diff --git a/gurls/gurls_defopt.m b/gurls/gurls_defopt.m index 97c80d5..c534693 100644 --- a/gurls/gurls_defopt.m +++ b/gurls/gurls_defopt.m @@ -76,4 +76,10 @@ opt.newprop( 'jobid', 1); opt.newprop( 'seq', {}); opt.newprop( 'process', {}); + %% ISTA options + opt.newprop( 'ISTAalpha',1); + opt.newprop( 'ISTAniter',inf); + opt.newprop( 'ISTArelthre',1e-4); + opt.newprop( 'ISTASparsitylvl',inf); + opt.newprop( 'ISTASAccuReq',0); end diff --git a/gurls/optimizers/rls_fista.m b/gurls/optimizers/rls_fista.m new file mode 100644 index 0000000..bc1cdb0 --- /dev/null +++ b/gurls/optimizers/rls_fista.m @@ -0,0 +1,80 @@ +function [cfr] = rls_fista (X, y, opt) +% rls_fista(X,y,opt) +% computes a classifier for elastic nerwork using FISTA. +% The regularization parameter is set to the one found in opt.paramsel. +% In case of multiclass problems, the regularizers need to be combined with the opt.singlelambda function. +% +% INPUTS: +% -OPT: struct of options with the following fields: +% fields that need to be set through previous gurls tasks: +% - paramsel.lambdas (set by the paramsel_* routines) +% fields with default values set through the defopt function: +% - singlelambda +% fields with default values set through the defopt function: +% - ISTAalpha (paramters for balancing l1-norm and l-2 norm. 1 for LASSO and 0 for ridge) +% - niter (maximun number for iteration. Set to either negative number or inf for using threshold rule only) +% - relthre (relative convergence threshold for iteration to stop) +% +% For more information on standard OPT fields +% see also defopt +% +% OUTPUT: struct with the following fields: +% -W: matrix of coefficient vectors of rls estimator for each class +% -C: matrix of coefficient vectors of rls estimator for each class +% -X: empty matrix + +lambda = opt.singlelambda(opt.paramsel.lambdas); + +n = size(y,1); + +% load in parameters alpha +if isprop(opt,'ISTAalpha') + ISTAalpha=opt.ISTAalpha; + if ISTAalpha <= 0 || ISTAalpha > 1 + error('Invalid alpha'); + end +else + if opt.verbose + fprintf('\t...alpha not defined. Use default value alpha=1 for LASSO\n'); + ISTAalpha=1; + end +end + +% load in number of iterations or relative tolerance +Niter=inf; +relthre=1e-4; +if isprop(opt, 'ISTAniter') + Niter=opt.ISTAniter; +end +if isprop(opt, 'ISTArelthre') + relthre=opt.ISTArelthre; +end + +% check if matrices XtX and Xty have been previously computed during +% parameter selection +if isfield(opt.paramsel,'XtX'); + XtX = opt.paramsel.XtX; +else + XtX = X'*X; % d x d matrix. +end +if isfield(opt.paramsel,'XtX'); + Xty = opt.paramsel.Xty; +else + Xty = X'*y; % d x T matrix. +end + + +%redo OLR based on non-sparsy components + + +w = rls_fista_driver( XtX, Xty, n, lambda,ISTAalpha,Niter,relthre,opt.verbose); + +cfr.IndexFlag = ~~(w); +% Xs=X(:,~~w); +% cfr.Wr=zeros(size(w)); +% cfr.Wr(~~w) = rls_primal_driver(Xs'*Xs,Xs'*y,n,0); +cfr.W = w; +cfr.C = []; +cfr.X = []; +%plot(w) + diff --git a/gurls/optimizers/rls_ista.m b/gurls/optimizers/rls_ista.m new file mode 100644 index 0000000..9a60244 --- /dev/null +++ b/gurls/optimizers/rls_ista.m @@ -0,0 +1,79 @@ +function [cfr] = rls_ista (X, y, opt) + +% rls_ista(X,y,opt) +% computes a