forked from chienchi/FaQCs
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathseq_overlap.cpp
412 lines (320 loc) · 11.8 KB
/
seq_overlap.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#include "seq_overlap.h"
using namespace std;
using namespace SO;
SeqOverlap::SeqOverlap(const AlignmentMode &m_mode)
{
mode = m_mode;
last_row = curr_row = NULL;
dp_num_elem = 0;
query = target = NULL;
max_query_len = max_target_len = 0;
query_buffer_len = target_buffer_len = 0;
query_len.sse = _MM_SET1(0);
target_len.sse = _MM_SET1(0);
match.sse = _MM_SET1(1);
mismatch.sse = _MM_SET1(-1);
#ifdef ALLOW_GAPS
gap_existance.sse = _MM_SET1(-1000); // Could use blastn value?
gap_extension.sse = _MM_SET1(-1000);
#endif // ALLOW_GAPS
#ifdef TREAT_N_AS_MASK
mask_N_na = false;
mask.sse = _MM_SET1(0);
#endif // TREAT_N_AS_MASK
};
// Compute the alignment between two sequences; the query
// and the target. Both the query and target sequences are assumed to be
// in 5'-3' orientation.
void SeqOverlap::align_overlap()
{
throw __FILE__ ":SeqOverlap::align_overlap: Implement me!";
}
// Compute the alignment between two sequences; the query
// and the target. Both the query and target sequences are assumed to be
// in 5'-3' orientation.
void SeqOverlap::align_smith_waterman()
{
// Add one to allow for an initial row and column of zeros
const size_t num_elem = max_target_len + 1;
const sse_elem zero(0);
#ifdef TREAT_N_AS_MASK
const sse_elem all_N(NA::N);
#endif // TREAT_N_AS_MASK
const sse_elem m_minus_mm( _MM_SUB(match.sse, mismatch.sse) );
// Resize the dynamic programming matrix if needed
if( !last_row || !curr_row || (num_elem > dp_num_elem) ){
if(last_row){
_mm_free(last_row);
}
if(curr_row){
_mm_free(curr_row);
}
dp_num_elem = num_elem;
last_row = (SO_Elem*)_mm_malloc(dp_num_elem*sizeof(SO_Elem), SSE_ALIGNMENT_SIZE);
if(!last_row){
throw __FILE__ ":SeqOverlap::align_overlap: Unable to allocate memory for last_row";
}
curr_row = (SO_Elem*)_mm_malloc(dp_num_elem*sizeof(SO_Elem), SSE_ALIGNMENT_SIZE);
if(!curr_row){
throw __FILE__ ":SeqOverlap::align_overlap: Unable to allocate memory for curr_row";
}
}
// Initialize the dynamic programming matrix to have zeros along the first row
for(SO_Score j = 0;j <= max_target_len;++j){
SO_Elem &elem_ref = last_row[j];
elem_ref.M.sse = zero.sse;
#ifdef ALLOW_GAPS
elem_ref.I_query.sse = elem_ref.I_target.sse = gap_existance.sse;
#endif // ALLOW_GAPS
elem_ref.M_start_i.sse = zero.sse;
#ifdef INCLUDE_TARGET_RANGE
elem_ref.M_start_j.sse = _MM_SET1(j);
#endif // INCLUDE_TARGET_RANGE
}
// Reset the maximum element
max_elem.M.sse = _MM_SET1(0);
for(SO_Score i = 0;i < max_query_len;++i){
// Initialize the dynamic programming matrix to have zeros along the first column
SO_Elem &elem_ref = curr_row[0];
