diff --git a/gurls/optimizers/rls_landweberdual_lgs.m b/gurls/optimizers/rls_landweberdual_lgs.m new file mode 100644 index 0000000..6caafec --- /dev/null +++ b/gurls/optimizers/rls_landweberdual_lgs.m @@ -0,0 +1,58 @@ +function [rls] = rls_landweberdual_lgs(X, y, opt) + +% rls_landweberdual(X, y, opt) +% computes the regression function for landweber regularization in the dual space. +% The regularization parameter (i.e. the number of iterations) is set to the one found in opt.paramsel. +% +% INPUTS: +% -OPT: struct of options with the following fields: +% fields that need to be set through previous gurls tasks: +% - paramsel.lambdas (set by the paramsel_* routines) +% fields with default values set through the defopt function: +% - singlelambda +% +% For more information on standard OPT fields +% see also defopt +% +% OUTPUT: struct with the following fields: +% -W: matrix of coefficient vectors of rls estimator for each class +% -C: empty matrix +% -X: empty matrix + +Niter = ceil(opt.singlelambda(opt.paramsel.lambdas)); + +[n,T] = size(y); + +if isfield(opt.paramsel,'niter'); + niter = ceil(opt.paramsel.niter); +else + niter = 0; +end + +if isfield(opt.paramsel,'f0') && niter <= Niter; + alpha = opt.paramsel.f0; +else + niter = 0; + alpha=zeros(n,T); +end + +if ~isfield(opt.paramsel,'Knorm'); + opt.paramsel.Knorm = norm(opt.kernel.K); +end + +tau=1/(2*opt.paramsel.Knorm); + + +for i = niter:(Niter-1); + alpha = alpha + tau*y./(1+exp(y.*(opt.kernel.K*alpha))); +end + +opt.paramsel.f0 = alpha; +opt.paramsel.niter = Niter; + +rls.C = alpha; +rls.X = X; +rls.W = []; + + + diff --git a/gurls/optimizers/rls_landweberprimal_lgs.m b/gurls/optimizers/rls_landweberprimal_lgs.m new file mode 100644 index 0000000..e72a4fd --- /dev/null +++ b/gurls/optimizers/rls_landweberprimal_lgs.m @@ -0,0 +1,65 @@ +function [rls] = rls_landweberprimal_lgs (X,y,opt) + +% rls_landweberprimal(X, y, opt) +% computes the regression function for landweber regularization in the primal space. +% The regularization parameter (i.e. the number of iterations) is set to the one found in opt.paramsel. +% +% INPUTS: +% -OPT: struct of options with the following fields: +% fields that need to be set through previous gurls tasks: +% - paramsel.lambdas (set by the paramsel_* routines) +% fields with default values set through the defopt function: +% - singlelambda +% +% For more information on standard OPT fields +% see also defopt +% +% OUTPUT: struct with the following fields: +% -W: matrix of coefficient vectors of rls estimator for each class +% -C: empty matrix +% -X: empty matrix + +Niter = ceil(opt.singlelambda(opt.paramsel.lambdas)); + +d = size(X,2); +T = size(y,2); + +if isfield(opt.paramsel,'niter'); + niter = ceil(opt.paramsel.niter); +else + niter = 1; +end + +if isfield(opt.paramsel,'f0') && niter <= Niter; + W = opt.paramsel.f0; +else + W = zeros(d,T); +end + +if isfield(opt.paramsel,'XtX'); + XtX = opt.paramsel.XtX; +else + XtX = X'*X; % d x d matrix. +end +if isfield(opt.paramsel,'Xty'); + Xty = opt.paramsel.Xty; +else + Xty = X'*y; % d x T matrix. +end + +if isfield(opt.paramsel,'XtXnorm'); + tau=1/(2*opt.paramsel.XtXnorm); +else + tau=1/(2*norm(XtX)); +end + +for i = niter:Niter; + W = W + tau*(X'*(y./(1+exp(y.