-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfinetune_rop.py
executable file
·188 lines (145 loc) · 6.06 KB
/
finetune_rop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# !/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Author: Kong Haiyang
@Date: 2018-07-20 15:41:38
"""
from __future__ import absolute_import, division, print_function
import os
import time
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.optim import lr_scheduler
from torchvision import models, transforms
from create_dataset_from_csv import Create_Dataset_From_CSV
from utils import check, check_training, move_error, print_precision_recall
data_transforms = {
'train': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'valid': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
image_datasets = {'train': Create_Dataset_From_CSV('train.csv', train=True, fliplr=True, rotate=True,
color=True, cutout=True, crop=False, augment=True,
transform=data_transforms['train'],
target_size=224, retrieve_paths=True),
'valid': Create_Dataset_From_CSV('valid.csv', transform=data_transforms['valid'],
target_size=224, retrieve_paths=True)}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=64, shuffle=True, num_workers=12)
for x in ['train', 'valid']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']}
class_names = image_datasets['train'].classes
use_gpu = torch.cuda.is_available()
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_acc = 0.0
print_step = 3
classes2idx = image_datasets['train'].classes2idx
label_map = {v: k for k, v in classes2idx.iteritems()}
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch+1, num_epochs))
print('-' * 20)
# Each epoch has a training and validation phase
for phase in ['train', 'valid']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels, _ in dataloaders[phase]:
if use_gpu:
inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
if phase == 'valid':
scheduler.step(epoch_acc)
for param_group in optimizer.param_groups:
print(param_group['lr'])
print('{}: Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
if epoch % print_step == 0:
check_training(model, dataloaders[phase], label_map, use_gpu)
if phase == 'valid' and epoch_acc > best_acc:
old_model = './checkpoint/resnet101_rop_{:.3f}.t7'.format(best_acc)
if os.path.exists(old_model):
os.remove(old_model)
best_acc = epoch_acc
print('Saving model...')
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'acc': best_acc,
}
torch.save(state, './checkpoint/resnet101_rop_{:.3f}.t7'.format(best_acc))
print('Saving model completed..')
torch.cuda.empty_cache()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
precision, recall, error_cls, _ = check(model, dataloaders['train'], label_map, use_gpu)
print_precision_recall(label_map, precision, recall, 'train')
move_error('error', label_map, precision, recall, error_cls, 'train')
precision, recall, error_cls, _ = check(model, dataloaders['valid'], label_map, use_gpu)
print_precision_recall(label_map, precision, recall, 'valid')
move_error('error', label_map, precision, recall, error_cls, 'valid')
def main():
model_ft = models.resnet101(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Sequential(
nn.Linear(num_ftrs, 256),
nn.BatchNorm1d(256),
nn.ReLU(inplace=True),
nn.Dropout(0.4),
nn.Linear(256, len(class_names)),
)
for param in model_ft.parameters():
param.requires_grad = False
for param in model_ft.layer3.parameters():
param.requires_grad = True
for param in model_ft.layer4.parameters():
param.requires_grad = True
for param in model_ft.fc.parameters():
param.requires_grad = True
criterion = nn.CrossEntropyLoss()
if use_gpu:
cudnn.benchmark = True
cudnn.deterministic = True
criterion = criterion.cuda()
model_ft = model_ft.cuda()
model_ft = torch.nn.DataParallel(model_ft, device_ids=range(torch.cuda.device_count()))
optimizer_ft = optim.SGD([p for p in model_ft.parameters() if p.requires_grad],
lr=0.01, momentum=0.9, weight_decay=5e-5)
rop_lr_scheduler = lr_scheduler.ReduceLROnPlateau(optimizer_ft, factor=0.25)
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
train_model(model_ft, criterion, optimizer_ft, rop_lr_scheduler, num_epochs=100)
if __name__ == '__main__':
main()