-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpre_process.py
50 lines (45 loc) · 1.63 KB
/
pre_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
from torchvision import transforms
import os
import random
from PIL import Image, ImageOps, ImageFilter
import numbers
import torch
def image_train(resize_size=256, crop_size=224, alexnet=False):
if not alexnet:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
else:
normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
return transforms.Compose([
transforms.Resize((resize_size, resize_size)),
transforms.RandomCrop((crop_size, crop_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])
def image_test(resize_size=256, crop_size=224, alexnet=False):
if not alexnet:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
else:
normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
return transforms.Compose([
transforms.Resize((resize_size, resize_size)),
transforms.CenterCrop((crop_size, crop_size)),
transforms.ToTensor(),
normalize
])
def image_visda(resize_size=256, crop_size=224, alexnet=False):
if not alexnet:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
else:
normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
return transforms.Compose([
transforms.Resize((resize_size, resize_size)),
transforms.CenterCrop((crop_size, crop_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])