From 144c8831c289f9db10f4bf9bd53fb12849d9de13 Mon Sep 17 00:00:00 2001 From: Shashnk <70314463+Sam09DS@users.noreply.github.com> Date: Fri, 4 Dec 2020 20:45:18 +0530 Subject: [PATCH 1/8] Create Customer Service Requests Analysis.md --- .../Customer Service Requests Analysis.md | 24 +++++++++++++++++++ 1 file changed, 24 insertions(+) create mode 100644 Intern-basics/Customer Service Requests Analysis.md diff --git a/Intern-basics/Customer Service Requests Analysis.md b/Intern-basics/Customer Service Requests Analysis.md new file mode 100644 index 0000000..eddba5a --- /dev/null +++ b/Intern-basics/Customer Service Requests Analysis.md @@ -0,0 +1,24 @@ +DESCRIPTION + +Background of Problem Statement : + +NYC 311's mission is to provide the public with quick and easy access to all New York City government services and information while offering the best customer service. Each day, NYC311 receives thousands of requests related to several hundred types of non-emergency services, including noise complaints, plumbing issues, and illegally parked cars. These requests are received by NYC311 and forwarded to the relevant agencies such as the police, buildings, or transportation. The agency responds to the request, addresses it, and then closes it. + +Problem Objective : + +Perform a service request data analysis of New York City 311 calls. You will focus on the data wrangling techniques to understand the pattern in the data and also visualize the major complaint types. +Domain: Customer Service + +Analysis Tasks to be performed: + +(Perform a service request data analysis of New York City 311 calls) + +Import a 311 NYC service request. +Read or convert the columns ‘Created Date’ and Closed Date’ to datetime datatype and create a new column ‘Request_Closing_Time’ as the time elapsed between request creation and request closing. (Hint: Explore the package/module datetime) +Provide major insights/patterns that you can offer in a visual format (graphs or tables); at least 4 major conclusions that you can come up with after generic data mining. +Order the complaint types based on the average ‘Request_Closing_Time’, grouping them for different locations. +Perform a statistical test for the following: +Please note: For the below statements you need to state the Null and Alternate and then provide a statistical test to accept or reject the Null Hypothesis along with the corresponding ‘p-value’. + +Whether the average response time across complaint types is similar or not (overall) +Are the type of complaint or service requested and location related? From 8bb2fd94a786c70b66a33c0ce49e24b55ae3d97f Mon Sep 17 00:00:00 2001 From: Shashnk <70314463+Sam09DS@users.noreply.github.com> Date: Fri, 4 Dec 2020 20:49:47 +0530 Subject: [PATCH 2/8] Add files via upload --- .../Customer Service Requests Analysis.docx | Bin 0 -> 19169 bytes Intern-basics/NYC311.ipynb | 1000 +++++++++++++++++ 2 files changed, 1000 insertions(+) create mode 100644 Intern-basics/Customer Service Requests Analysis.docx create mode 100644 Intern-basics/NYC311.ipynb diff --git a/Intern-basics/Customer Service Requests Analysis.docx b/Intern-basics/Customer Service Requests Analysis.docx new file mode 100644 index 0000000000000000000000000000000000000000..2754be6c4b8649f92fd9fdac056f322fedd8d7ff GIT binary patch literal 19169 zcmeIa1$P}uvM##C%*<$uwZ+WLWHB?dWRb;^#mvmi%oZ~8vm2$fti== zE8%J@JEK}LZ9Cg_(qF~y9z$d4+_;HBg{cCmak>;y@A-LWiQYBN zEl53@8B*#uX4J5li5$8JVA*!go(&xDQ zl{>*7ap)yrE1vDf!TcYR_4_v%K;b`zCt)mZ^VLU++{fsH`xu^jjwaSlK>9zf|2r)I zA0CVUR`rUwo{wP(FK`v`7BKTeakU3KUk+$Ay@tI41+671gSNJ8x%B?Vv%Czdb7CMq zHaizT?ctOm_H{c!=NdOj1tIJQ%;K|dpVn)K8zAv}M`r(7=+bEeN)o4Jt z21eKvE@bReNXkSv+5xr5!$C2e1u50kyb*bQewKsE(qoD@b51Jb!lI>w);Fj!UeV4V zg0@KyDXIkNmFUfza=? zFu5?Hz*kRGZB)(oqp(99ezq$TjRw6PJG=}X!MhJ7^*_glN!3@dVQc^(69@`G`DheZ zJ4a)nv7OOZn-3lKhw?ht*>GIrNb1}w^MXpSTP&3_yw3h9w?42XXIXDi9iO$5l};5B z_^IhRpM;A0wA?*nquo2nJHb5;LO`j`L|nmIInw)EZ6{!cxy{Oj#G8nZ673Hp6{Dz z926MnmETCpm6fmjM4)k#N^?#ywO}?gF{}p$6$~tpS@vIQCd62cxF+jo?wbfP)163D zebljRx1s&_#ICpQ{oKR*rM!=LqvY$FmVXq!$e28JT5Ts~xJR5E7W5R67A`mE30$l0 zQpg$4S#^6VHD2$5)=%^XomN`=_*2)nY%`mQrR0)rge+*Fp~KK;m6q3ZFIh*^?_)&X z%1i5~+9txFCvXZ^82W?G!o62xHSJ7tyPt&IIZuM7kH;*sVSyAnE){ho(Uq!)svxXy zoum<+g!epM3wb9`7N)O8Dw9QHv$MsC4+fG#?AnN);u@LHTS3Ne4Wph}F;sg+JbZ5q z^rK-BOsZt2;~^_#sPewQrwD0&lkv?~hoJS$;KT#-nNsh%zPO0-XU2tj>L=x6%a!a* z^P-C5JhT6zY_czS4(pA|Vk%A0t`S~V!C0!p3?5 zR`tME%lK&7Z_x!sGFcm7xzAa&WeflAU3TX;>p0r7bVa4mt$oo>ZqoXqeLdh@L}p|^ zzxSNvQd+!d{Mv6_T{t_rbY>q_b`v?8pQ)-#xYs(tzb;A}G*tuQOA>wu@x4L9X8d5ors^RZnXuKG3$Y#5tV z$HSurWhqW~mQ*L#fkD#Wngvq{=RvALTHbODXeso584yp)`=u3m+i;jGnXp(wg~Ggk z#*$l-s=$&NS(jjO+>n~nH8uMLi!umSf#W1%$S1VT9z%;p_gq*}6_d^8#6n+fp#rUL zk7*!PiOF6h%58qg@4_s}JW6>Gr@HR@R2`X;AnZ_m)5g7(7t@cH5c6!+Up8(TL5(~2 zGc9pNW>jMWwu+Ng!R;+g4De@l5r5u&h@Oi*j=GVR;Q< zKP*a^&N%{XX;wf3C|>0&&^mU@AL(7_(C2o90}iW7x5c0wWhKC!A&ryTPz%S);n@?fgr_b|{18p^6 zFrM^4)QMuG0JKtstLbY?fq_e3|4gOUGiThwr#87WoRQfr&BlayJ&iG}xLg%H*NtO1 z4}p9s?b!^7Px8(gc?-wukS{$nBvd)*iM}+fLmUChzFEe=;o$=cT;WQmHFIQ(Aa+k}#-qTk? z&Gl=Z5C9K8Bq85E&wkHz_e6Sdy{ba3B)G8R*8zAHEExhBukIpmLCIb)F9!|nFQ#{% zEj_T=2cnVh&(XhcXsCsc4 zU346j7`B)P-(06nliAf4g;8%$9*fg>`n-NdQCt?FnM@j%&F2X5R0%AV-PGI+9ebXt zVP~aq7Nl%%wXPS}enhj5QVBiqOt;-Ivm4d0Na>)Jl?K@zm{&m~&1ve$HAdkqO#Ga5 z-^tJ#BF>xyfU_{5`NXyo#P;j+g{tO(+FWN62z$Bx6eCOAs_@#2>6XgHQFZbyStrMGqCb#cJF z6>{>bwI*9b3??r9PHsj$`T#2G(V(on66R$TlLzW^4Vj6G@7VO_?4KftFq6H~Oj5Bc z+i;flNTFw^{7)%*cmZ&HdvsAJ4Le~Sd7d5vbuEu~79*Y4#5{WA+_qm`%f-rUsWI7E zKXVt^si&Lru+@ihD=rHw$yn*NtS)DUXxwhgy?5>20MSMxetb6o)@s#Pw?ComgioD* z+syzelDlIe!wAOcW9B-Hmyk@dK}BXF<5mK7)nkqa5co#PPVczn%A7Yw@S+_n@2s!6gyqpIQrXZ>=s*UsoAuJl`YFnHyZHR>+fqQe z^(}%NYwLa8`;2JdqUyC)3hmut{JoB8wX8g;s`;YTX_>|Ts>E(%h1U9uTt+igzoK!w z`oe1d7U>?a{BZN9i}H_R9lh`><^<7&7n^Y zx*~45Pq)-x2ZAwY@=~IHfZbI8eqIx`k$G+|cbrlfs9R!9df9&FE_&Ite zYm-?{iT3I^MQZkHV}c`0=W25P_6D|*<*M^F0oOY&-_w_hJ$D9b(w<3&w_`MeVEvMz znBxJS&=HCbr}4Kdvtn1V&Uo5nUV`Ze*o$lmu7LZaf~xh{pi52jffe9D`1>uL!=sG= z90gsKo^!XWB-DZ`*pOq(gFEI)4lXgl!x+2z0;}4}S~vdFA%kWw%z;@gDZ(36W`H3! zqCWyR1I8T44H9$`>C;ojkP8ZXoZ2zMDPSU^!hCitK{Xuw)iFNw!UARkUS;Y&OIBI{ z+i*(8cqPn^8oL3UAvPh@7KjAG%18`v)meorC%)io(0$!Uw-ds9xQ#(&po@=%?io+f zX<3xn*pGPII>8>#a!G-IKXT9@h9POy_W9vS**zD$)50UDAJ4CYBZD@$XjdXsDCcv| z=h6=KDi(;ZjQG&yQh_Vbf^qJU&|raGjKOA9oR{4%htFm=@GPHM*G7IUw1k&$Nb8Y-D3%fXwq4wRKb@751B%2KGAZ4K2I5^5{t=52w z$X6Y5*G^{s&4t*g)@T0)qH?Wqi2PgRa&pi(wGxBkZY+)Fgq}3TGv6~WG}yk#YCj(9 z>nGW3-nG2$c^mHAn)0e*CTL3nIkwIDXL^kdBgifA&Xb)ad!c8A{@%WvuA(o~$$dRF zmtro+Vy_-Lg!)hReVXtihOn20)oHr&w(>$H9{TN_uxM7g@NaHOktz^}`=D*NM~Ypi&NAW^P_MNFg{Dl8+IhQ3DKH*W(xbZKeGeC!y72(;%ot4T^lxRg=8umae`zm~uAHVQmG6a<9It|=3h}V&!