*(X*W))))); +end + +opt.paramsel.f0 = W; +opt.paramsel.niter = Niter; + +rls.C = []; +rls.X = []; +rls.W = W; \ No newline at end of file diff --git a/lgs_check.m b/lgs_check.m new file mode 100644 index 0000000..95c0fd7 --- /dev/null +++ b/lgs_check.m @@ -0,0 +1,97 @@ +%basic example: linear kernel +%simulate data +X = normrnd(0,1,1000,2); +beta = [2;-1]; +p = 1./(1+exp(-X*beta)); +y = binornd( 1, p ); +y(y==0) = -1; + +name = 'BasicL' +opt = defopt(name); +opt.seq = ... +{'split:ho','paramsel:bfprimal','rls:landweberprimal_lgs', ... + 'pred:primal','perf:macroavg'}; +%{'split:ho','kernel:rbf','paramsel:bfdual','rls:landweberdual', ... +% 'predkernel:traintest','pred:dual','perf:macroavg'}; +opt.process{1} = [2,2,2,0,0]; +opt.process{2} = [3,3,3,2,2]; +%For selecting optimal steps +opt.nholdouts = 5; +opt.paramsel.guesses = linspace( 100, 1000, 301 ); +opt.paramsel.optimizer = @rls_landweberprimal_lgs; + +res1 = gurls (X, y, opt, 1); +display( res1.rls.W ); + +%basic example: Gaussina kernel +%simulate data +X = normrnd(0,1,5000,2); +p = 1./(1+exp(-(X(:,2)-sin(X(:,1))))); +y = binornd( 1, p ); +y(y==0) = -1; + +name = 'BasicG' +opt = defopt(name); +opt.seq = ... +{'split:ho','kernel:rbf','paramsel:bfdual','rls:landweberdual', ... + 'predkernel:traintest','pred:dual','perf:macroavg'}; +opt.process{1} = [2,2,2,2,0,0,0]; +%For selecting optimal steps +opt.nholdouts = 5; +opt.paramsel.guesses = linspace( 100, 1000, 301 ); +opt.paramsel.optimizer = @rls_landweberdual_lgs; +opt.paramsel.sigma = 1; + +res2 = gurls (X, y, opt, 1); +res_pred = res2.kernel.K*res2.rls.C; + +%plot the decision boundary +xlin = linspace( min(X(:,1)),max(X(:,1)),33 ); +ylin = linspace( min(X(:,2)),max(X(:,2)),33 ); +[Xmesh,Ymesh] = meshgrid( xlin, ylin ); +f = scatteredInterpolant( X(:,1), X(:,2), res_pred ); +Z = f(Xmesh,Ymesh); +[C,h] = contour( Xmesh, Ymesh, Z, [0,0] ); +h.LineColor = 'k' +hold on +plot( linspace(min(X(:,1)),max(X(:,1)),100), sin(linspace(min(X(:,1)),max(X(:,1)),100)), 'r' ); +plot( X(y==1,1), X(y==1,2), '.b', 'markers', 6 ); +plot( X(y==-1,1), X(y==-1,2), '.g', 'markers', 6 ); +legend('Estimated boundary','True boundary','Class 1','Class -1'); +xlim([-3 3]); +ylim([-3 3]); +hold off + +% Gaussian kernel, homework data +load('C:/Users/Renboyu/Desktop/9520_fall2015_pset1/9520_fall2015_pset1/2015_ps1-dataset_1.mat') +name = 'HomeworkG' +opt = defopt(name); +opt.seq = ... +{'split:ho','kernel:rbf','paramsel:bfdual','rls:landweberdual', ... + 'predkernel:traintest','pred:dual','perf:macroavg'}; +opt.process{1} = [2,2,2,2,0,0,0]; +opt.process{2} = [3,3,3,3,2,2,2]; + +%For selecting optimal steps +opt.nholdouts = 5; +opt.paramsel.guesses = linspace( 100, 1000, 301 ); +opt.paramsel.optimizer = @rls_landweberdual_lgs; +opt.paramsel.sigma = mean( pdist( Xtrain ) ); + +gurls (Xtrain, Ytrain, opt, 1); +res3 = gurls( Xtest, Ytest, opt, 2); +display( res3.perf.acc ); + +%plot the decision boundary +xlin = linspace( min(Xtest(:,1)),max(Xtest(:,1)),33 ); +ylin = linspace( min(Xtrain(:,2)),max(Xtrain(:,2)),33 ); +[Xmesh,Ymesh] = meshgrid( xlin, ylin ); +f = scatteredInterpolant( Xtest(:,1), Xtest(:,2), res3.pred ); +Z = f(Xmesh,Ymesh); +[C,h] = contour( Xmesh, Ymesh, Z, [0,0] ); +h.LineColor = 'k' +hold on +plot( Xtest(Ytest==1,1), Xtest(Ytest==1,2), '.b', 'markers', 6 ); +plot( Xtest(Ytest==-1,1), Xtest(Ytest==-1,2), '.g', 'markers', 6 ); +legend('Estimated boundary','Class 1','Class -1'); +hold off \ No newline at end of file