classifier for elastic nerwork using ISTA. +% The regularization parameter is set to the one found in opt.paramsel. +% In case of multiclass problems, the regularizers need to be combined with the opt.singlelambda function. +% +% INPUTS: +% -OPT: struct of options with the following fields: +% fields that need to be set through previous gurls tasks: +% - paramsel.lambdas (set by the paramsel_* routines) +% fields with default values set through the defopt function: +% - singlelambda +% fields with default values set through the defopt function: +% - ISTAalpha (paramters for balancing l1-norm and l-2 norm. 1 for LASSO and 0 for ridge) +% - niter (maximun number for iteration. Set to either negative number or inf for using threshold rule only) +% - relthre (relative convergence threshold for iteration to stop) +% +% For more information on standard OPT fields +% see also defopt +% +% OUTPUT: struct with the following fields: +% -W: matrix of coefficient vectors of rls estimator for each class +% -C: matrix of coefficient vectors of rls estimator for each class +% -X: empty matrix + +lambda = opt.singlelambda(opt.paramsel.lambdas); + +n = size(y,1); + +% load in parameters alpha +if isprop(opt,'ISTAalpha') + ISTAalpha=opt.ISTAalpha; + if ISTAalpha <= 0 || ISTAalpha > 1 + error('Invalid alpha'); + end +else + if opt.verbose + fprintf('\t...alpha not defined. Use default value alpha=1 for LASSO\n'); + ISTAalpha=1; + end +end + +% load in number of iterations or relative tolerance +Niter=inf; +relthre=1e-4; +if isprop(opt, 'ISTAniter') + Niter=opt.ISTAniter; +end +if isprop(opt, 'ISTArelthre') + relthre=opt.ISTArelthre; +end + +% check if matrices XtX and Xty have been previously computed during +% parameter selection +if isfield(opt.paramsel,'XtX'); + XtX = opt.paramsel.XtX; +else + XtX = X'*X; % d x d matrix. +end +if isfield(opt.paramsel,'XtX'); + Xty = opt.paramsel.Xty; +else + Xty = X'*y; % d x T matrix. +end + +%redo OLR based on non-sparsy components + +w = rls_ista_driver( XtX, Xty, n, lambda,ISTAalpha,Niter,relthre,opt.verbose); + +cfr.IndexFlag = ~~(w); +% Xs=X(:,~~w); +% cfr.Wr=zeros(size(w)); +% cfr.Wr(~~w) = rls_primal_driver(Xs'*Xs,Xs'*y,n,0); +cfr.W = w; +cfr.C = []; +cfr.X = []; +%plot(w) + diff --git a/gurls/paramsel/paramsel_hoista.m b/gurls/paramsel/paramsel_hoista.m new file mode 100644 index 0000000..2fca682 --- /dev/null +++ b/gurls/paramsel/paramsel_hoista.m @@ -0,0 +1,134 @@ +function vout = paramsel_hoista(X, y, opt) +% paramsel_hoista(X,Y,OPT) +% Performs parameter selection ISTA for elastic net is used. +% The hold-out approach is used. +% The performance measure specified by opt.hoperf is maximized. +% +% INPUTS: +% -OPT: struct of options with the following fields: +% fields that need to be set through previous gurls tasks: +% - split (set by the split_* routine) +% fields with default values set through the defopt function: +% - nlambda +% - hoperf +% - nholdouts +% +% For more information on standard OPT fields +% see also defopt +% +% OUTPUTS: structure with the following fields: +% -lambdas_round: cell array (opt.nholdoutsX1). For each split a cell contains the +% values of the regularization parameter lambda minimizing