embed_dim)
# Output projection
self.W_o = nn.Linear(embed_dim, embed_dim)
def forward(self, query, key, value, mask=None):
num_batch = query.size(0)
# Linearly transform query, key, and value
Q = self.W_q(query)
K = self.W_k(key)
V = self.W_v(value)
# Reshape Q, K, and V for multi-head attention
Q = Q.view(num_batch, -1, self.num_heads, self.head_dim)
K = K.view(num_batch, -1, self.num_heads, self.head_dim)
V = V.view(num_batch, -1, self.num_heads, self.head_dim)
# Transpose to prepare for batch-wise matrix multiplication
Q = Q.permute(0, 2, 1, 3)
K = K.permute(0, 2, 1, 3)
V = V.permute(0, 2, 1, 3)
# Compute scaled dot-product attention scores
scores = torch.einsum("bhid,bhjd->bhij", Q, K) / self.head_dim**0.5
# Apply attention mask if needed (e.g., for masking padding tokens)
if mask is not None:
scores.masked_fill_(mask == 0, float("-inf"))
# Apply softmax to obtain attention weights
attn_weights = F.softmax(scores, dim=-1)
# Apply dropout to attention weights
attn_weights = self.dropout(attn_weights)
# Compute the weighted sum using einsum
weighted_sum = torch.einsum("bhij,bhjd->bhid", attn_weights, V)
# Reshape and concatenate the heads
weighted_sum = (
weighted_sum.permute(0, 2, 1, 3)
.contiguous()
.view(num_batch, -1, self.num_heads * self.head_dim)
)
# Linearly transform the concatenated heads
output = self.W_o(weighted_sum)
return output, attn_weights
class EncoderLayer(nn.Module):
def __init__(self, embed_dim=128, ff_dim=256, num_heads=8, dropout=0.1):
super().__init__()
self.embed_dim = embed_dim
self.temporal_attn = MultiheadAttention(
embed_dim=embed_dim, num_heads=num_heads, dropout=dropout
)
self.norm1 = nn.BatchNorm1d(num_heads)
self.feedforward1 = nn.Sequential(
nn.Linear(embed_dim, ff_dim), nn.ReLU(), nn.Linear(ff_dim, embed_dim)
)
self.norm2 = nn.BatchNorm1d(num_heads)
self.dropout = nn.Dropout(p=dropout)
self.social_attn = MultiheadAttention(
embed_dim=embed_dim, num_heads=num_heads, dropout=dropout
)
self.norm3 = nn.BatchNorm1d(num_heads)
self.feedforward2 = nn.Sequential(
nn.Linear(embed_dim, ff_dim), nn.ReLU(), nn.Linear(ff_dim, embed_dim)
)
self.norm4 = nn.BatchNorm1d(num_heads)
def forward(self, query: Tensor):
num_batch = query.shape[0]
num_agent = query.shape[1]
num_time = query.shape[2]
# Temporal-attention
query = query.view(num_batch * num_agent, num_time, self.embed_dim)
attn_output, _ = self.temporal_attn(query=query, key=query, value=query)
query = query + self.dropout(attn_output)
query = self.norm1(query)
ff_output = self.feedforward1(query)
query = query + self.dropout(ff_output)
query = self.norm2(query)
# Social-attention
query = query.view(num_batch, num_agent * num_time, self.embed_dim)
attn_output, _ = self.social_attn(
query=query[:, 0:num_time, :],
key=query[:, num_time:, :],
value=query[:, num_time:, :],
)
query = query[:, 0:num_time, :] + self.dropout(attn_output)
query = self.norm3(query)
ff_output = self.feedforward2(query)
query = query + self.dropout(ff_output)
query = self.norm4(query)
query = query.view(num_batch, 1, num_time, self.embed_dim)
return query
class Encoder(nn.Module):
def __init__(
self,
proj_cfg: dict = dict(input_dim=13, hidden_dim=512, output_dim=128),
attn_cfg: dict = dict(embed_dim=128, ff_dim=256, num_heads=8, dropout=0.1),
):
super().__init__()
self.proj_cfg = proj_cfg
self.attn_cfg = attn_cfg
self._init_layers()
def _init_layers(self):
self.proj_layer = MLP(**self.proj_cfg)
self.attn_layer = EncoderLayer(**self.attn_cfg)
def pre_encoder(self, feats: Tensor):
def pos_encodings(num_pos, encoding_dim):
position = torch.arange(0, num_pos, dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, encoding_dim, 2, dtype=torch.float32)