elem_ref.M.sse = zero.sse;
#ifdef ALLOW_GAPS
elem_ref.I_query.sse = elem_ref.I_target.sse = gap_existance.sse;
#endif // ALLOW_GAPS
elem_ref.M_start_i.sse = _MM_SET1(i + 1);
#ifdef INCLUDE_TARGET_RANGE
elem_ref.M_start_j.sse = zero.sse;
#endif // INCLUDE_TARGET_RANGE
// The dp matrix has max_query_len rows and max_target_len columns
// A B
// C X <-- dp[i][j]
SO_Elem *A_ptr = last_row;
#ifdef ALLOW_GAPS
SO_Elem *B_ptr = A_ptr + 1;
SO_Elem *C_ptr = curr_row;
#endif // ALLOW_GAPS
SO_Elem *X_ptr = curr_row + 1;
const sse_elem q = query[i];
const sse_elem all_i(i);
const sse_elem valid_query( _MM_CMPLT(all_i.sse, query_len.sse) );
#ifdef TREAT_N_AS_MASK
const sse_elem query_is_N( _MM_CMPEQ(q.sse, all_N.sse) );
#endif // TREAT_N_AS_MASK
#ifdef ALLOW_GAPS
for(SO_Score j = 0;j < max_target_len;++j, ++A_ptr, ++B_ptr, ++C_ptr, ++X_ptr){
#else
for(SO_Score j = 0;j < max_target_len;++j, ++A_ptr, ++X_ptr){
#endif // ALLOW_GAPS
sse_elem tmp_a;
sse_elem tmp_b;
sse_elem tmp_c;
const sse_elem all_j(j);
const sse_elem t = target[j];
tmp_a.sse = _MM_ADD(
_mm_and_si128(
_MM_CMPGT(_mm_and_si128(q.sse, t.sse), zero.sse),
m_minus_mm.sse),
mismatch.sse);
#ifdef TREAT_N_AS_MASK
if(mask_N_na){
tmp_b.sse = _mm_or_si128(query_is_N.sse, _MM_CMPEQ(t.sse, all_N.sse) );
tmp_a.sse = _mm_or_si128(
_mm_and_si128(tmp_b.sse, mask.sse),
_mm_andnot_si128(tmp_b.sse, tmp_a.sse) );
}
#endif // TREAT_N_AS_MASK
#ifdef ALLOW_GAPS
tmp_c.sse = _MM_MAX( _MM_MAX(A_ptr->M.sse, A_ptr->I_query.sse), A_ptr->I_target.sse );
X_ptr->M.sse = _MM_ADD(
// Unlike the Overlap alignment, clamp the max value at zero
_MM_MAX(tmp_c.sse, zero.sse),
tmp_a.sse);
#else
X_ptr->M.sse = _MM_ADD(
// Unlike the Overlap alignment, clamp the max value at zero
_MM_MAX(A_ptr->M.sse, zero.sse),
tmp_a.sse);
#endif // ALLOW_GAPS
#ifdef ALLOW_GAPS
//////////////////////////////////////////////////////////////////////////////
// tmp_a == (A->M < A->I_query) || (A->M < A->I_target)
tmp_a.sse = _mm_or_si128(
_MM_CMPLT(A_ptr->M.sse, A_ptr->I_query.sse),
_MM_CMPLT(A_ptr->M.sse, A_ptr->I_target.sse) );
// Update M_start if !tmp_a, which means update if A->M is greater than both
// A->I_query and A->I_target
X_ptr->M_start_i.sse = _mm_andnot_si128(tmp_a.sse, A_ptr->M_start_i.sse);
#ifdef INCLUDE_TARGET_RANGE
X_ptr->M_start_j.sse = _mm_andnot_si128(tmp_a.sse, A_ptr->M_start_j.sse);
#endif // INCLUDE_TARGET_RANGE
//////////////////////////////////////////////////////////////////////////////
// tmp_a = !(A->I_query < A->I_target) && (A->I_query > A->M)
// = (A->I_query >= A->I_target) && (A->I_query > A->M)
tmp_a.sse = _mm_andnot_si128(
_MM_CMPLT(A_ptr->I_query.sse, A_ptr->I_target.sse),
_MM_CMPGT(A_ptr->I_query.sse, A_ptr->M.sse) );
X_ptr->M_start_i.sse = _mm_or_si128(
