diff --git a/docs/training_a_model.md b/docs/training_a_model.md index dcfd9e46f..766a5f339 100644 --- a/docs/training_a_model.md +++ b/docs/training_a_model.md @@ -39,8 +39,7 @@ model.use { it.fit( dataset = newTrain, epochs = 10, - batchSize = 100, - verbose = false + batchSize = 100 ) val accuracy = it.evaluate(dataset = validation, batchSize = 100).metrics[Metrics.ACCURACY] @@ -54,23 +53,6 @@ model.use { Here are some important parameters that we need to pass to the `fit` method: * `epochs`: Number of iterations over the data you want the training process to perform. Epoch = iteration. * `batchSize`: How many examples will be used for updating model's parameters (aka weights and biases) at a time -* You can set `verbose` to `true` you want to monitor the training process for every batch, and `false` if you only want -to see updates per epoch. - -Here's what you can expect to see as the output during the training process: -``` -o.j.kotlinx.dl.api.core.Sequential - Initialization of TensorFlow Graph variables. -o.j.kotlinx.dl.api.core.Sequential - epochs: 1 loss: 0.28763896 metric: 0.9179658 -o.j.kotlinx.dl.api.core.Sequential - epochs: 2 loss: 0.13266732 metric: 0.96149194 -o.j.kotlinx.dl.api.core.Sequential - epochs: 3 loss: 0.0978983 metric: 0.9719294 -o.j.kotlinx.dl.api.core.Sequential - epochs: 4 loss: 0.07665476 metric: 0.97835064 -o.j.kotlinx.dl.api.core.Sequential - epochs: 5 loss: 0.06175016 metric: 0.98247266 -o.j.kotlinx.dl.api.core.Sequential - epochs: 6 loss: 0.0505572 metric: 0.98652506 -o.j.kotlinx.dl.api.core.Sequential - epochs: 7 loss: 0.04168837 metric: 0.98938525 -o.j.kotlinx.dl.api.core.Sequential - epochs: 8 loss: 0.03445377 metric: 0.9916132 -o.j.kotlinx.dl.api.core.Sequential - epochs: 9 loss: 0.028447991 metric: 0.99368316 -o.j.kotlinx.dl.api.core.Sequential - epochs: 10 loss: 0.023344817 metric: 0.9952095 -``` Once the model has been trained, it's important to evaluate its performance on the validation dataset, so that we can check how it generalizes to the new data.