the +% validation error for each class. +% -perf: cell array (opt.nholdouts). For each split a cell contains a matrix +% with the validation error for each lambda guess and for each class +% -guesses: cell array (opt.nholdoutsX1). For each split a cell contains an +% array of guesses for the regularization parameter lambda +% -lambdas: mean of the optimal lambdas across splits + +if isprop(opt,'paramsel') + vout = opt.paramsel; % lets not overwrite existing parameters. + % unless they have the same name + + if isfield(opt.paramsel,'perf') + vout = rmfield(vout,'perf'); + end + if isfield(opt.paramsel,'guesses') + vout = rmfield(vout,'guesses'); + end +else + opt.newprop('paramsel', struct()); +end + +% load in number of iterations or relative tolerance +Niter=inf; +relthre=1e-4; +if isprop(opt, 'ISTAniter') + Niter=opt.ISTAniter; +end +if isprop(opt, 'ISTArelthre') + relthre=opt.ISTArelthre; +end +% load in alpha for elastic net +if isprop(opt,'ISTAalpha') + ISTAalpha=opt.ISTAalpha; + if ISTAalpha <= 0 || ISTAalpha > 1 + error('Invalid alpha'); + end +else + if opt.verbose + fprintf('\t...alpha not defined. Use default value alpha=1 for LASSO\n'); + ISTAalpha=1; + end +end + + +Xtytot = X'*y; + +d = size(X,2); +T = size(y,2); + +% Verify the parameter selection constraint is defined proper +opt.ISTASparsitylvl=ceil(opt.ISTASparsitylvl); +if (opt.ISTASAccuReq>0&&opt.ISTASparsitylvlopt.ISTASparsitylvl),:)=-1; + [~, idx] = max(apt,[],1); + else + Sparsity(min(ap,[],2) 1 + lambdas = cell2mat(vout.lambdas_round'); + vout.lambdas = mean(lambdas); +else + vout.lambdas = vout.lambdas_round{1}; +end diff --git a/gurls/utils/rls_fista_driver.m b/gurls/utils/rls_fista_driver.m new file mode 100644 index 0000000..bbe078e --- /dev/null +++ b/gurls/utils/rls_fista_driver.m @@ -0,0 +1,62 @@ +function w=rls_fista_driver( XtX, Xty, n, lambda,inst_alpha,Niter,relthre,verbose) +% rls_ista_driver( XtX, Xty, n, lambda,alpha,Niter,reltol,verbose) +% Utility function used by rls_ista +% +% INPUTS: +% -XtX: symmetric dxd square matrix +% -Xty: dxT matrix +% -n: number of training samples +% -lambda: regularization parameter +% -alpha: l1 norm l2 norm weight parameter +% -Niter: maximum number of iteration +% -retol: relative tolernce for convergence +% -verbose: output option +% +% OUTPUTS: +% -W: matrix of coefficient vector for linear RLS classifier + + gamma = n/(2*eigs(XtX,1)+lambda*(1-inst_alpha)); %Step size + + % make sure Niter, retol are proper + if (Niter-round(Niter))~=0 && ~isinf(Niter) + if verbose + fprintf('\t...Interation number must be integer. Rounding opt.paramsel.niter\n'); + end + Niter = ceil(Niter); + end + if Niter<=0 && relthre<0 + if verbose + fprintf(['\t...Unvalid stopping rule for ISTA.',... + 'Using default relative tolerance = 1e-4\n']); + end + Niter = -1; + relthre=1e-4; + end + + % start ista + t0=1;t1=1; + w2=rls_primal_driver(XtX, Xty, n, 0); + w2(abs(w2)relthre*max([mean(abs(w1)),mean(abs(w2))]) + yk=w2+(t0-1)*(w2-w1)/t1; + w1=w2; + w2=(1-lambda*gamma*(1-inst_alpha))*yk+2*gamma*(Xty-XtX*yk)/n; + w2(abs(w2)relthre*max([mean(abs(w1)),mean(abs(w2))]) + w1=w2; + w2=(1-lambda*gamma*(1-inst_alpha))*w2+2*gamma*(Xty-XtX*w2)/n; + w2(abs(w2)