_mm_andnot_si128(
tmp_a.sse, X_ptr->M_start_i.sse),
_mm_and_si128(tmp_a.sse, A_ptr->I_query_start_i.sse) );
#ifdef INCLUDE_TARGET_RANGE
X_ptr->M_start_j.sse = _mm_or_si128(
_mm_andnot_si128(
tmp_a.sse, X_ptr->M_start_j.sse),
_mm_and_si128(tmp_a.sse, A_ptr->I_query_start_j.sse) );
#endif // INCLUDE_TARGET_RANGE
//////////////////////////////////////////////////////////////////////////////
tmp_a.sse = _mm_and_si128(
_MM_CMPGT(A_ptr->I_target.sse, A_ptr->M.sse),
_MM_CMPGT(A_ptr->I_target.sse, A_ptr->I_query.sse) );
X_ptr->M_start_i.sse = _mm_or_si128(
_mm_andnot_si128(
tmp_a.sse, X_ptr->M_start_i.sse),
_mm_and_si128(tmp_a.sse, A_ptr->I_target_start_i.sse) );
#ifdef INCLUDE_TARGET_RANGE
X_ptr->M_start_j.sse = _mm_or_si128(
_mm_andnot_si128(
tmp_a.sse, X_ptr->M_start_j.sse),
_mm_and_si128(tmp_a.sse, A_ptr->I_target_start_j.sse) );
#endif // INCLUDE_TARGET_RANGE
//#else
// Setting X_ptr->M_start_i = A_ptr->M_start_i and X_ptr->M_start_j = A_ptr->M_start_j is
// now performed below.
//X_ptr->M_start_i.sse = A_ptr->M_start_i.sse;
//X_ptr->M_start_j.sse = A_ptr->M_start_j.sse;
#endif // ALLOW_GAPS
//////////////////////////////////////////////////////////////////////////////
// Check for values that were clamped to zero
#ifdef ALLOW_GAPS
tmp_a.sse = _MM_CMPGT(zero.sse, tmp_c.sse);
#else
tmp_a.sse = _MM_CMPGT(zero.sse, A_ptr->M.sse);
#endif // ALLOW_GAPS
#ifdef ALLOW_GAPS
X_ptr->M_start_i.sse = _mm_or_si128(
_mm_andnot_si128(
tmp_a.sse, X_ptr->M_start_i.sse),
_mm_and_si128(tmp_a.sse, all_i.sse) );
#ifdef INCLUDE_TARGET_RANGE
X_ptr->M_start_j.sse = _mm_or_si128(
_mm_andnot_si128(
tmp_a.sse, X_ptr->M_start_j.sse),
_mm_and_si128(tmp_a.sse, all_j.sse) );
#endif // INCLUDE_TARGET_RANGE
#else
X_ptr->M_start_i.sse = _mm_or_si128(
_mm_andnot_si128(
tmp_a.sse, A_ptr->M_start_i.sse),
_mm_and_si128(tmp_a.sse, all_i.sse) );
#ifdef INCLUDE_TARGET_RANGE
X_ptr->M_start_j.sse = _mm_or_si128(
_mm_andnot_si128(
tmp_a.sse, A_ptr->M_start_j.sse),
_mm_and_si128(tmp_a.sse, all_j.sse) );
#endif // INCLUDE_TARGET_RANGE
#endif // ALLOW_GAPS
#ifdef ALLOW_GAPS
//////////////////////////////////////////////////////////////////////////////
// Unlike the Overlap alignment, clamp the C cell values to zero
tmp_b.sse = _MM_ADD(_MM_MAX(C_ptr->M.sse, zero.sse), gap_existance.sse);
tmp_c.sse = _MM_ADD(_MM_MAX(C_ptr->I_query.sse, zero.sse), gap_extension.sse);
X_ptr->I_query.sse = _MM_MAX(tmp_b.sse, tmp_c.sse );
tmp_a.sse = _MM_CMPLT(tmp_b.sse, tmp_c.sse);
X_ptr->I_query_start_i.sse = _mm_or_si128(
_mm_andnot_si128(
tmp_a.sse, C_ptr->M_start_i.sse),
_mm_and_si128(
tmp_a.sse, C_ptr->I_query_start_i.sse) );
#ifdef INCLUDE_TARGET_RANGE
X_ptr->I_query_start_j.sse = _mm_or_si128(
_mm_andnot_si128(
tmp_a.sse, C_ptr->M_start_j.sse),
_mm_and_si128(
