-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeat_extract.py
272 lines (233 loc) · 11.9 KB
/
feat_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import os.path as osp
import sys
import random
import math
import copy
import argparse
import numpy as np
import scipy.io as sio
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import utils
def data_load(args):
train_transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((256, 256)),
torchvision.transforms.RandomCrop((224, 224)),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
test_transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((256, 256)),
torchvision.transforms.CenterCrop((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
dset_loaders = {}
if args.dset != 'ImageNet-Sketch':
txt_train_src = open(args.s_tr_dset_path).readlines()
txt_val_src = open(args.s_val_dset_path).readlines()
train_src_set = utils.ObjectImage('', txt_train_src, test_transform)
val_src_set = utils.ObjectImage('', txt_val_src, test_transform)
dset_loaders["source"] = torch.utils.data.DataLoader(train_src_set, batch_size=args.batch_size*3,
shuffle=False, num_workers=args.worker, drop_last=False)
dset_loaders["val"] = torch.utils.data.DataLoader(val_src_set, batch_size=args.batch_size*3,
shuffle=False, num_workers=args.worker, drop_last=False)
txt_tgt = open(args.t_dset_path).readlines()
txt_test = open(args.test_dset_path).readlines()
target_set = utils.ObjectImage('', txt_tgt, train_transform)
test_set = utils.ObjectImage('', txt_test, test_transform)
dset_loaders["target"] = torch.utils.data.DataLoader(target_set, batch_size=args.batch_size,
shuffle=True, num_workers=args.worker, drop_last=True)
dset_loaders["test"] = torch.utils.data.DataLoader(test_set, batch_size=args.batch_size*3,
shuffle=False, num_workers=args.worker, drop_last=False)
return dset_loaders
def generate_feature_wrapper(loader, model, args):
def gather_outputs(selected_loader):
bottleneck_layer = None
if args.method == 'DINE' or (args.method == 'SHOT' and args.dset != 'ImageNet-Sketch'):
backbone, bottleneck_layer, classifier_layer = model[0], model[1], model[2]
else:
backbone, classifier_layer = model[0],model[1]
with torch.no_grad():
start_test = True
iter_loader = iter(selected_loader)
for i in range(len(selected_loader)):
inputs, labels = iter_loader.next()
inputs = inputs.cuda()
if bottleneck_layer is None and args.method !='SHOT':
fc_features, logit = classifier_layer(backbone(inputs))
elif bottleneck_layer is None and args.method == 'SHOT':
fc_features = backbone(inputs)
logit = classifier_layer(fc_features)
else:
fc_features = bottleneck_layer(backbone(inputs))
logit = classifier_layer(fc_features)
if start_test:
features_ = fc_features.float().cpu()
outputs_ = logit.float().cpu()
labels_ = labels
start_test = False
else:
features_ = torch.cat((features_, fc_features.float().cpu()), 0)
outputs_ = torch.cat((outputs_, logit.float().cpu()), 0)
labels_ = torch.cat((labels_, labels), 0)
return features_, outputs_, labels_
def save(loader, data_name):
features, outputs, labels = gather_outputs(loader)
np.save(args.output_dir + '/' + data_name + '_feature.npy', features)
np.save(args.output_dir + '/' + data_name + '_output.npy', outputs)
np.save(args.output_dir + '/' + data_name + '_label.npy', labels)
if args.dset != 'ImageNet-Sketch':
print("-----------------Saving:source_train-----------")
save(loader["source"], 'src_train')
print("-----------------Saving:source_val-----------")
save(loader["val"], 'src_val')
print("-----------------Saving:target-----------")
save(loader["test"], 'tgt')
def train(args):
## pre-process
dset_loaders = data_load(args)
## base network
if args.net == 'resnet101':
netG = utils.ResBase101().cuda()
elif args.net == 'resnet50':
netG = utils.ResBase50().cuda()
elif args.net == 'resnet34':
netG = utils.ResBase34().cuda()
netB = None
if args.method == 'MCD':
netF = utils.ClassifierMCD(class_num=args.class_num, feature_dim=netG.in_features,
bottleneck_dim=args.bottleneck_dim).cuda()
elif args.method == 'SAFN':
netF = utils.ClassifierSAFN(class_num=args.class_num, feature_dim=netG.in_features,
bottleneck_dim=args.bottleneck_dim).cuda()
elif args.method == 'MDD':
netF = utils.ClassifierMDD(class_num=args.class_num, feature_dim=netG.in_features,
bottleneck_dim=args.bottleneck_dim, width=args.width).cuda()
elif args.method == 'DINE' or (args.method == 'SHOT' and args.dset != 'ImageNet-Sketch'):
netB = utils.feat_bottleneck(type=args.classifier, feature_dim=netG.in_features,
bottleneck_dim=args.bottleneck_dim).cuda()
netF = utils.feat_classifier(type=args.layer, class_num = args.class_num,
bottleneck_dim=args.bottleneck_dim).cuda()
elif args.method == 'SHOT' and args.dset == 'ImageNet-Sketch':
netF = utils.res_classifier(res_name=args.net).cuda()
else:
netF = utils.ResClassifier(class_num=args.class_num, feature_dim=netG.in_features,
bottleneck_dim=args.bottleneck_dim).cuda()
if netB is None:
if args.method == 'SHOT':
g_path = args.output_dir + '/target_F_par_0.3.pt'
f_path = args.output_dir + '/target_C_par_0.3.pt'
netG.load_state_dict(torch.load(g_path))