`K5g#|XL*XcOW4tzg|rT(BgE7&4*jnzzrMRRP)8kSeUJlvqNM4Ndbx zLNY}&FaWT4){&te_+95yAZu^8pd;doLXEicoVv_ba7;fS7^2GW>wupDh_43hp&e}4 zPqtAlUO%NO=B8Fxjbq3t1Bnh~a7x6GP+D&2pU5fDDaVX;pu6Z`p!Ek&207&fW?(5G z<4DbcWU9Eu%fTJf7*k5Te&8`!K)+ZP9dixmA#(^}?km1Y zo{KAybJnvUWAq8K`CKU(Yt;y15Nr9Lf6F5sFVq|X(Pp}@lW8ur`mx? z8hZtShJqFs;z0SPibK>UAZBD_oTRggQ+ldes(+=eH)DZK@F@VDSLR?fCq26ibJyEk$>fdV*zroBhtlyC`VVyBNhk%u23?Pw&Iq_dK zVMC+oURVG1?4HITB_&`AZxb&)cJEceHfYnt;Zr!ZKn7iIu>=c#)AjH)YH#!3suu=yPRM5^VgOa_h( z7EyS*yOxT~xPnTs^aZ#0+=)&^ti$&$q>pf;U;@0bBKFrsuGV-0Wm6%Q2YIapv^74w zq=lt1WEqLZ1spj9`9cO`NJ9M$ILn|fOAxA95k_x;jBho1r~Ev&mNJIv@mf_W&l&$11$Ary7!+u^fV7h4i`{-Q{3i>Lk=UPbYM#^FgzgjLK?WMjs$ihC`x*<>p^wl| zMP!Hb8PyJ)BzhQ^RF&Iv15U1m3=ukaMlp{7JAfVMS&&0scssx5B8aL3i9x3iwPzpD zd8mO@U?FOysWX?~s3pH1hfzJ_GeJprx-?uqdP|*-b&QBm6JMwwgKLq7vng%{<^A9p)?_ZS#dtp%ex*bs~F*XPUxSjz*3W*^xV5l7C=9zIU5j$~p@T2{?31Dk^w=ZbcA)q)uc zfiovI2T#Ng^lAwVTABnN7nNlnS9p1*K=MBt5s;`V7RS?}p837v-o_{?K4>`6x0g}`aiBt(`L*T|s@&!#~zlVcZhg}A2>~s5{ z?SmZaBU?;N0+k>IEi2qimVyccokW67PA)Ob8dQ_7-L$9KR4RS@IcALSqh-s|PTUa5 zd%HnK+{|iYjaPC?GBB*nA?-U}lhZ`J0|`=A;W?6aumj1VM_7Y=dp%dj6%%Hy!-bUU zS+QLI?PFX&T)m_TTJWR9H1h*vW%NgU#7EK_@8(%=9CYbrt) zuPD`S27PQ1@{nP1++JIe0u;_5R8iCk5UR_*P(!z}$`iKnT2LtRz07*xz7@4$Y(WZH zP_iRimTwBaLK>bHS5#h99mtsPL9mu1n4x3hs({R;pp2z~`I_yuHL%?;WIu}_#zZX1 zw5?_z5In!fZcL7 zETLN&VdNNVet)M#Qf&dWFHkc64>@x>RIy+xI_9nK#$yuCmO!+)6g0ui3kVrUXVKqT%f3Ucl$+9H)*|0(641D!6twxqH zCSnd4x1=2$@K4aAAN`0YXkj=3haj5APt4)Y;Xm6@i%J#O3b*as4Z>=M^+|FXV#L5{ z1O!C=h83+niChQ#!+jdyuf4;p5c8@KqiCGki3DtQXFRdt?e091FdY8_XmY*;H181* zig#iv(iMear;}r)=^34J&iJxSVJ^Wj6osk@yNz#8-^U3((Y^s9?R8+$PO0Nf9nTvtHoMBf+6>+4&Hw9N5b(MXT3)qdx1ZD@*$SR zf>~NX0Fm0DIt`YMq!{p&xcm4tM@uwwis2F9L79Jx%8C}obh6nZuYy=)ai;!_?*O1! z!pj_uTN*}0$*_l%B0kDPG-e1tYhYge0Pi*TRd(12)VC1ONk`y8dnL!cJ^f%`z`r#3 zxeamEUOJLh>E~#A6m191uPV zhAc_T-bhiCK4mMqY>`h)hmj6>_3LWjY3Qvf;Ibcuo7GvS?@e`>f%kHuWzMXx>EXuU66 zYRKRht^)_v9#MJ17YwLj_tpN2q%2VQ;e3|Rg~$894F6YE6f zr>*q}V*Kq*_}-{MR+0d->`+~<^B?foS-49mKI&z4hqPnkknjl02 z4?7Sk6c(1H6@nmS9?ScWu4nAZalJ8DFFo}!h8@09=IRcY<%o?xLkXq>lLxuzs3ewd z1y!@_L^~zsKDo}p4_7m-RAFwr+>_N9;$QQxG+DgB>e)0dnIDTmJW8Om-I080!<6hE zkrcwbUV{!Vfo7r30L8!8_QI^+JpUR>Z|zCKq2+`;mV%6KdIM^o&}GUtbd4XMTN?zc zQ3f-#k`~|=26OZM;59owBZUIl`+n_~=%erdr}wPsr&-D@Bmgi%3;k(;mkvG7cRoLt6vJ?!0S zj2mmzii8@@*vV1&tvNvpHlmo7Zm6%XG3V%6H@|(c8bsN44{}1#Xj=Vj4#0xjBlm^A zXwsDKI%yf7(nizyG5yVBq5J6PQuDQro)>%vWTC7b96vr}DuPo^!-?I_n{N9O`@NOI zs;Fxev z7+`)xDv2siZ|deR<_m}XDL8|pojij0+LY1&G>E2gv_>iT_vzkA(gP(|w4xjr0d8m| z$-oc_nVf0eo-RbCE#mFzKzMR=R+s0`*Ri2!J-(N(tq)D>CJBM=t?c|>cT;n~%r2kT zn~8Y43%A&zuJ?oTC7)l$W|X8}{@L zBE2gD^F^p%`XZ92weyxou?JY9*F~A?V%PPqV-4&{dge%q#&IHQk=au5JPoFQKw1o5 zKJd1M$dV@;TMA#24&Dy)r9+~GnW;{ahu$vJ7{Zc-Wu(h!N;2F9mhe4+eENRbDO|I2 z*_?f`787(1l4p9j?n2JMJhkU9hulPUb-OH4t0Px2Gm{=HW`1QTGsB2$biUqc*jJxw za2N4&0lIF~#JYY$#dxsnltNvgvLFmE+$fYm$b~4l!gp%ZknDz50hLU*;Q3`9J{3g! zYb~qpiMeHgQtv`;V|)vVp^?vbO*^q+XqpAA2R9x2KA$VcL4m_fsNwC$B)|Um$tF&L zd39pA6fkg=Ai53zkezoK5dsQ2w&qdUapCmV+z!Q`{p9Xe5Dkj2Pej!Zez1EBNb+>c zbEU55-SNs?q9exjom9Oxs;nS;Mz<$etX?egwuUX@wA1xzhZRN7TT3jWN6!^;oaM%o z)Hv}UH_H!S@p_juXl#LE{JoMe#&nDByotymFF z(qzQ(CeA@NHGf=we-S(j^NsT<w$8LH!CBdT4n~NB(nC?z`w(Z(iX%R^7CobanT^ zKJmT8`lFHH6K;?%fuqVHL6SoRBZayA z`xRNEYJW9lK(V2Jx_ zK(At$$xEXCbs1mcN_@}gC}#4R4m{{KUB#rE5yjDFf^nyHd$OV>wkk<{#%(K(KvBdD zMRSw#**L5B>o-}7W~2#cCpA-_*3>=)&XfM;%eC+GBJ>uR+Qg@e4M)+@t|Le4ChlAM ziA9$a+Dp0zZFyR|`&dFznoTK!vW!g%V`8$F#p=lWNm{|CGXxH+%{`{`WpIWnYNwlv z;WjRANTgjz3#S=Uxuw0;m{I-85a z#aN-Gbo29$n^y~q)XKm9Fl}bNZbM3L3d*eRR6AVgaC!fTar~c3a5=PY1_m4e_zDO3 zR|tudiLJ-B-+nad@!fH4VCGG3dTrP*Mz#%v`CE%yaN zQZ9|)(uZHFY1f$`$VFHWHI(Q%7L{uDYLlO7b8?A`-M8i0TBt*Q1Z#z+#9yA685!njI?yLq}~StE8w>(0!5JtN^@OOQ97} zWFC*a!={!Yf$X`DlDJq|uC4=Vxg&qgCNP{TS>hH6z`}ndR(7v*lXP1YpjOncBoT~w z0l-}0Q%r@(bppFxzln%L9L{uCPLdIIMiG09F;HLcopDrYMj_Kqxl25AWzB>JJ7eKR zdefyagGTC!GyZfqCOeZWIFWW-7kDIBlVAmw$THB(w$ow39-#O7i98ak@nU7ZeJ5Mv zZwAj^x{m3B>G23wHdGN{l@AyphOWeyl2A?+goOV>$5>cJgN{yi?Ih6*%jhGS!$ti1&tpsCTNETZIjG)1Gz+5f~-LP%f$BLOAo|SKan;l&uDEy4xRB=y}Bm- zl2Plr8(hhid6~}0B9KpOnW5Hc2RhHypv-E-8_^A zI^D+yD(^rCKWW2lGR3$!671s{VnU5O)%3jlk_j}Oa1E2^gj^BGMkF>*!*i)$?ds?5{BL#)e{N|DKF2FWpLdyXyelluFL#_ZN+ewkch9c z9azP2lj#m+gCkG6_D0+|JGEtAMm${>1mtI;jotLk+2dUm%kk2?%ri!7S4)7m&R`{McfYM0%_oHPr88N&g9 z|7^C#k)m}*9%|M^7rX}2F_v$4z80J zGdK}58FQCT(rQv5$xL1y!D17ntSQ&f(d{0A1D>p{kkDPJzJeaw%+d+Ejs3}3kTmWb z#OW9hTVz=)AS$O!AV=4YvA4g7r#}`87oD$JsmIj)O+~RsNi8IAH;L zy$EwNM3eyBB+H&c0n`Z+ruc;Ct;H)A0Og_Kj&Qioo z-AD{wL{YK$`G9Q@$_XEmW}Hu&y92$!ctSx^lkDfWyWCsR%OG ze{_R_5`hyl`}O>SW=+w^Y&Y>A_|bhVTS$ri8RM6AKwj%XtLx^IH&?ASMy^FdOxF#h zc=aoGIzBIM=?pDRu7k1RWWXLjFW-hqta&~tIQ^kUTQVu<7%0|*On8qdt|$l9soqT$ z^xMmg9^<>3z8G1@_}pH#&?A`8zFIt3G=SBVG592{ML5xx2o>hbFAO=%@9C_DG&aP% zTgFGnq+L8tNfL!^@X!^*cHi2zW9ff@3Ce$Xd$*B+DA37YseiL(VoaE8YdL)bX67rP zKDl&5nFlO*Sy8z|3325sCdP5Ci;O~L!TJwu!)+3tJbO1(me@Y#y}#VlgK6j#PoHE| zd{8X<5Ni>H?Z=iB8`*ri_n5`DE><<7$?scNk)YPqe1@Sz;ya%M0^(4QKU1!L{Pk&JN>-J1SA&S{$FYOcI5lx$msNMstJ(@=(x?}r6`>6~ zI_cTmv{o{zBSCM~4vXowkiLs#-^2 zsB^#yKWL6fVCwimom)9u(PgY)>Gd1$of@hg$Ph<22w+_3J+K)N+y5qC$hrC&x&z#NQ41Y8#tk1!WZH`Yl zZ#Qh#ocdTfEdljXgO+H~iwK%%TW)vXt>uM{aw~o8e|5UwdB~) z?slp2yrtfmzrJVdMRuLB3uzRcUiHPNrb0Lndbz_sYns8`TZ}e*-f|YG=+X(Z+57yf z3&FZeHIK%7AXP54=UqDRgb&sshs@E+sy+1}+=hKih}HQ?6M^7|s_;WP8jnjqr801DEEj%jv^}mFT>NU zaFrw8$0-+Y>l?4o{Fj$H{zR^igx%5Y+&ixhu1BsPkDM=uHZp&_wY0~xW@*ti`b(SC zH(+1X6()#M!x5tYvfzm<3^O^Ez|Gn`xrs0)gJDoHEqCqDw;*AzcAY{tQu_Voo(tC@ zKp#-pLc^RDeaRtD2ZLW$Ip#pAba&I^$Z zYgQw8?Tg;X98w~BCfbN@ZIMpZ1Vn6Y%n!)~;3d_zM^vi$@lkI?Ha6p|O;X_SLN%km zHXwvr>ev+xx2{^oChb8rh~_gb1&JG1BSa7D<88Wy>y(?+>E`H6&okdSDmtev#z3aJ zOzzfcPDi=o(F{)2RDyJd(Nfe4vM1?7`pk`K&{2pUu01$<4mDNWGZO0=ty!Fb?| zU1xnp(Br9gFB+|TohhhhiaH>RJ`TAfjbG5Nr}NP#$1#2ej(7|>8dw%$8a`EZa+(ph zn4ZnxIioSh&K^G;$o7ihPgfGt+g4ZmYqc(#6cJ+MZc}KWGm#iAii7&R4q*MxIoVF7 z_MbD$tK=o);xX1g^4F*M5^F3XqBJHG3mfNEvhx)S3L9^W8kD?Q+nA6TLn1yul##V%Ak8eX*KCJSCOj=2d z8vr(eIuvVPV`0iYCP}AJIyRnO1U8=2i%%I$LE`ojlh^O5p&>HxVEIbD-6h5h4Acnl z5z4+dX2%6H@4C5J0JN4~&h zOB9*r@Y)zWqeWowPD!G z&b2;szE+QTdq6WysOtVrx5Vb!tcY4`_O{3MR$MC7H-JmF5fxZr%peWdqtVjZ3qZ}fDhe7(00>_Y{XuvaB!mv41 z60>WhEFt)h=N||X&_Br*oNTV(ADO5Naw1_-%=3l7S4&KPaP*ci5Sl4tUwt5M82>#D z*^iA{?eOa? zWWE^ajoRcR2Ir^gwrccMi$0Mbcul+S?BtfR2MP9*V$R~{x%{fIb()|;DIwzP%6`<_ zF`5(KbS~}0?EPg5yDctE*29>X-$`XB?oav=*IBd{tH0nrpX_xZQG>^GD&01iJRwPC z=?d=uIvat}aRq%fwy4U1zuSp#1JR3eIX13JjKAIKX$?UL#l_hb!AHm;S3mJw=sV3$ zK-U|ZKFv;-t18PCG>A=|md>Ee%WhB-VGAlHPXP(6!27Pc9C;g$y9!U!*rm7uUNIlD z{fV{vNg6?MQ%N`>d!B*OurTQ3@%zY%>~$Qj{;$FyO1n~$QF+T2nm#E681+&T5Ssg8 zf;zN4AghS`2hLlmZ-7A6Qlk4GsXfw`zBkFZc^w}>{!