tmp_a.sse, C_ptr->I_query_start_j.sse) );
#endif // INCLUDE_TARGET_RANGE
//////////////////////////////////////////////////////////////////////////////
// Unlike the Overlap alignment, clamp the B cell values to zero
tmp_b.sse = _MM_ADD(_MM_MAX(B_ptr->M.sse, zero.sse), gap_existance.sse);
tmp_c.sse = _MM_ADD(_MM_MAX(B_ptr->I_target.sse, zero.sse), gap_extension.sse);
X_ptr->I_target.sse = _MM_MAX(tmp_b.sse, tmp_c.sse);
tmp_a.sse = _MM_CMPLT(tmp_b.sse, tmp_c.sse);
X_ptr->I_target_start_i.sse = _mm_or_si128(
_mm_andnot_si128(
tmp_a.sse, B_ptr->M_start_i.sse),
_mm_and_si128(
tmp_a.sse, B_ptr->I_target_start_i.sse) );
#ifdef INCLUDE_TARGET_RANGE
X_ptr->I_target_start_j.sse = _mm_or_si128(
_mm_andnot_si128(
tmp_a.sse, B_ptr->M_start_j.sse),
_mm_and_si128(
tmp_a.sse, B_ptr->I_target_start_j.sse) );
#endif // INCLUDE_TARGET_RANGE
#endif // ALLOW_GAPS
//////////////////////////////////////////////////////////////////////////////
// Unlike the Overlap alignment, find the maximum scoring element *anywhere*
// in the dynamic programming matrix
const sse_elem valid_query_and_target(
_mm_and_si128(valid_query.sse, _MM_CMPLT(all_j.sse, target_len.sse) ) );
// tmp_a is true if this element is a new maximum M value
tmp_a.sse = _mm_andnot_si128( _MM_CMPLT(X_ptr->M.sse, max_elem.M.sse), valid_query_and_target.sse );
max_elem.M.sse = _mm_or_si128(
_mm_and_si128(tmp_a.sse, X_ptr->M.sse),
_mm_andnot_si128(tmp_a.sse, max_elem.M.sse) );
max_elem.M_start_i.sse = _mm_or_si128(
_mm_and_si128(tmp_a.sse, X_ptr->M_start_i.sse),
_mm_andnot_si128(tmp_a.sse, max_elem.M_start_i.sse) );
stop_i.sse = _mm_or_si128(
_mm_and_si128(tmp_a.sse, all_i.sse),
_mm_andnot_si128(tmp_a.sse, stop_i.sse) );
#ifdef INCLUDE_TARGET_RANGE
max_elem.M_start_j.sse = _mm_or_si128(
_mm_and_si128(tmp_a.sse, X_ptr->M_start_j.sse),
_mm_andnot_si128(tmp_a.sse, max_elem.M_start_j.sse) );
stop_j.sse = _mm_or_si128(
_mm_and_si128(tmp_a.sse, all_j.sse),
_mm_andnot_si128(tmp_a.sse, stop_j.sse) );
#endif // INCLUDE_TARGET_RANGE
}
// Swap the last_row and curr_row
swap(last_row, curr_row);
}
}
base_type SO::na_to_bits(const char &m_base)
{
switch(m_base){
case 'A': case 'a':
return NA::A;
case 'C': case 'c':
return NA::C;
case 'G': case 'g':
return NA::G;
case 'T': case 't':
return NA::T;
case 'M': case 'm':
return NA::M;
case 'R': case 'r':
return NA::R;
case 'S': case 's':
return NA::S;
case 'V': case 'v':
return NA::V;
case 'W': case 'w':
return NA::W;
case 'Y': case 'y':
return NA::Y;
case 'H': case 'h':
return NA::H;
case 'K': case 'k':
return NA::K;
case 'D': case 'd':
return NA::D;
case 'B': case 'b':
return NA::B;
case 'N': case 'n':
return NA::N;
case '-':
return NA::GAP;
};
throw __FILE__ ":na_to_bits: Unknown base!";
return NA::GAP; // Keep the compiler happy
};