netF.load_state_dict(torch.load(f_path))
base_network = nn.Sequential(netG, netF)
else:
ckpt_path = osp.join(args.output_dir, args.ckpt + ".pt")
base_network = nn.Sequential(netG, netF)
base_network.load_state_dict(torch.load(ckpt_path))
else:
if args.method == 'SHOT':
g_path = args.output_dir + '/target_F_par_0.3.pt'
b_path = args.output_dir + '/target_B_par_0.3.pt'
f_path = args.output_dir + '/target_C_par_0.3.pt'
else:
g_path = args.output_dir + '/dine_F.pt'
b_path = args.output_dir + '/dine_B.pt'
f_path = args.output_dir + '/dine_C.pt'
netG.load_state_dict(torch.load(g_path))
netB.load_state_dict(torch.load(b_path))
netF.load_state_dict(torch.load(f_path))
base_network = nn.Sequential(netG, netB, netF)
base_network.eval()
generate_feature_wrapper(dset_loaders, base_network, args)
return 0
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Domain Adaptation Methods')
parser.add_argument('--method', type=str, default='srconly', choices=['srconly', 'CDAN', 'CDANE', 'DANN',
'DANNE', 'MCD', 'MDD', 'SAFN', 'PADA', 'SHOT', 'DINE'], help="use official code for DA model training")
parser.add_argument('--pl', type=str, default='none', choices=['none', 'bnm', 'mcc', 'ent', 'bsp', 'atdoc'],
help="implement all target-oriented DA methods within the ATDOC codebase")
parser.add_argument('--gpu_id', type=str, nargs='?', default='0', help="device id to run")
parser.add_argument('--s', type=int, default=0, help="source")
parser.add_argument('--t', type=int, default=1, help="target")
parser.add_argument('--output', type=str, default=None, help="path of trained DA model")
parser.add_argument('--output_src', type=str, default=None, help="path of source-only model in source-free UDA")
parser.add_argument('--seed', type=int, default=1234, help="random seed")
parser.add_argument('--batch_size', type=int, default=36, help="batch_size")
parser.add_argument('--worker', type=int, default=4, help="number of workers")
parser.add_argument('--bottleneck_dim', type=int, default=1024, help="the dimension of the bottleneck layer")
parser.add_argument('--da', type=str, default='uda', choices=['uda', 'pda'], help="the type of UDA")
parser.add_argument('--layer', type=str, default="wn", choices=["linear", "wn"], help="model setting for source-free UDA")
parser.add_argument('--classifier', type=str, default="bn", choices=["ori", "bn"], help="model setting for source-free UDA")
parser.add_argument('--width', type=int, default=1024, help="architecture setting for mdd")
parser.add_argument('--max_epoch', type=int, default=1)
#parser.add_argument('--smooth', type=float, default=0.1)
#parser.add_argument('--hyperpara', type=float, default=1.0)
parser.add_argument('--net', type=str, default='resnet50', choices=["resnet34", "resnet50", "resnet101"], help="the backbone used")
parser.add_argument('--dset', type=str, default='DomainNet126', choices=['ImageNet-Sketch', 'DomainNet126', 'VISDA-C', 'office', 'office-home'],
help="the DA dataset used")
parser.add_argument('--lr', type=float, default=0.01, help="learning rate")
args = parser.parse_args()
args.output = args.output.strip()
if args.dset == 'office-home':
names = ['Art', 'Clipart', 'Product', 'RealWorld']
args.class_num = 65
args.max_epoch = 1
if args.dset == 'office':
names = ['amazon', 'dslr', 'webcam']
args.class_num = 31
args.max_epoch = 1
if args.dset == 'DomainNet126':
names = ['clipart', 'painting', 'real', 'sketch']
args.class_num = 126
args.max_epoch = 1
if args.dset == 'VISDA-C':
names = ['train', 'validation']
args.class_num = 12
args.max_epoch = 1
if args.dset == 'ImageNet-Sketch':
names = ['imagenet', 'sketch']
args.class_num = 1000
args.max_epoch = 1
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
SEED = args.seed
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
if args.da == 'uda':
args.t_dset_path = './data/' + args.dset + '/' + names[args.t] + '_list.txt'
elif args.da == 'pda':
args.t_dset_path = './data/' + args.dset + '/' + names[args.t] + '_25_list.txt'
args.test_dset_path = args.t_dset_path
if args.pl != 'none':
args.output_dir = osp.join(args.output, str(SEED), args.pl, args.dset,
names[args.s][0].upper() + names[args.t][0].upper())
elif args.method in {'SHOT', 'DINE'}:
args.output_dir = osp.join(args.output, str(SEED), args.dset,
names[args.s][0].upper() + names[args.t][0].upper())
args.output_src = osp.join(args.output_src, str(SEED), args.dset,
names[args.s][0].upper())
else:
args.output_dir = osp.join(args.output, str(SEED), args.method, args.dset,
names[args.s][0].upper() + names[args.t][0].upper())
args.name = names[args.s][0].upper() + names[args.t][0].upper()
if args.method in {'SHOT', 'DINE'}:
args.s_tr_dset_path = args.output_src + '/src_train.txt'
args.s_val_dset_path = args.output_src + '/src_val.txt'
else:
args.s_tr_dset_path = args.output_dir + '/src_train.txt'
args.s_val_dset_path = args.output_dir + '/src_val.txt'
if not osp.exists(args.output_dir):
print('Output dir not found! \n')
if args.method != 'srconly':
args.ckpt = args.method
if args.pl != 'none':
args.ckpt = args.pl
utils.print_args(args)
train(args)