+ojh$LLp8YN-S4~l=|S0-=i zgkJcGRmy+{zZtq7)PdWW201ySQXtxLBMB0t>pZ=;vi{%IvYnA3{BCZW zibvs~inQ%NQd%rarT=8}&l>&3qV*3NoquET|I7a`F8c}p%>2(RmZ(LL*Fi0_YAT?Q zFR@&EZdG~)w=%BH(r&Z|k$7Ou+3#T+6X%8&_o`Xecm(9Vx)h9xu6%8Es?b$jeJlMA z!;@zY8CAH{AIVFIpjEqUxU_$3Yc-mK8hqK2YQ$K4ta4;g*$QxRLP=}|yBG^1U@v1O zSdr^KT)U649V&m(wQBHq)j5XQnlm#B*<>u^**o2S<$^gs%{`qWts+b@2zLJc^i-Npk@$x|mc3o((l| z4z{-u`FOqiI!T>s&oizc8Yk6~U0iC7(F5Uc!-3i_YV3FwgYl(oomOgKXpyP78uULs z85F;LGrKaodOW=Y?f&wB`GV-GJ!bN=LN_b%dqtO0^w&Fv&Qq;Jj9*G`5uN!HV6Sc2 zGe>UIxwlagZiJqD(LG414Dn>m(OBnC(>%vDckv9tc4|h=Ub6;XQKDy(!H2wOe&2=T zmc*W3F7tpY)mxXd?aV!#^LAOiEwWW!TuWpfC7Qfb-0bDgG{2wzyPaa!I`v}x!~1&% z1puJ`^9{n)#PG|%nK;iA73J3$kcYM?F1SU!izTICEJVVUkSMTSoOgcRsekvU6)>_b?{{8VG;M&ZTfx5uqy}k_%DbTYL z`V#O7EaM@%R$cEm#|2}ADIcdJ`(lKcJe#6rf91&q4Qx$S2hj^~%PNOj@cfd#QjOrS zH2(CL2*0vYwAPs3i(U)#PX&D`Unmul{BN}M@dg^L_JsRBp$e`^%{LXZ7Ej|ch}!r% zSTPcPdgKxP&Zob-f+7K9+AVbQIYp+pMAX0yzcDEe=o{|fdxAo2@XG?9>;jua43RSr zdq@%yUlE>z2#pz_&WGqQb5_HBz^p|3+O()|P9Gb{3tKZT2=}0;d=|Xee<97&_0otQ==o;46ysb zXfD<7H%Z?@XWW*c<<9H3jv~{THdo-uw=r_@puPp-Q{rKzb}6yYFTyhuq2VINKU}nw z2GZ(2l1BoIM}F~GXx(c3`mObgBg}M!CvxuD?D@CO^P?&MgBQoh*(ZUEK-8&Uh~uLI zMy(c!id4DJ&wJj#t9#IX{Q9tG|4(c8RY=AUrH_w^rD6ZgYGwNI&A+mNp|!~$R;%?y zExT0)bl(qI;1_WRwj$GuewQ*4O=r0?A;wPHnx*TsjFQOtB|ObgP>#$?}P07xs#1*%%(Ug88k);HT-HpL6k zz=2GvF~mCKCM~MQQ-W$TN#+#O6xGyEi=l=mn_@^Bc2<|;m6?dr>N)mY@Ja2tVY6X7 zA&6o@6rX1nS&byz-;wo!qc-}-soCe)ROi|>j?m;&fpxP=E8dasoZ`eA)5Yx1n@@kg z*fC6t;DIfssI`;40mXI(E1>I+sncN}Y%vhwxJ&7~v(4CH4n7jk(33ud22|h~+7E+0 z%vMUwjsz#p2GK&qUE@HMa9-;_hOe~6+wER!e5vkn$qVU+(R*+#{T{6*VxbS?ViS@Q zbOVSccbRfPN4nt&5jWU}oQ=cQk5WXEIkOie$9ff>H-ybiSqnBu#05>w&{av+j5 zev++C%w*ra`uQqG$awVAq1KI&X=vD-$ITq4^(_^}Cv`sKEOPvQ)!sBC9*#}Se0x#L zfvrxCtza^hvp9d7J4x?~^sFl=-0n%v`8R~UL2&~gfeWmL)*F&d0w;>6#nbmV^(Q5J z@t}cN7iySgM_*e!a&9$r3pS5Lgxjo8g!+s)IC{cslUP=^j#&P)-pXHBKWI0j&}A=KqEWHKLzmP!}k9T zSovtWh&V;*kARh-Er>4Rk#Fe*>7<1h0w(f^;1pqYjIA~fHn?%t8=XHa+Fg<^1fdV; zAG`E`zsWNRMoE_gYU`A6@=ydpD0N{<7jZoFCi|e!)rS)FMGJ|A#cRxywl)j2DLR<0 zEvXR(C2RaBsM75-b0eL&dX{ey62`@Jb3GkYQsX$Y(^wZH>{f8?Wrlg_dl-B0`w$rB z!B8?|{E;MnFpI(=;|qg)qBLWSq~xs@hV3;k}S)uh$vGZi$g08Zh!nt2~(_BkkBr#znSC8r{__?bf*jb%1z zbpFm+XFbx?0yU4JaC&i@XTwOs?&$=k!|iNZ{5uH=EZU(3T7J7J?J%Sk${-6HOKF9j zXu;yrxN2ftOM~NFUZ{1P2^PF7ifrh?FhZckl-rNU-=F9z&wqYjGQ0|j7WS*0BPI1Y zWn--Y@$D7Mgru*-E z`TV1E{&oE?JNqa||0je0+->AvPyitNBhc{Q_8$2=@bB9&{0rLk5nlE`Hf8ub{6E7P z{{{XCa3uN*{{Io&_;*f!k7)ZBuQ!svIQ>1o?e8r99uM#@7NAsrvH17sfWO24?iTzP zoQv)+_sSV0=%L%aY0_>UjRhlGxb I|8e(!0ItTt^Z)<= literal 0 HcmV?d00001 diff --git a/Intern-basics/NYC311.ipynb b/Intern-basics/NYC311.ipynb new file mode 100644 index 0000000..7dff746 --- /dev/null +++ b/Intern-basics/NYC311.ipynb @@ -0,0 +1,1000 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "### import libraries\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib import style\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3071: DtypeWarning: Columns (48,49) have mixed types.Specify dtype option on import or set low_memory=False.\n", + " has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n" + ] + } + ], + "source": [ + "NYC311 = pd.read_csv ('311_Service_Requests_from_2010_to_Present.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unique KeyCreated DateClosed DateAgencyAgency NameComplaint TypeDescriptorLocation TypeIncident ZipIncident Address...Bridge Highway NameBridge Highway DirectionRoad RampBridge Highway SegmentGarage Lot NameFerry DirectionFerry Terminal NameLatitudeLongitudeLocation
03231036312/31/2015 11:59:45 PM01-01-16 0:55NYPDNew York City Police DepartmentNoise - Street/SidewalkLoud Music/PartyStreet/Sidewalk10034.071 VERMILYEA AVENUE...NaNNaNNaNNaNNaNNaNNaN40.865682-73.923501(40.86568153633767, -73.92350095571744)
13230993412/31/2015 11:59:44 PM01-01-16 1:26NYPDNew York City Police DepartmentBlocked DrivewayNo AccessStreet/Sidewalk11105.027-07 23 AVENUE...NaNNaNNaNNaNNaNNaNNaN40.775945-73.915094(40.775945312321085, -73.91509393898605)
23230915912/31/2015 11:59:29 PM01-01-16 4:51NYPDNew York City Police DepartmentBlocked DrivewayNo AccessStreet/Sidewalk10458.02897 VALENTINE AVENUE...NaNNaNNaNNaNNaNNaNNaN40.870325-73.888525(40.870324522111424, -73.88852464418646)
33230509812/31/2015 11:57:46 PM01-01-16 7:43NYPDNew York City Police DepartmentIllegal ParkingCommercial Overnight ParkingStreet/Sidewalk10461.02940 BAISLEY AVENUE...NaNNaNNaNNaNNaNNaNNaN40.835994-73.828379(40.83599404683083, -73.82837939584206)
43230652912/31/2015 11:56:58 PM01-01-16 3:24NYPDNew York City Police DepartmentIllegal ParkingBlocked SidewalkStreet/Sidewalk11373.087-14 57 ROAD...NaNNaNNaNNaNNaNNaNNaN40.733060-73.874170(40.733059618956815, -73.87416975810375)
\n", + "

5 rows × 53 columns

\n", + "
" + ], + "text/plain": [ + " Unique Key Created Date Closed Date Agency \\\n", + "0 32310363 12/31/2015 11:59:45 PM 01-01-16 0:55 NYPD \n", + "1 32309934 12/31/2015 11:59:44 PM 01-01-16 1:26 NYPD \n", + "2 32309159 12/31/2015 11:59:29 PM 01-01-16 4:51 NYPD \n", + "3 32305098 12/31/2015 11:57:46 PM 01-01-16 7:43 NYPD \n", + "4 32306529 12/31/2015 11:56:58 PM 01-01-16 3:24 NYPD \n", + "\n", + " Agency Name Complaint Type \\\n", + "0 New York City Police Department Noise - Street/Sidewalk \n", + "1 New York City Police Department Blocked Driveway \n", + "2 New York City Police Department Blocked Driveway \n", + "3 New York City Police Department Illegal Parking \n", + "4 New York City Police Department Illegal Parking \n", + "\n", + " Descriptor Location Type Incident Zip \\\n", + "0 Loud Music/Party Street/Sidewalk 10034.0 \n", + "1 No Access Street/Sidewalk 11105.0 \n", + "2 No Access Street/Sidewalk 10458.0 \n", + "3 Commercial Overnight Parking Street/Sidewalk 10461.0 \n", + "4 Blocked Sidewalk Street/Sidewalk 11373.0 \n", + "\n", + " Incident Address ... Bridge Highway Name Bridge Highway Direction \\\n", + "0 71 VERMILYEA AVENUE ... NaN NaN \n", + "1 27-07 23 AVENUE ... NaN NaN \n", + "2 2897 VALENTINE AVENUE ... NaN NaN \n", + "3 2940 BAISLEY AVENUE ... NaN NaN \n", + "4 87-14 57 ROAD ... NaN NaN \n", + "\n", + " Road Ramp Bridge Highway Segment Garage Lot Name Ferry Direction \\\n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 NaN NaN NaN NaN \n", + "\n", + " Ferry Terminal Name Latitude Longitude \\\n", + "0 NaN 40.865682 -73.923501 \n", + "1 NaN 40.775945 -73.915094 \n", + "2 NaN 40.870325 -73.888525 \n", + "3 NaN 40.835994 -73.828379 \n", + "4 NaN 40.733060 -73.874170 \n", + "\n", + " Location \n", + "0 (40.86568153633767, -73.92350095571744) \n", + "1 (40.775945312321085, -73.91509393898605) \n", + "2 (40.870324522111424, -73.88852464418646) \n", + "3 (40.83599404683083, -73.82837939584206) \n", + "4 (40.733059618956815, -73.87416975810375) \n", + "\n", + "[5 rows x 53 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "NYC311.