Skip to content

Files

Latest commit

d6c8163 · Jun 20, 2024

History

History
35 lines (23 loc) · 1.1 KB

README.md

File metadata and controls

35 lines (23 loc) · 1.1 KB

Code for PseudoCal@ICML 2024

Prerequisites

  • python == 3.7.13
  • cudatoolkit == 10.1.243
  • pytorch ==1.7.1
  • torchvision == 0.8.2
  • numpy, scikit-learn, PIL, argparse

Demo

  • Configure the PyTorch environment.
  • Download the Office-Home dataset. Configure the data lists in data and the checkpoints in logs.
  • Run the code in pseudocal.sh.

Citation

@inproceedings{hu2024pseudocalibration,
    title={Pseudo-Calibration: Improving Predictive Uncertainty Estimation in Unsupervised Domain Adaptation},
    author={Dapeng Hu and Jian Liang and Xinchao Wang and Chuan-Sheng Foo},
    booktitle={Forty-first International Conference on Machine Learning},
    year={2024}
}

Contact

Credit

  • The code is heavily borrowed from TransCal.