* -(np.log(10000.0) / encoding_dim)
)
encodings = torch.zeros(1, num_pos, encoding_dim)
encodings[0, :, 0::2] = torch.sin(position * div_term)
encodings[0, :, 1::2] = torch.cos(position * div_term)
return encodings
assert feats.dim() == 4, "obs should be NxAxTxD"
num_batch = feats.shape[0]
num_agent = feats.shape[1]
num_time = feats.shape[2]
feats = feats.view(num_batch * num_agent, num_time, self.attn_cfg["embed_dim"])
pos_enc = (
pos_encodings(num_pos=num_time, encoding_dim=self.attn_cfg["embed_dim"])
.expand(num_batch, num_agent, -1, -1)
.view(-1, num_time, self.attn_cfg["embed_dim"])
.to(feats.device)
)
feats = feats + pos_enc
return feats.view(num_batch, num_agent, num_time, self.attn_cfg["embed_dim"])
def forward(self, feats: Tensor):
feats = self.proj_layer(feats)
feats = self.pre_encoder(feats)
feats = self.attn_layer(feats)
feats = feats.flatten(1)
return feats
class Agent(nn.Module):
def __init__(
self,
proj_cfg: dict = dict(input_dim=13, hidden_dim=512, output_dim=128),
attn_cfg: dict = dict(embed_dim=128, ff_dim=256, num_heads=8, dropout=0.1),
) -> None:
super().__init__()
self.proj_cfg = proj_cfg
self.attn_cfg = attn_cfg
self._init_layers()
def _init_layers(self):
self.encoder = Encoder(self.proj_cfg, self.attn_cfg)
decoder_input_dim = self.attn_cfg["embed_dim"] * self.attn_cfg["num_heads"]
self.critic = MLP(input_dim=decoder_input_dim, hidden_dim=64, output_dim=1)
self.actor_alpha = MLP(input_dim=decoder_input_dim, hidden_dim=64, output_dim=1)
self.actor_beta = MLP(input_dim=decoder_input_dim, hidden_dim=64, output_dim=1)
def get_value(self, obs: Tensor):
return self.critic(self.encoder(obs.permute(0, 2, 1, 3)))
def get_action_and_value(self, obs: Tensor, action=None):
feats = self.encoder(obs.permute(0, 2, 1, 3))
action_alpha = torch.exp(self.actor_alpha(feats)).clamp(max=5)
action_beta = torch.exp(self.actor_beta(feats)).clamp(max=5)
probs = Beta(action_alpha, action_beta)
if action is None:
action = 2 * probs.sample() - 1
epsilon = 1e-5
action = torch.clamp(action, min=-1.0 + epsilon, max=1 - epsilon)
return (
action,
probs.log_prob((action + 1) / 2).sum(1),
probs.entropy().sum(1),
self.critic(feats),
)
def kaiming_init_hook(module):
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight)
if __name__ == "__main__":
args = parse_args()
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
if args.track:
import wandb
wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s"
% ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
# env setup
envs = gym.vector.SyncVectorEnv(
[
make_env(args.env_id, args.seed + i, i, args.capture_video, run_name)
for i in range(args.num_envs)
]
)
assert isinstance(
envs.single_action_space, gym.spaces.Box
), "only continuous action space is supported"
agent = Agent().apply(kaiming_init_hook).to(device)
# try:
# agent = torch.load("ppo_attn_beta_continuous.pth")
# except:
# pass
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)
# ALGO Logic: Storage setup
obs = torch.zeros(
(args.num_steps, args.num_envs) + envs.single_observation_space.shape
).to(device)
actions = torch.zeros(
(args.num_steps, args.num_envs) + envs.single_action_space.shape
).to(device)
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
values = torch.zeros((args.num_steps, args.num_envs)).to(device)
# TRY NOT TO MODIFY: start the game
global_step = 0
start_time = time.time()
next_obs, _ = envs.reset(seed=args.seed)
next_obs = torch.Tensor(next_obs).to(device)
next_done = torch.zeros(args.num_envs).to(device)
num_updates = args.total_timesteps // args.batch_size
for update in range(1, num_updates + 1):