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(300698, 53)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "NYC311.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['Unique Key', 'Created Date', 'Closed Date', 'Agency', 'Agency Name',\n", + " 'Complaint Type', 'Descriptor', 'Location Type', 'Incident Zip',\n", + " 'Incident Address', 'Street Name', 'Cross Street 1', 'Cross Street 2',\n", + " 'Intersection Street 1', 'Intersection Street 2', 'Address Type',\n", + " 'City', 'Landmark', 'Facility Type', 'Status', 'Due Date',\n", + " 'Resolution Description', 'Resolution Action Updated Date',\n", + " 'Community Board', 'Borough', 'X Coordinate (State Plane)',\n", + " 'Y Coordinate (State Plane)', 'Park Facility Name', 'Park Borough',\n", + " 'School Name', 'School Number', 'School Region', 'School Code',\n", + " 'School Phone Number', 'School Address', 'School City', 'School State',\n", + " 'School Zip', 'School Not Found', 'School or Citywide Complaint',\n", + " 'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location',\n", + " 'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp',\n", + " 'Bridge Highway Segment', 'Garage Lot Name', 'Ferry Direction',\n", + " 'Ferry Terminal Name', 'Latitude', 'Longitude', 'Location'],\n", + " dtype='object')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "NYC311.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Noise - Street/Sidewalk', 'Blocked Driveway', 'Illegal Parking',\n", + " 'Derelict Vehicle', 'Noise - Commercial',\n", + " 'Noise - House of Worship', 'Posting Advertisement',\n", + " 'Noise - Vehicle', 'Animal Abuse', 'Vending', 'Traffic',\n", + " 'Drinking', 'Bike/Roller/Skate Chronic', 'Panhandling',\n", + " 'Noise - Park', 'Homeless Encampment', 'Urinating in Public',\n", + " 'Graffiti', 'Disorderly Youth', 'Illegal Fireworks',\n", + " 'Ferry Complaint', 'Agency Issues', 'Squeegee', 'Animal in a Park'],\n", + " dtype=object)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "NYC311['Complaint Type'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Loud Music/Party', 'No Access', 'Commercial Overnight Parking',\n", + " 'Blocked Sidewalk', 'Posted Parking Sign Violation',\n", + " 'Blocked Hydrant', 'With License Plate', 'Partial Access',\n", + " 'Unauthorized Bus Layover', 'Double Parked Blocking Vehicle',\n", + " 'Double Parked Blocking Traffic', 'Vehicle', 'Loud Talking',\n", + " 'Banging/Pounding', 'Car/Truck Music', 'Tortured',\n", + " 'In Prohibited Area', 'Congestion/Gridlock', 'Neglected',\n", + " 'Car/Truck Horn', 'In Public', 'Other (complaint details)', nan,\n", + " 'No Shelter', 'Truck Route Violation', 'Unlicensed',\n", + " 'Overnight Commercial Storage', 'Engine Idling',\n", + " 'After Hours - Licensed Est', 'Detached Trailer',\n", + " 'Underage - Licensed Est', 'Chronic Stoplight Violation',\n", + " 'Loud Television', 'Chained', 'Building', 'In Car',\n", + " 'Police Report Requested', 'Chronic Speeding',\n", + " 'Playing in Unsuitable Place', 'Drag Racing',\n", + " 'Police Report Not Requested', 'Nuisance/Truant', 'Homeless Issue',\n", + " 'Language Access Complaint', 'Disruptive Passenger',\n", + " 'Animal Waste'], dtype=object)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "NYC311['Descriptor'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Complaint TypeCitycount
0Animal AbuseARVERNE38
1Animal AbuseASTORIA125
2Animal AbuseBAYSIDE37
3Animal AbuseBELLEROSE7
4Animal AbuseBREEZY POINT2
\n", + "
" + ], + "text/plain": [ + " Complaint Type City count\n", + "0 Animal Abuse ARVERNE 38\n", + "1 Animal Abuse ASTORIA 125\n", + "2 Animal Abuse BAYSIDE 37\n", + "3 Animal Abuse BELLEROSE 7\n", + "4 Animal Abuse BREEZY POINT 2" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Complaint_type_city = pd.DataFrame({'count':\n", + " NYC311.groupby(['Complaint Type','City']).size()}).reset_index()\n", + "Complaint_type_city.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Borough Complaint Type Descriptor \n", + "BRONX Animal Abuse Chained 132\n", + " In Car 36\n", + " Neglected 673\n", + " No Shelter 71\n", + " Other (complaint details) 311\n", + " ... \n", + "Unspecified Noise - Vehicle Engine Idling 11\n", + " Posting Advertisement Vehicle 1\n", + " Traffic Truck Route Violation 1\n", + " Vending In Prohibited Area 2\n", + " Unlicensed 5\n", + "Length: 288, dtype: int64" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "NYC311.groupby(['Borough','Complaint Type','Descriptor']).size()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "import datetime" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3071: DtypeWarning: Columns (48,49) have mixed types.Specify dtype option on import or set low_memory=False.\n", + " has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n" + ] + } + ], + "source": [ + "NYC311_df = pd.read_csv(\"311_Service_Requests_from_2010_to_Present.csv\", parse_dates=[\"Created Date\", \"Closed Date\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "NYC311_df['Request_Closing_Time'] = NYC311_df['Closed Date'] - NYC311_df['Created Date']" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAAG/CAYAAADLpNdaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdBklEQVR4nO3dcbCddX3n8fdHoshoYUACSxM0WOO2QCuWNLLrbqumG1hmuqALY2wrmcqYLourdjrTEWd3sdq0OtNKxVnZpUtqoK3AWh1oK2IKutYuCwRKjQFZsmIlgpAaRLoVNPG7f5zflZPL5Sbm5uY53N/7NXPmnPN9nt9zv4fDzec+z/M7z0lVIUlSr54zdAOSJA3JIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1bdHQDRxoRx99dC1btmzoNiRJE+SOO+74+6paPNOyBReEy5YtY/PmzUO3IUmaIEn+7pmWeWhUktQ1g1CS1DWDUJLUNYNQktQ1g1CS1DWDUJLUNYNQktQ1g1CS1DWDUJLUNYNQktS1vQZhkucnuS3J3ybZmuQ3W/2oJJuS3Nfujxwbc1GSbUnuTXL6WP3UJFvaskuTpNUPTXJNq9+aZNnYmLXtZ9yXZO2BfPGSJO3LHuGTwOuq6hXAKcAZSU4D3gXcVFXLgZvac5KcCKwBTgLOAD6S5JC2rcuAdcDydjuj1c8HHq2qlwGXAB9o2zoKuBh4FbASuHg8cCVJmqu9BmGN/EN7+tx2K+AsYGOrbwTObo/PAq6uqier6n5gG7AyyXHA4VV1S1UVcOW0MVPb+jiwqu0tng5sqqqdVfUosImnwlOSpDnbp3OESQ5JchfwCKNguhU4tqoeAmj3x7TVlwAPjA3f3mpL2uPp9T3GVNUu4DHgRbNsS5KkA2KfgrCqdlfVKcBSRnt3J8+yembaxCz1/R3z1A9M1iXZnGTzjh07ZmlNkqQ9/VCzRqvqW8DnGB2efLgd7qTdP9JW2w4cPzZsKfBgqy+dob7HmCSLgCOAnbNsa3pfl1fViqpasXjxjN+7KEnSjPb6xbxJFgPfq6pvJTkM+HlGk1muB9YC72/317Uh1wN/kuSDwI8ymhRzW1XtTvJ4m2hzK3Ae8OGxMWuBW4BzgJurqpLcCPz22ASZ1cBFc33Rc3XRJ7YM3cKc/c4bfnLoFiRpIuzLN9QfB2xsMz+fA1xbVX+e5Bbg2iTnA18DzgWoqq1JrgXuBnYBF1bV7ratC4CPAocBN7QbwBXAVUm2MdoTXNO2tTPJ+4Db23rvraqdc3nBkiSN22sQVtUXgVfOUP8msOoZxqwH1s9Q3ww87fxiVT1BC9IZlm0ANuytT0mS9odXlpEkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdW2vQZjk+CSfTXJPkq1J3tHq70ny9SR3tduZY2MuSrItyb1JTh+rn5pkS1t2aZK0+qFJrmn1W5MsGxuzNsl97bb2QL54SZIW7cM6u4Bfr6o7k/wIcEeSTW3ZJVX1u+MrJzkRWAOcBPwo8JdJXl5Vu4HLgHXA/wY+BZwB3ACcDzxaVS9Lsgb4APDGJEcBFwMrgGo/+/qqenRuL1uSpJG97hFW1UNVdWd7/DhwD7BkliFnAVdX1ZNVdT+wDViZ5Djg8Kq6paoKuBI4e2zMxvb448Cqtrd4OrCpqna28NvEKDwlSTogfqhzhO2Q5SuBW1vpbUm+mGRDkiNbbQnwwNiw7a22pD2eXt9jTFXtAh4DXjTLtiRJOiD2OQiTvBD4U+CdVfVtRoc5fww4BXgI+L2pVWcYXrPU93fMeG/rkmxOsnnHjh2zvg5JksbtUxAmeS6jEPzjqvoEQFU9XFW7q+r7wB8AK9vq24Hjx4YvBR5s9aUz1PcYk2QRcASwc5Zt7aGqLq+qFVW1YvHixfvykiRJAvZt1miAK4B7quqDY/XjxlZ7PfCl9vh6YE2bCXoCsBy4raoeAh5Pclrb5nnAdWNjpmaEngPc3M4j3gisTnJkO/S6utUkSTog9mXW6KuBNwNbktzVau8G3pTkFEaHKr8K/CpAVW1Nci1wN6MZpxe2GaMAFwAfBQ5jNFv0hla/ArgqyTZGe4Jr2rZ2JnkfcHtb771VtXP/XqokSU+31yCsqi8w87m6T80yZj2wfob6ZuDkGepPAOc+w7Y2ABv21qckSfvDK8tIkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrpmEEqSumYQSpK6ZhBKkrq21yBMcnySzya5J8nWJO9o9aOSbEpyX7s/cmzMRUm2Jbk3yelj9VOTbGnLLk2SVj80yTWtfmuSZWNj1rafcV+StQfyxUuStC97hLuAX6+qnwBOAy5MciLwLuCmqloO3NSe05atAU4CzgA+kuSQtq3LgHXA8nY7o9XPBx6tqpcBlwAfaNs6CrgYeBWwErh4PHAlSZqrvQZhVT1UVXe2x48D9wBLgLOAjW21jcDZ7fFZwNVV9WRV3Q9sA1YmOQ44vKpuqaoCrpw2ZmpbHwdWtb3F04FNVbWzqh4FNvFUeEqSNGc/1DnCdsjylcCtwLFV9RCMwhI4pq22BHhgbNj2VlvSHk+v7zGmqnYBjwEvmmVb0/tal2Rzks07duz4YV6SJKlz+xyESV4I/Cnwzqr69myrzlCrWer7O+apQtXlVbWiqlYsXrx4ltYkSdrTPgVhkucyCsE/rqpPtPLD7XAn7f6RVt8OHD82fCnwYKsvnaG+x5gki4AjgJ2zbEuSpANiX2aNBrgCuKeqPji26HpgahbnWuC6sfqaNhP0BEaTYm5rh08fT3Ja2+Z508ZMbesc4OZ2HvFGYHWSI9skmdWtJknSAbFoH9Z5NfBmYEuSu1rt3cD7gWuTnA98DTgXoKq2JrkWuJvRjNMLq2p3G3cB8FHgMOCGdoNR0F6VZBujPcE1bVs7k7wPuL2t996q2rmfr1WSpKfZaxBW1ReY+VwdwKpnGLMeWD9DfTNw8gz1J2hBOsOyDcCGvfUpSdL+8MoykqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrhmEkqSu7TUIk2xI8kiSL43V3pPk60nuarczx5ZdlGRbknuTnD5WPzXJlrbs0iRp9UOTXNPqtyZZNjZmbZL72m3tgXrRkiRN2Zc9wo8CZ8xQv6SqTmm3TwEkORFYA5zUxnwkySFt/cuAdcDydpva5vnAo1X1MuAS4ANtW0cBFwOvAlYCFyc58od+hZIkzWKvQVhVnwd27uP2zgKurqonq+p+YBuwMslxwOFVdUtVFXAlcPbYmI3t8ceBVW1v8XRgU1XtrKpHgU3MHMiSJO23uZwjfFuSL7ZDp1N7akuAB8bW2d5qS9rj6fU9xlTVLuAx4EWzbOtpkqxLsjnJ5h07dszhJUmSerO/QXgZ8GPAKcBDwO+1emZYt2ap7++YPYtVl1fViqpasXjx4tn6liRpD/sVhFX1cFXtrqrvA3/A6BwejPbajh9bdSnwYKsvnaG+x5gki4AjGB2KfaZtSZJ0wOxXELZzflNeD0zNKL0eWNNmgp7AaFLMbVX1EPB4ktPa+b/zgOvGxkzNCD0HuLmdR7wRWJ3kyHbodXWrSZJ0wCza2wpJPga8Bjg6yXZGMzlfk+QURocqvwr8KkBVbU1yLXA3sAu4sKp2t01dwGgG6mHADe0GcAVwVZJtjPYE17Rt7UzyPuD2tt57q2pfJ+1IkrRP9hqEVfWmGcpXzLL+emD9DPXNwMkz1J8Azn2GbW0ANuytR0mS9pdXlpEkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHXNIJQkdc0glCR1zSCUJHVtr0GYZEOSR5J8aax2VJJNSe5r90eOLbsoybYk9yY5fax+apItbdmlSdLqhya5ptVvTbJsbMza9jPuS7L2QL1oSZKm7Mse4UeBM6bV3gXcVFXLgZvac5KcCKwBTmpjPpLkkDbmMmAdsLzdprZ5PvBoVb0MuAT4QNvWUcDFwKuAlcDF44ErSdKBsNcgrKrPAzunlc8CNrbHG4Gzx+pXV9WTVXU/sA1YmeQ44PCquqWqCrhy2pipbX0cWNX2Fk8HNlXVzqp6FNjE0wNZkqQ52d9zhMdW1UMA7f6YVl8CPDC23vZWW9IeT6/vMaaqdgGPAS+aZVuSJB0wB3qyTGao1Sz1/R2z5w9N1iXZnGTzjh079qlRSZJg/4Pw4Xa4k3b/SKtvB44fW28p8GCrL52hvseYJIuAIxgdin2mbT1NVV1eVSuqasXixYv38yVJknq0v0F4PTA1i3MtcN1YfU2bCXoCo0kxt7XDp48nOa2d/ztv2pipbZ0D3NzOI94IrE5yZJsks7rVJEk6YBbtbYUkHwNeAxydZDujmZzvB65Ncj7wNeBcgKramuRa4G5gF3BhVe1um7qA0QzUw4Ab2g3gCuCqJNsY7QmuadvameR9wO1tvfdW1fRJO5Ikzcleg7Cq3vQMi1Y9w/rrgfUz1DcDJ89Qf4IWpDMs2wBs2FuPkiTtL68sI0nqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnqmkEoSeqaQShJ6ppBKEnq2pyCMMlXk2xJcleSza12VJJNSe5r90eOrX9Rkm1J7k1y+lj91LadbUkuTZJWPzTJNa1+a5Jlc+lXkqTpDsQe4Wur6pSqWtGevwu4qaqWAze15yQ5EVgDnAScAXwkySFtzGXAOmB5u53R6ucDj1bVy4BLgA8cgH4lSfqB+Tg0ehawsT3eCJw9Vr+6qp6sqvuBbcDKJMcBh1fVLVVVwJXTxkxt6+PAqqm9RUmSDoS5BmEBn0lyR5J1rXZsVT0E0O6PafUlwANjY7e32pL2eHp9jzFVtQt4DHjRHHuWJOkHFs1x/Kur6sEkxwCbknx5lnVn2pOrWeqzjdlzw6MQXgfw4he/ePaOJUkaM6c9wqp6sN0/AnwSWAk83A530u4faatvB44fG74UeLDVl85Q32NMkkXAEcDOGfq4vKpWVNWKxYsXz+UlSZI6s99BmOQFSX5k6jGwGvgScD2wtq22FriuPb4eWNNmgp7AaFLMbe3w6eNJTmvn/86bNmZqW+cAN7fziJIkHRBzOTR6LPDJNndlEfAnVfXpJLcD1yY5H/gacC5AVW1Nci1wN7ALuLCqdrdtXQB8FDgMuKHdAK4ArkqyjdGe4Jo59CtJ0tPsdxBW1VeAV8xQ/yaw6hnGrAfWz1DfDJw8Q/0JWpBKkjQfvLKMJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrBqEkqWsGoSSpawahJKlrz4ogTHJGknuTbEvyrqH7kSQtHBMfhEkOAf4L8K+BE4E3JTlx2K4kSQvFoqEb2AcrgW1V9RWAJFcDZwF3D9qVBnfRJ7YM3cKc/M4bfnLoFubs2f4ewMJ4HzQ3z4YgXAI8MPZ8O/Cq8RWSrAPWtaf/kOTeg9TbfDka+Pv5/AHvn8+NLxzz+j74Huwz34fhzfu/SQfBS55pwbMhCDNDrfZ4UnU5cPnBaWf+JdlcVSuG7qN3vg+TwfdheAv9PZj4c4SM9gCPH3u+FHhwoF4kSQvMsyEIbweWJzkhyfOANcD1A/ckSVogJv7QaFXtSvI24EbgEGBDVW0duK35tmAO8z7L+T5MBt+H4S3o9yBVtfe1JElaoJ4Nh0YlSZo3BqEkqWsGoSSpawahJOlpkpywL7WFwMkyA0vyYaZdIGBcVb39ILbTtSSLgbcCyxibUV1Vbxmqp574uzBZktxZVT89rXZHVZ06VE/zZeI/PtGBze3+1YwuKn5Ne34ucMcgHfXrOuCvgL8Edg/cS4/8XZgASX4cOAk4IskbxhYdDjx/mK7ml3uEEyLJZ4HVVfW99vy5wGeq6rXDdtaPJHdV1SlD99E7fxeGleQs4Gzg37DnxUseB66uqv81SGPzyD3CyfGjwI8AO9vzF7aaDp4/T3JmVX1q6EY65+/CsM6pqjcneXdV/fbQzRwMBuHkeD/wN+2vYYCfA94zXDtdegfw7iTfBb7L6ILvVVWHD9tWd/xdGNapSV4CvDHJZUz74oOq2jnzsGcvD41OkCT/hKe+YurWqvrGkP1IQ/F3YThJ3g5cALwU+Dp7BmFV1UsHaWwe+fGJCZEkwM8Dr6iq64DnJVk5cFtdycgvJ/lP7fnxvgcHn78Lw6qqS6vqJxhd1/mlVXXC2G3BhSC4Rzgx2iGI7wOvq6qfSHIkowkCPzNwa93wPZgMvg+TJckxjM0WraqvDdjOvHCPcHK8qqouBJ4AqKpHgecN21J3fA8mg+/DBEjyC0nuA+4H/ifwVeCGQZuaJwbh5PhekkNoHyhuH+7+/rAtdcf3YDL4PkyG3wJOA/5PVZ0ArAL+etiW5odBODkuBT4JHJNkPfAFoIupyxNk6j041vdgUP4uTIbvVdU3geckeU5VfRZYkJ+z9RzhBGlXdFjFaJbWTVV1z8AtdWfsPQC42fdgGP4uDC/JXzL6YP3vAEcDjwA/U1X/fNDG5oFBOCGS/BiwvaqeTPIa4KeAK6vqW8N21pckPw38C0aH5f66qu4cuKUutUOjx7LnNV8X3CSNSZbkBcB3GB05/CXgCOCP217igmIQTogkdwErGF3w+dPAnwH/tKrOHLKvniT5z4yua/mnjPZEzgb+R1X91qCNdSbJfwAuBh5mdM3XqQsb/NSgjXWk/SFyY1X9/NC9HAwG4YSYutJ7kt8AvlNVH07yN1X1yqF760WSe4BXVtUT7flhwJ3tM1U6SJJsYzRzdMHteTybJLkeeHNVPTZ0L/PNS6xNju8leRNwHvALrfbcAfvp0VcZfV7qifb8UOD/DtZNvx4AFvw/vs8CTwBbkmwC/t9UcSF+HZZBODl+Bfh3wPqqur99AeYfDdxTb54EtrZffBhd3eQLSS6FhfkPwIT6CvC5JH/B6D0BoKo+OFxLXfqLdlvwPDQ6QZI8D3h5e3rv1NfQ6OBIcgGjPw6/z+jc1HfGl1fVxiH66k2Si2eqV9VvHuxeetc+w0lV7Ri6l/lkEE6INlN0I6PDcwGOB9ZW1ecHbKsLSRYx+pzaW4C/YzRL7njgD4F3+weJetKu9Xox8DZG/xY9B9gFfLiq3jtkb/PFIJwQSe4AfrGq7m3PXw58rKpOHbazhS/JJYy+/+7XqurxVjsc+F3gH6vqnUP215skf0a7qsyYxxh9g/1/m5rMpPmR5NeAM4F1VXV/q70UuAz4dFVdMmR/88EgnBBJvjh9evhMNR147XqKL69pvwxtCvmXq2r5MJ31KcmHgMXAx1rpjcA3gMOAw6vqzUP11oMkfwP8q6r6+2n1xYwufr7gZrI7WWZybE5yBXBVe/5LwB0D9tOTmh6Crbg7iX8pHnyvrKqfHXv+Z0k+X1U/m2TrYF3147nTQxBG5wmTLMiZ7F5rdHJcAGwF3s7om9LvZjSLVPPv7iTnTS8m+WXgywP007vFSV489aQ9Pro9/e4wLXVltv/GC/K/v4dG1b0kS4BPMJolegej81M/w+hQ3Our6usDttedJGcC/5XRZzgDnAD8e+BzwFur6veH627hS7Kbsc8Nji8Cnl9VC26v0CAcWJItPH1iwA94jvDgSfI64CRGv/Bbq+qmgVvqVpJDgR9n9F582Qkymk8G4cCSLGd0ceEHpi16CfBgVW07+F1JB1+S11XVzUneMNPyqvrEwe5JfXCyzPAuYfRZtb8bL7YZWpfw1OXWpIXu54Cbmfn/+WJ0+Fo64NwjHFiSL1XVyc+wbEtV/eTB7kmSeuKs0eE9f5Zlhx20LqQJkeQdSQ7PyH9PcmeS1UP3pYXLIBze7UneOr2Y5Hz8HKH69Jaq+jawGjiG0QXp3z9sS1rIPEc4vHcCn0wy/gH6FcDzgNcP1pU0nLT7M4E/rKq/bde/lOaF5wgnRJLXAlPnCrdW1c1D9iMNJckfAksYfX7wFcAhwOe87q7mi0EoaaIkeQ5wCvCVqvpWkqOApVX1xYFb0wLlOUJJk+afMfo+zm+1y9z9R/zGes0jg1DSpLkM+MckrwB+g9F3RF45bEtayAxCSZNmV/s2kLOAD1XVhxh9X6Q0L5w1KmnSPJ7kIuDNwL9s3wvpv1WaN+4RSpo0bwSeBH6lqr4BvBp4wbAtaSHzryxJE6WqvpHkZuAXk/wRcD/gVy9p3hiEkiZCkpcDa4A3Ad8ErmH0Ea/XDtqYFjw/RyhpIiT5PvBXwPlTXz+W5CtV9dJhO9NC5zlCSZPi3wLfAD6b5A+SrOKpy61J88Y9QkkTJckLgLMZHSJ9HbAR+GRVfWbQxrRgGYSSJla7vNq5wBur6nVD96OFySCUJHXNc4SSpK4ZhJKkrhmEkqSuGYSSpK4ZhJKkrv1/uUIsJ4PkPRoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "NYC311_df['Status'].value_counts().plot(kind='bar',alpha=0.6,figsize=(7,7))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAHSCAYAAAAqmVVxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3debxdVX3//9fbBBklqKBNEQjaIGUSJGBxoKDIV5oKzqKoOFTEfgVry9dfLK3FUm0U/Ur94ZRSRBTBeQIrIIMKDpCJJEzaQqqiBSsaZRTi5/vHWVcOh3tz783O5SY3r+fjcR93n7XXWvuzThDerr3PSaoKSZIkrb2HTXYBkiRJGzoDlSRJUkcGKkmSpI4MVJIkSR0ZqCRJkjoyUEmSJHU0fbIL0Ppl2223rVmzZk12GZIkPWQWLVr0P1W1XZc5DFR6gFmzZrFw4cLJLkOSpIdMkv/qOoe3/CRJkjoyUEmSJHVkoJIkSerIQCVJktSRgUqSJKkjA5UkSVJHBipJkqSODFSSJEkdGagkSZI68pvS9QDLb17FrHnnT8jcK+fPnZB5JUmabO5QSZIkdWSgkiRJ6shAJUmS1JGBSpIkqSMDlSRJUkcGKkmSpI4MVH2SVJL39b0+IclJo4w5NsmrJrCmVyf5eZKlSa5N8vpxjr8syZyJqk+SJBmoBt0DvCDJtmMdUFUfqaqzJrAmgE9X1d7AQcC7kjx2LIOSTJvQqiRJEmCgGnQfsAB4y+CJJDsluTjJsvZ7x9Z+UpIT2vHxbRdpWZJzW9uWSc5IclWSJUmOWNviqupW4D+BnZJ8OMnCJNckeUdfnSuTvD3J5cCL+9ofluTjSf5pba8vSZKGZ6B6sA8CRyWZMdB+GnBWVe0FnA18YJix84B9Wp9jW9uJwCVVtR9wMHBKki3XprAkjwceD/wHcGJVzQH2Av40yV59Xe+uqqdX1bnt9fRW8w+q6u/W5tqSJGlkBqoBVfVr4Czg+IFTBwCfasefAJ4+zPBlwNlJXkFvtwvgUGBekqXAZcBmwI7jLOulbfw5wBuq6jbgJUkWA0uA3YHd+vp/emD8R4EVVfXO4SZPckzb7Vq4+s5V4yxNkiQZqIZ3KvA6YE07STVM21x6O1z7AouSTAcCvLCq9m4/O1bVdf2DkryzPXS+dIRrfbqNfUpVfTHJzsAJwLPabtj59ILakDsGxn8HODjJZgyjqhZU1ZyqmjNti8GNOUmSNBoD1TDaDtBn6IWqId8BjmzHRwGX949J8jBgh6q6FHgrsA2wFXABcFyStH77DHO9E4cC1xhL3JpeaFrVHlA/bJT+/wZ8DfhsC3mSJGkdMlCN7H1A/6f9jgdek2QZ8ErgzQP9pwGfTLKc3m2491fVr4CTgU2AZUlWtNedVNXV7RrXAGcAV4xhzP8FFgOfaOFPkiStI6ka7s6VNlabzpxdM48+dULmXjl/7oTMK0lSF0kWtQ96rTV3KiRJkjoyUEmSJHVkoJIkSerIQCVJktSRgUqSJKkjA5UkSVJHfsmjHmDP7Wew0K83kCRpXNyhkiRJ6shAJUmS1JGBSpIkqSMDlSRJUkcGKkmSpI4MVJIkSR0ZqCRJkjoyUEmSJHVkoJIkSerIQCVJktSRgUqSJKkjA5UkSVJHBipJkqSODFSSJEkdGagkSZI6MlBJkiR1ZKCSJEnqyEAlSZLUkYFKkiSpIwOVJElSR9MnuwCtX5bfvIpZ886f0GusnD93QueXJOmh5g6VJElSRwYqSZKkjgxUkiRJHRmoJEmSOjJQSZIkdWSgkiRJ6mjUQJXk9oHXr05y2sSVBEkuSzJnAuadleSuJEv7fl61rq+zPkryt5NdgyRJU9XG+D1U/1lVe092EZPgb4F3TXYRkiRNRZ1u+SXZKcnFSZa13zu29jOTfDjJpUluTPKnSc5Icl2SM/vGH5rku0kWJ/lskq2GucawfZLMT3Jtu/Z7W9uLk6xIcnWSb41zLbcneWcb+70kj23tj03yxdZ+dZKntvYvJVmU5JokxwzM8+527htJ9m87bjcmObz1eXWSLyf5epIbkvxDa5+V5Pokp7d1nJ3kkCRXJPlhkv1bvy3b+3lVkiVJjuib9wtt3h8mec/QewVs3nbkzh7P+yJJkkY3lkA19B/ipUmWAv/Yd+404Kyq2gs4G/hA37lHAs8E3gJ8FXg/sDuwZ5K9k2wL/B1wSFU9GVgI/HX/hUfqk+RRwPOB3du1/6kNeTvwv6rqScDhI6znCQO3/J7R2rcEvtfGfgt4fWv/APDN1v5k4JrW/tqq2heYAxyf5NF981zWzv2m1fbsVm//e7c/cBSwN/DivlucfwT8C7AXsCvwcuDpwAn0dpkATgQuqar9gIOBU5Js2c7tDbwU2BN4aZIdqmoecFdV7V1VR43wvkiSpLU0llt+d/XfIkvyanohAuAA4AXt+BPAe/rGfbWqKsly4JaqWt7GXwPMAh4H7AZckQTg4cB3B679JyP0+TVwN3B6kvOB81r/K4Azk3wG+MII6xnplt9v++ZZRC8EQS8UvgqgqlYDq1r78Ume3453AGYDv2jzfL21Lwfuqap72/swq+96F1XVL9p78gV6oelLwE0D79XFfe/j0PhDgcOTnNBebwbs2I4vrqpVbfy1wE7Aj0d4L2j9jgGOAZi29XZr6ipJkoaxrp+hqr7je9rv3/UdD72eDqymFypetob5MlKfdvvrWcCRwJuAZ1bVsUmeAswFlibZeyi0jMG9VTVU/2rW8N4kOQg4BDigqu5Mchm9UDM4z+/XXlW/S9I/Z/971f968L3qfx+Hxgd4YVXdMFDXUwbGr3Edv79w1QJgAcCmM2cP1iVJkkbR9WsTvkMv0EDv9tXl4xj7PeBpSf4IIMkWSXYZS5/2HNWMqvoa8Ff0bnOR5AlV9f2qejvwP/R2jrq6GHhjm39akq2BGcAvW5jald5O2ng9O8mjkmwOPI/e7tpYXQAcl7Ztl2SfMYy5N8kma1GnJEkaRddAdTzwmiTLgFcCbx7rwKr6OfBq4Jw2/nv0nhkaS59HAOe1tm/Se04Les8SLU+ygt5zUFcPc+nBZ6iOH6XUNwMHt1tui+g9B/Z1YHq7/smtrvG6nN5t0qXA56tq4TjGngxsAixraz15DGMWtP4+lC5J0jqW++9O6aEy9BxaVb1psmsZtOnM2TXz6FMn9Bor58+d0PklSRqPJIuqqtP3X/pN6ZIkSR1tjF/sOemq6kzgzEkuQ5IkrSPuUEmSJHVkoJIkSerIQCVJktSRgUqSJKkjH0rXA+y5/QwW+rUGkiSNiztUkiRJHRmoJEmSOjJQSZIkdWSgkiRJ6shAJUmS1JGBSpIkqSMDlSRJUkcGKkmSpI4MVJIkSR0ZqCRJkjoyUEmSJHVkoJIkSerIQCVJktSRgUqSJKkjA5UkSVJHBipJkqSODFSSJEkdGagkSZI6MlBJkiR1ZKCSJEnqyEAlSZLU0fTJLkDrl+U3r2LWvPMn9Bor58+d0PklSXqouUMlSZLUkYFKkiSpIwOVJElSRwYqSZKkjgxUkiRJHRmoJEmSOjJQTaIkj06ytP38d5Kb+14/fAzjz0myLMlbkuzaxi1J8oQk33ko1iBJkvweqklVVb8A9gZIchJwe1W9d+h8kulVdd9wY5P8AfDUqtqpvZ4HfLmq/qF1eepE1i5Jku5noFrPJDkTuA3YB1ic5NPAqcDmwF3Aa6rqBuBC4DFJlgJfBN4IrE5yYFUdnOT2qtqqzflW4JXA74B/r6p5D/W6JEmaygxU66ddgEOqanWSrYEDq+q+JIcA7wJeCBwOnFdVQztcYWCHq7UfBjwPeEpV3ZnkUQ/pSiRJ2ggYqNZPn62q1e14BvDxJLOBAjYZ51yHAB+rqjsBquq2wQ5JjgGOAZi29XZrXbQkSRsrH0pfP93Rd3wycGlV7QE8F9hsnHOFXhAbUVUtqKo5VTVn2hYzxjm9JEkyUK3/ZgA3t+NXr8X4C4HXJtkCwFt+kiStewaq9d97gH9OcgUwbbyDq+rrwFeAhe0B9hPWcX2SJG30UrXGu0HayGw6c3bNPPrUCb3GyvlzJ3R+SZLGI8miqprTZQ53qCRJkjoyUEmSJHVkoJIkSerIQCVJktSRgUqSJKkjA5UkSVJH/tUzeoA9t5/BQr/WQJKkcXGHSpIkqSMDlSRJUkcGKkmSpI4MVJIkSR0ZqCRJkjoyUEmSJHVkoJIkSerIQCVJktSRgUqSJKkjA5UkSVJHBipJkqSODFSSJEkdGagkSZI6MlBJkiR1ZKCSJEnqyEAlSZLUkYFKkiSpIwOVJElSRwYqSZKkjgxUkiRJHU2f7AK0fll+8ypmzTt/sssYk5Xz5052CZIkAe5QSZIkdWagkiRJ6shAJUmS1JGBSpIkqSMDlSRJUkcGKkmSpI42mkCV5PlJKsmuY+x/epLd1sF1ZyVZsYbzb0lyd5IZfW2vTnJa12tLkqSHxkYTqICXAZcDR46lc1X9RVVdO7ElAb26rgKe/xBcS5IkTYCNIlAl2Qp4GvA6+gJVkoOSXJbkc0muT3J2krRzlyWZ045vT/LuJIuSfCPJ/u38jUkOb31mJfl2ksXt56ljqOsJwFbA39ELVv12SPL1JDck+Ye+a6zoG39CkpPa8fFJrk2yLMm5rW3LJGckuSrJkiRHrO17KEmSRraxfFP684CvV9UPktyW5MlVtbid2wfYHfgpcAW94HX5wPgtgcuq6v9L8kXgn4BnA7sBHwe+AtwKPLuq7k4yGzgHmDNKXS9r/b4NPDHJY6rq1nZuf2AP4E7gqiTnA/+zhrnmATtX1T1JtmltJwKXVNVrW9uVSb5RVXeMUpckSRqHjWKHil5wObcdn8sDd4OurKqfVNXvgKXArGHG/xb4ejteDnyzqu5tx0P9NwH+Ncly4LP0wtZojgTObdf+AvDivnMXVdUvququdu7po8y1DDg7ySuA+1rbocC8JEuBy4DNgB0HByY5JsnCJAtX37lqDGVLkqR+U36HKsmjgWcCeyQpYBpQSd7autzT1301w78n91ZVtePfDY2pqt8lGer/FuAW4En0gurdo9S1FzAbuKjdZXw4cCPwwdalBoYUvaDUH4I36zueCxwIHA78fZLdgQAvrKob1lRLVS0AFgBsOnP24HUlSdIoNoYdqhcBZ1XVTlU1q6p2AG5i9B2f8ZoB/KztNr2SXnBbk5cBJ7WaZlXVHwLbJ9mpnX92kkcl2ZzeLcsr6AW2xyR5dJJNgT8HSPIwYIequhR4K7ANvWezLgCO63subJ91uWBJktSzMQSqlwFfHGj7PPDydXydDwFHJ/kesAsw2nNKRw5T1xe5/6H5y4FP0LsN+fmqWthuM/4j8H3gPOD61nca8Ml2u3EJ8P6q+hVwMr1bkcvaw+wnd1ifJEkaQe6/kyX1bvnNPPrUyS5jTFbOnzvZJUiSpoAki6pqtA+SrdHGsEMlSZI0oQxUkiRJHRmoJEmSOjJQSZIkdWSgkiRJ6shAJUmS1NGU/6Z0jc+e289goV9HIEnSuLhDJUmS1JGBSpIkqSMDlSRJUkcGKkmSpI4MVJIkSR0ZqCRJkjoyUEmSJHVkoJIkSerIQCVJktSRgUqSJKkjA5UkSVJHBipJkqSODFSSJEkdGagkSZI6MlBJkiR1ZKCSJEnqyEAlSZLUkYFKkiSpIwOVJElSRwYqSZKkjgxUkiRJHU2f7AK0fll+8ypmzTt/ssvY6KycP3eyS5AkdeAOlSRJUkcGKkmSpI4MVJIkSR0ZqCRJkjoyUEmSJHVkoJIkSepoSgaqJJXkfX2vT0hy0ihjjk3yqgmqZ1aSnyR52ED70iT7jzDmoCTnjXDu9CS7reF6r05yWreqJUnSWE3JQAXcA7wgybZjHVBVH6mqsyaimKpaCfwYeMZQW5JdgUdU1ZVrMd9fVNW1665CSZLUxVQNVPcBC4C3DJ5IslOSi5Msa793bO0nJTmhHR+f5NrW59zWtmWSM5JclWRJkiPGWdM5wJF9r48EzkkyLckpbd5lSd7Q12erJJ9Lcn2Ss5Ok1XJZkjnt+DlJFie5OsnFw6x3uySfb/NfleRp46xbkiSNYip/U/oHgWVJ3jPQfhpwVlV9PMlrgQ8AzxvoMw/YuaruSbJNazsRuKSqXtvarkzyjaq6Y4z1fAZYkuS4qroPeCnwYuB1wKqq2i/JpsAVSS5sY/YBdgd+ClwBPA24fGjCJNsB/wocWFU3JXnUMNf9F+D9VXV5C48XAH88xpolSdIYTNlAVVW/TnIWcDxwV9+pA4AXtONPAIOBC2AZcHaSLwFfam2HAocP7WIBmwE7AteNsZ7/TnIN8KwktwD3VtWK9mzXXkle1LrOAGYDvwWurKqfQO95K2AWfYEK+BPgW1V1U7vGbcNc+hBgt7a5BbB1kkdU1W+GGpIcAxwDMG3r7cayHEmS1GfKBqrmVGAx8LE19Klh2uYCBwKHA3+fZHcgwAur6oaRJkryzjaWqtp7mC5Dt/1uace0eY+rqgsG5jqI3rNgQ1bz4D+vjFB/v4cBB1TVXSN1qKoF9G6RsunM2aPNJ0mSBkzVZ6iA3+/YfIbebbUh3+H+Z5mO4oE7PrRP4u1QVZcCbwW2Abaid6vsuL7nmPYZ5nonVtXeI4QpgM8Df0bvdt+5re0C4I1JNmnz7pJkyzEu8bvAnybZuY0d7pbfhcCb+tY3Um2SJGktTelA1bwP6P+03/HAa5IsA14JvHmg/zTgk0mWA0voPX/0K+BkYBN6z2WtaK/Hpc3zPeCWodt0wOnAtcDiNu9HGePOYVX9nN6tui8kuRr49DDdjgfmtAferwWOHW/dkiRpzVLlHR7db9OZs2vm0adOdhkbnZXz5052CZK00UqyqKrmdJljY9ihkiRJmlAGKkmSpI4MVJIkSR0ZqCRJkjoyUEmSJHU01b/YU+O05/YzWOgnziRJGhd3qCRJkjoyUEmSJHVkoJIkSerIQCVJktSRgUqSJKkjA5UkSVJHBipJkqSODFSSJEkdGagkSZI6MlBJkiR1ZKCSJEnqyEAlSZLUkYFKkiSpIwOVJElSRwYqSZKkjgxUkiRJHRmoJEmSOjJQSZIkdWSgkiRJ6shAJUmS1JGBSpIkqaPpk12A1i/Lb17FrHnnT3YZG72V8+dOdgmSpHFwh0qSJKkjA5UkSVJHBipJkqSODFSSJEkdGagkSZI6MlBJkiR1tMEHqiSrkyxNck2Sq5P8dZJ1sq4ks5KsaMdzknxglP5/O0L7mUneMND2vCRfW8NclyWZM0z7WOpYmWTbNfWRJEnrzgYfqIC7qmrvqtodeDbwZ8A/jHVwkmlj6VdVC6vq+FG6DRuogHOAIwfajmzt4zLGOiRJ0kNoKgSq36uqW4FjgDelZ1qSU5JclWTZ0C5RkoOSXJrkU8Dykfr1a2POa8dbJflYkuWt/wuTzAc2b7tlZw8M/wawa5KZbfwWwCHAl5Lsm+SbSRYluWCoT/PiJFcm+UGSZ4yljmHqfkWbY2mSj441QEqSpLGbct+UXlU3tlt+jwGOAFZV1X5JNgWuSHJh67o/sEdV3ZTkmBH61QiX+fvWf0+AJI+sqs8neVNV7T1MTauTfAF4CfAvwOHApcDdwP8PHFFVP0/yUuCdwGvb0OlVtX+SoV23Q0aro/9kkj8GXgo8raruTfIh4CjgrFHfSEmSNGZTLlA1ab8PBfZK8qL2egYwG/gtcGVV3TRKvx+MMP8h9N3Cq6pfjqGmc4BT6AWqI+mFmicCewAXJQGYBvysb8wX2u9FwKy1qONZwL7AVW3+zYFbBydpgfIYgGlbbzeGpUiSpH5TLlAleTywml5wCHBcVV0w0Ocg4I7+phH6zRrpMoy8ezWSK4CZSZ4EPJVeEJoNXFNVB4ww5p72ezXD/1mNVkeAj1fV29ZUWFUtABYAbDpz9njXJUnSRm9KPUOVZDvgI8BpVVXABcAbk2zSzu+SZMthho6135ALgTf1XXfoVtu9Q3MMavV8Bvg48LWquhu4AdguyQFtnk2S7D72FY9Yx5CLgRcleUw7/6gkO41jfkmSNAZTIVANPQh+Db2Hvy8E3tHOnQ5cCyxuX3/wUYbf6RlrvyH/BDwyyYokVwMHt/YFwLJhHkofcg7wJOBcgKr6LfAi4N1tnqX0dq/GaqQ6aPNfC/wdcGGSZcBFwMwHTyNJkrpIb+NE6tl05uyaefSpk13GRm/l/LmTXYIkbTSSLKqqB33343hMhR0qSZKkSWWgkiRJ6shAJUmS1JGBSpIkqSMDlSRJUkcGKkmSpI6m3Delq5s9t5/BQj+yL0nSuLhDJUmS1JGBSpIkqSMDlSRJUkcGKkmSpI4MVJIkSR0ZqCRJkjoyUEmSJHVkoJIkSerIQCVJktSRgUqSJKkjA5UkSVJHBipJkqSODFSSJEkdGagkSZI6MlBJkiR1ZKCSJEnqyEAlSZLUkYFKkiSpIwOVJElSRwYqSZKkjgxUkiRJHU2f7AK0fll+8ypmzTt/ssuQ1hsr58+d7BIkbQDcoZIkSerIQCVJktSRgUqSJKkjA5UkSVJHBipJkqSODFSSJEkdTUqgSlJJ3tf3+oQkJ40y5tgkr5rgug5LsjDJdUmuT/LeibzeupTk9CS7jdLnsiRzHqqaJEnaWEzWDtU9wAuSbDvWAVX1kao6a6IKSrIHcBrwiqr6Y2AP4MaJut7aSDJtpHNV9RdVde1DWY8kSeqZrEB1H7AAeMvgiSQ7Jbk4ybL2e8fWflKSE9rx8UmubX3ObW1bJjkjyVVJliQ5Ypw1vRV4Z1VdD1BV91XVh0ap6cwkH05yaZIbk/xpq+G6JGf2ren2JO9OsijJN5Ls33aLbkxyeOszLckprf5lSd7Q2g9q838KWN76vTfJ8tbvuNbv97tPraaFSa5J8o5xvg+SJGmcJvMZqg8CRyWZMdB+GnBWVe0FnA18YJix84B9Wp9jW9uJwCVVtR9wMHBKki3HUc8ewKIRzq2ppkcCz6QXDr8KvB/YHdgzyd6tz5bAZVW1L/Ab4J+AZwPPB/6x9XkdsKrVvx/w+iQ7t3P7AydW1W7AMcDOfes/e5h6T6yqOcBewJ8m2Wvsb4MkSRqvSQtUVfVr4Czg+IFTBwCfasefAJ4+zPBlwNlJXkFvtwvgUGBekqXAZcBmwI7rqNw11fTVqipgOXBLVS2vqt8B1wCzWp/fAl9vx8uBb1bVve14qM+hwKta/d8HHg3MbueurKqb2vEhwEeq6j6AqrptmHpfkmQxsIReuBvt2apj2o7WwtV3rlpTV0mSNIzJ/pTfqfR2Zta0k1TDtM2lt8O1L7AoyXQgwAurau/2s2NVXdc/KMk7kyxtoWXQNW2+seiv6Z72+3d9x0Ovh/6uxHtb6HpAvxa8hvoEOK6v/p2r6sJ27o7+ZTD8e9I72dvVOgF4VtvBOp9euBx5MVULqmpOVc2ZtsXghqEkSRrNpAaqtrvyGXqhash3gCPb8VHA5f1jkjwM2KGqLqX33NM2wFbABcBxSdL67TPM9U4cCizDlHMK8LdJdhm6TpK/HktN68gFwBuTbNKuv8sItywvBI5tIZIkjxo4vzW9ALYqyWOBwyagVkmS1Gf66F0m3PuAN/W9Ph44I8n/AX4OvGag/zTgk+3ZqwDvr6pfJTmZ3o7XshaqVgJ/PtYiqmpZkr8CzkmyBb1doPPHWNO6cDq923+LW/0/B543Qr9d6K3zXuBf6T3jNbSOq5MsobfjdiNwxQTUKkmS+uT+O1ESbDpzds08+tTJLkNab6ycP3eyS5A0wZIsah/mWmuT/QyVJEnSBs9AJUmS1JGBSpIkqSMDlSRJUkcGKkmSpI7Wh69N0Hpkz+1nsNBPNUmSNC7uUEmSJHVkoJIkSerIQCVJktSRgUqSJKkjA5UkSVJHBipJkqSODFSSJEkdGagkSZI6MlBJkiR1ZKCSJEnqyEAlSZLUkYFKkiSpIwOVJElSRwYqSZKkjgxUkiRJHRmoJEmSOjJQSZIkdWSgkiRJ6shAJUmS1JGBSpIkqSMDlSRJUkfTJ7sArV+W37yKWfPOn+wyJG0AVs6fO9klSOsNd6gkSZI6MlBJkiR1ZKCSJEnqyEAlSZLUkYFKkiSpIwOVJElSR+MKVEkqyfv6Xp+Q5KRRxhyb5FVrWd9YanpskvOSXJ3k2iRfa+2zkrx8HV5n2PmSLEry8CSvTbI8ybIkK5Ic0c7/Y5JDhhl3UJLz1lV9w8x/+0NxHUmSNP7voboHeEGSf66q/xnLgKr6yPjLGpd/BC6qqn8BSLJXa58FvBz41OCAJNOr6r5xXudB8yWZBdwMPAY4EXhyVa1KshWwHUBVvX2c15EkSRuY8d7yuw9YALxl8ESSnZJc3HZoLk6yY2s/KckJ7fj4tou0LMm5rW3LJGckuSrJkqGdnXGYCfxk6EVVLWuH84FnJFma5C1JXp3ks0m+Clw40nWTTEtySmtfluQNw83X2g4Dvk4vUP0GuL3VcHtV3dTmOzPJi9rxc5Jcn+Ry4AV9791ItXxtKCC29re345OT/EWSrdp7vbjtjq3xvUuyX5vn8eN8jyVJ0hqszTNUHwSOSjJjoP004Kyq2gs4G/jAMGPnAfu0Pse2thOBS6pqP+Bg4JQkW46znn9LcmmSE5P8Yd+1vl1Ve1fV+1vbAcDRVfXMNVz3dcCq1r4f8PokO48w33PoBaqrgVuAm5J8LMlzB4tMshnwr8BzgWcAf9B3eqRavkUvxG1NL8w+rfV/OvBt4G7g+VX15DbufUky3JuU5KnAR4AjqurG0d9WSZI0VuMOVFX1a+As4PiBUwdw/+2wT9D7j/6gZcDZSV5BLyAAHArMS7IUuAzYDNhxHPVcADyeXljZFViSZLsRul9UVbeNct1DgVe19u8DjwZmD06U5OHA46rqxqpaTS9cvQj4AfD+YZ4t2xW4qap+WFUFfLLv3Ei1fBs4kN57eT6wVZItgFlVdQMQ4F1JlgHfALYHHjvMuv+Y3s7ic6vqR8Os5ZgkC5MsXH3nquHfOUmSNKK1/bv8TgUWAx9bQ58apm0uvYBwOPD3SXanFwpe2ALCsJK8s42lqvZ+0IV6IelTwKfaA9gHAr8YZqo7+qcd7rpth+e4FtT62w8amOsZwOV9NXkHnh4AABDASURBVBRwJXBlkovovTcnDZY6/ApHrOXhwBzgRuAiYFvg9cCi1uUoes9q7VtV9yZZSS+MDfpZa98H+OngyapaQC9wsenM2SPVKEmSRrBWX5vQAsxn6N0eG/Id4Mh2fBR9YQMgycOAHarqUuCtwDbAVsAFwHFDt6qS7DPM9U5st9oeFKaSPLPt2pDkEcATgB/Re6bpEWtYxkjXvQB4Y5JNWvsu7fbb4HzPAf699fnDJE/uO7c38F8D17se2DnJE9rrl41WS1X9Fvgx8BLge/R2rE5ovwFmALe2MHUwsNMIa/0VvUD6rmGCoSRJ6qjL91C9j96OyZDjgde020+vBN480H8a8Mkky4ElwPur6lfAycAmwLIkK9rr8dgXWNiu+13g9Kq6it7txfvS+zqFBz1Ev4brng5cCyxu7R+lt5M3ON9BwDfbmE2A97YHzpcCLx1cf1XdDRwDnN8eSu8PXGt6D74N3FJVd7bjx3F/oDobmJNkIb0Qe/1Ib1JV3ULv+a0PJnnKSP0kSdL4pXenSuOR5HHAv1bVYZNdy7q26czZNfPoUye7DEkbgJXz5052CdI6kWRRVc3pMsfaPkO1Uauqn9D7ygRJkiT/6hlJkqSuDFSSJEkdGagkSZI6MlBJkiR1ZKCSJEnqyE/56QH23H4GC/0otCRJ4+IOlSRJUkcGKkmSpI4MVJIkSR0ZqCRJkjoyUEmSJHVkoJIkSerIQCVJktSRgUqSJKkjA5UkSVJHBipJkqSODFSSJEkdGagkSZI6MlBJkiR1ZKCSJEnqyEAlSZLUkYFKkiSpIwOVJElSRwYqSZKkjgxUkiRJHRmoJEmSOjJQSZIkdTR9sgvQ+mX5zauYNe/8yS5DkrSRWTl/7mSX0Ik7VJIkSR0ZqCRJkjoyUEmSJHVkoJIkSerIQCVJktSRgUqSJKmjKR+oktzefs9KsqIdH5TkvAm41mVJ5ozQfkOSq5NckeSJ45jz93UPtM9J8oGuNUuSpO6mfKBajxxVVU8CPg6cMpYBSaaNdK6qFlbV8euqOEmStPY2+kCVZMskZyS5KsmSJEe09i2SfCbJsiSfTvL9od2nJB9OsjDJNUneMc5Lfgv4o7bz9O0ki9vPU9vcByW5NMmngOUDtT6+1bhf/y5bkpPaGi5LcmOS4/vG/H2S65NclOScJCd0eLskSdIw/KZ0OBG4pKpem2Qb4Mok3wDeCPyyqvZKsgewtH9MVd3WdpAuTrJXVS0b4/WeSy8o3Qo8u6ruTjIbOAcYul24P7BHVd2UZBZAu014LvCaqlqa5KCBeXcFDgYeAdyQ5MPAk4AXAvvQ+7NeDCwaY52SJGmMDFRwKHB4387NZsCOwNOBfwGoqhVJ+gPTS5IcQ+/9mwnsBowWqM5OchewEjgO2AQ4LcnewGpgl76+V1bVTX2vtwO+DLywqq4ZYf7zq+oe4J4ktwKPbWv4clXdBZDkq8MNbGs5BmDa1tuNsgxJkjTIQAWhF1RueEBjkmE7JzsDJwD7VdUvk5xJL4SN5qiqWtg3z0nALfR2kR4G3N3X946BsauAHwNPA0YKVPf0Ha