# Annealing the rate if instructed to do so.
if args.anneal_lr:
frac = 1.0 - (update - 1.0) / num_updates
lrnow = frac * args.learning_rate
optimizer.param_groups[0]["lr"] = lrnow
for step in range(0, args.num_steps):
global_step += 1 * args.num_envs
obs[step] = next_obs
dones[step] = next_done
# ALGO LOGIC: action logic
with torch.no_grad():
action, logprob, _, value = agent.get_action_and_value(next_obs)
values[step] = value.flatten()
actions[step] = action
logprobs[step] = logprob
# TRY NOT TO MODIFY: execute the game and log data.
next_obs, reward, terminated, truncated, infos = envs.step(
action.cpu().numpy().astype(np.float64)
)
done = np.logical_or(terminated, truncated)
rewards[step] = torch.tensor(reward).to(device).view(-1)
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(
done
).to(device)
# Only print when at least 1 env is done
if "final_info" not in infos:
continue
for info in infos["final_info"]:
# Skip the envs that are not done
if info is None:
continue
print(
f"global_step={global_step}, episodic_return={info['episode']['r']}"
)
writer.add_scalar(
"charts/episodic_return", info["episode"]["r"], global_step
)
writer.add_scalar(
"charts/episodic_length", info["episode"]["l"], global_step
)
# bootstrap value if not done
with torch.no_grad():
next_value = agent.get_value(next_obs).reshape(1, -1)
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
delta = (
rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
)
advantages[t] = lastgaelam = (
delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
)
returns = advantages + values
# flatten the batch
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)
# Optimizing the policy and value network
b_inds = np.arange(args.batch_size)
clipfracs = []
for epoch in range(args.update_epochs):
np.random.shuffle(b_inds)
for start in range(0, args.batch_size, args.minibatch_size):
end = start + args.minibatch_size
mb_inds = b_inds[start:end]
_, newlogprob, entropy, newvalue = agent.get_action_and_value(
b_obs[mb_inds], b_actions[mb_inds]
)
logratio = newlogprob - b_logprobs[mb_inds]
ratio = logratio.exp()
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [
((ratio - 1.0).abs() > args.clip_coef).float().mean().item()
]
mb_advantages = b_advantages[mb_inds]
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (
mb_advantages.std() + 1e-8
)
# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * torch.clamp(
ratio, 1 - args.clip_coef, 1 + args.clip_coef
)
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
entropy_loss = entropy.mean()
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()
if args.target_kl is not None:
if approx_kl > args.target_kl:
break
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
var_y = np.var(y_true)
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
# TRY NOT TO MODIFY: record rewards for plotting purposes
writer.add_scalar(
"charts/learning_rate", optimizer.param_groups[0]["lr"], global_step
)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
writer.add_scalar("losses/explained_variance", explained_var, global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar(
"charts/SPS", int(global_step / (time.time() - start_time)), global_step
)
envs.close()
writer.close()
torch.save(agent, "ppo_attn_beta_continuous.pth")