+m92c77BoGVdUCYAHApjNn11jGSJKk+230z1ABFwDHDQWoJPu09suBl7S23YA9W/vW9ALPqiSPBQ5by+vOAH5WVb8DXgmM+AA68FvgecCrkrx8HNe4HHhuks2SbAVs2H/zpCRJ6yl3qOBk4FRgWQtVK4E/Bz4EfLzd6ltC75beqqr6YZIl9HaKbgSuWMvrfgj4fJIXA5fy4F2pB6iqO5L8OXBRkjvo7VqtUVVdleQrwNXAfwELxzJOkiSNT6q8wzOc9sD5Ju2h8ScAFwO7VNVvJ7m0cUmyVVXdnmQLep8wPKaqFo/Uf9OZs2vm0ac+dAVKkgSsnD95N1GSLKqqB32P5Hi4QzWyLYBLk2xC71mkN25oYapZ0G5ZbgZ8fE1hSpIkrR0D1Qiq6jfc/zUGG6yqGs8zV5IkaS34ULokSVJHBipJkqSODFSSJEkd+QyVHmDP7WewcBI/aSFJ0obIHSpJkqSODFSSJEkdGagkSZI6MlBJkiR1ZKCSJEnqyEAlSZLUkYFKkiSpIwOVJElSRwYqSZKkjgxUkiRJHRmoJEmSOjJQSZIkdWSgkiRJ6shAJUmS1JGBSpIkqSMDlSRJUkcGKkmSpI4MVJIkSR0ZqCRJkjoyUEmSJHVkoJIkSepo+mQXoPXL8ptXMWve+ZNdhiRJD7Jy/tzJLmFE7lBJkiR1ZKCSJEnqyEAlSZLUkYFKkiSpIwOVJElSRwYqSZKkjtbLQJVkdZKlSa5OsjjJU1v7rCQr1nLOlUm2XcuxlyWZM0L7DUmWJbk+yWlJtlnDPF9b03lJkrRhWi8DFXBXVe1dVU8C3gb882QXtAZHVdVewF7APcCXBzuk52FV9WdV9auHvEJJkjSh1tdA1W9r4JeDjUk2S/KxJMuTLElycGufluS9rX1ZkuMGxm2e5OtJXp9kyyRnJLmqzXFEX59z2/hPA5uPVmRV/RZ4K7Bjkie13bTrknwIWAzsMLRLluTdSf6yr6aTkvxNO/4/rZ5lSd7R2t6a5Ph2/P4kl7TjZyX5ZDv+cJKFSa7pG/esJF/su86zk3xh7G+9JEkai/X1m9I3T7IU2AyYCTxzmD7/G6Cq9kyyK3Bhkl2A1wA7A/tU1X1JHtU3ZivgXOCsqjorybuAS6rqte1W3JVJvgG8AbizqvZKshe9QDSqqlqd5GpgV+D7wBOB11TVXwIkGep6LnAq8KH2+iXAc5IcCswG9gcCfCXJgcC3gL8BPgDMATZNsgnwdODbbY4Tq+q2JNOAi1vdlwAfTLJdVf28vTcfG8taJEnS2K2vO1RDt/x2BZ4DnJW+NNI8HfgEQFVdD/wXsAtwCPCRqrqvnbutb8yXgY9V1Vnt9aHAvBbeLqMX4HYEDgQ+2cYvA5aNo/b+Ov+rqr432KGqlgCPSfKHSZ4E/LKqftTqORRYQi/E7UovYC0C9k3yCHq3Fb9LL1g9g/sD1UuSLG5jdwd2q6pq79ErWmA8APj3BxWcHNN2txauvnPVOJYqSZJg/d2h+r2q+m57mHy7gVODAau/vUY4dwVwWJJPtbAR4IVVdcMDJuhlt5HmGFHbHdoTuK413bGG7p8DXgT8Ab0dq6Ha/7mqPjrM3Cvp7TB9h17AOxh4AnBdkp2BE4D9quqXSc6kFw6htyP1VeBu4LNDQbNfVS0AFgBsOnP2uNctSdLGbn3dofq9djtvGvCLgVPfAo5qfXaht7N0A3AhcGyS6e1c/y2/t7d5hm61XQAcN7T7lWSfYebeg94D56PVuQm9h+d/3Ha1RnMucCS9UPW5vnpem2SrNuf2SR7TV9MJ7fe3gWOBpS0Ybk0vvK1K8ljgsKGLVNVPgZ8CfwecOYa6JEnSOK2vgWrz9rUJS4FPA0dX1eqBPh8CpiVZ3vq8uqruAU4HfgQsa88zvXxg3F8BmyV5D3AysEnru6K9BvgwsFWSZfQeNL9yDbWe3fqtALYEjhjLAqvqGuARwM1V9bPWdiHwKeC7bV2fa32gF6JmAt+tqlvo7Th9u427mt6tvmuAM+jtxD2gRnpB79qx1CZJksYnvQ0OTWVJTgOWVNW/jdZ305mza+bRpz4EVUmSND4r58+dkHmTLKqqB33f5His989QqZski+jdDvybya5FkqSpykA1xVXVvpNdgyRJU936+gyVJEnSBsNAJUmS1JGBSpIkqSMDlSRJUkc+lK4H2HP7GSycoI+lSpI0VblDJUmS1JGBSpIkqSMDlSRJUkcGKkmSpI4MVJIkSR0ZqCRJkjoyUEmSJHVkoJIkSerIQCVJktSRgUqSJKmjVNVk16D1SJLfADdMdh0TZFvgfya7iAk0ldfn2jZMrm3DNJXXBsOvb6eq2q7LpP5dfhp0Q1XNmewiJkKShVN1bTC11+faNkyubcM0ldcGE7c+b/lJkiR1ZKCSJEnqyEClQQsmu4AJNJXXBlN7fa5tw+TaNkxTeW0wQevzoXRJkqSO3KGSJEnqyECl30vynCQ3JPmPJPMmu56RJDkjya1JVvS1PSrJRUl+2H4/su/c29qabkjyv/ra902yvJ37QJK09k2TfLq1fz/JrIdoXTskuTTJdUmuSfLmqbK2du3NklyZ5Oq2vndMsfVNS7IkyXlTaV3t+itbXUuTLJxK60uyTZLPJbm+/W/vgKmwtiRPbH9eQz+/TvJXU2Ft7dpvaf8eWZHknPbvl8ldW1X54w/ANOA/gccDDweuBnab7LpGqPVA4MnAir629wDz2vE84N3teLe2lk2Bndsap7VzVwIHAAH+HTistf8l8JF2fCTw6YdoXTOBJ7fjRwA/aPVv8Gtr1wuwVTveBPg+8CdTaH1/DXwKOG+q/DPZt7aVwLYDbVNifcDHgb9oxw8Htpkqa+tb4zTgv4GdpsLagO2Bm4DN2+vPAK+e7LU9pH+o/qy/P+0fqAv6Xr8NeNtk17WGemfxwEB1AzCzHc+k931aD1oHcEFb60zg+r72lwEf7e/TjqfT+wK4TMIavww8e4qubQtgMfCUqbA+4HHAxcAzuT9QbfDr6qtlJQ8OVBv8+oCt6f2HOQPtG/zaBtZzKHDFVFkbvUD1Y+BR7brntTVO6tq85achQ/+ADvlJa9tQPLaqfgbQfj+mtY+0ru3b8WD7A8ZU1X3AKuDRE1b5MNr28j70dnGmzNrabbGlwK3ARVU1VdZ3KvBW4Hd9bVNhXUMKuDDJoiTHtLapsL7HAz8HPtZu156eZEumxtr6HQmc0443+LVV1c3Ae4EfAT8DVlXVhUzy2gxUGpJh2qbCR0BHWtea1jup70WSrYDPA39VVb9eU9dh2tbrtVXV6qram96Ozv5J9lhD9w1ifUn+HLi1qhaNdcgwbevdugY8raqeDBwG/O8kB66h74a0vun0Hh/4cFXtA9xB71bRSDaktfUunjwcOBz47Ghdh2lbL9fWno06gt7tuz8EtkzyijUNGaZtna/NQKUhPwF26Hv9OOCnk1TL2rglyUyA9vvW1j7Sun7SjgfbHzAmyXRgBnDbhFXeJ8km9MLU2VX1hdY8JdbWr6p+BVwGPIcNf31PAw5PshI4F3hmkk+y4a/r96rqp+33rcAXgf2ZGuv7CfCTtlMK8Dl6AWsqrG3IYcDiqrqlvZ4KazsEuKmqfl5V9wJfAJ7KJK/NQKUhVwGzk+zc/h/NkcBXJrmm8fgKcHQ7Ppre80dD7Ue2T2zsDMwGrmzbwb9J8iftUx2vGhgzNNeLgEuq3UifSK2OfwOuq6r/23dqg18bQJLtkmzTjjen9y/F69nA11dVb6uqx1XVLHr/u7mkql6xoa9rSJItkzxi6JjesyormALrq6r/Bn6c5Imt6VnAtUyBtfV5Gfff7husZ0Nd24+AP0myRavpWcB1TPbaJvrhMX82nB/gz+h9suw/gRMnu5411HkOvfvm99L7fxGvo3dv+2Lgh+33o/r6n9jWdAPtExytfQ69/zD8J3Aa93/R7Wb0tsf/g94nQB7/EK3r6fS2lJcBS9vPn02FtbVr7wUsaetbAby9tU+J9bXrH8T9D6VPiXXRe87o6vZzzdC/G6bQ+vYGFrZ/Lr8EPHIKrW0L4BfAjL62qbK2d9D7P2QrgE/Q+wTfpK7Nb0qXJEnqyFt+kiRJHRmoJEmSOjJQSZIkdWSgkiRJ6shAJUmS1JGBSpIkqSMDlSRJUkcGKkmSpI7+HyX+nPS70VW2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#Complaint type Breakdown with bar plot to figure out majority of complaint types and top 10 complaints\n", + "NYC311_df['Complaint Type'].value_counts().head(10).plot(kind='barh',figsize=(8,8));" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Borough Complaint Type Descriptor \n", + "BRONX Animal Abuse Chained 132\n", + " In Car 36\n", + " Neglected 673\n", + " No Shelter 71\n", + " Other (complaint details) 311\n", + " ... \n", + "Unspecified Noise - Vehicle Engine Idling 11\n", + " Posting Advertisement Vehicle 1\n", + " Traffic Truck Route Violation 1\n", + " Vending In Prohibited Area 2\n", + " Unlicensed 5\n", + "Length: 288, dtype: int64" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "NYC311.groupby([\"Borough\",\"Complaint Type\",\"Descriptor\"]).size()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Complaint Typecount
0Blocked Driveway77044
1Illegal Parking75361
2Noise - Street/Sidewalk48612
3Noise - Commercial35577
4Derelict Vehicle17718
5Noise - Vehicle17083
6Animal Abuse7778
7Traffic4498
8Homeless Encampment4416
9Noise - Park4042
\n", + "
" + ], + "text/plain": [ + " Complaint Type count\n", + "0 Blocked Driveway 77044\n", + "1 Illegal Parking 75361\n", + "2 Noise - Street/Sidewalk 48612\n", + "3 Noise - Commercial 35577\n", + "4 Derelict Vehicle 17718\n", + "5 Noise - Vehicle 17083\n", + "6 Animal Abuse 7778\n", + "7 Traffic 4498\n", + "8 Homeless Encampment 4416\n", + "9 Noise - Park 4042" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "majorcomplints=NYC311.dropna(subset=[\"Complaint Type\"])\n", + "majorcomplints=NYC311.groupby(\"Complaint Type\")\n", + "\n", + "sortedComplaintType = majorcomplints.size().sort_values(ascending = False)\n", + "sortedComplaintType = sortedComplaintType.to_frame('count').reset_index()\n", + "\n", + "sortedComplaintType\n", + "sortedComplaintType.head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEeCAYAAAB/vulGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU1d3H8c9vZrKQhAxrwhIwKAgRwqKIGwhia7VY96qt2lRrLRa1dWmb1sd2bK0PPtbaxQWt1VKXWm1dG+suq8q+DJCACEH2nbBln/P8cW8kQIZsM3Nmkt/bV14kk7t8Z4T5zbnn3HPEGINSSinVEI/tAEoppeKXFgmllFJhaZFQSikVlhYJpZRSYWmRUEopFZYWCaWUUmFpkVBKKRWWFgmllFJhaZFQSikVlhYJpZRSYWmRUEopFZYWCaWUUmFpkVBKKRWWFgmllFJhaZFQSikVlhYJpZRSYWmRUEopFZYWCaWUUmFpkVBKKRWWFgmllFJhaZFQSikVlhYJpZRSYWmRUEopFZYWCaWUUmFpkVBKKRWWFgmllFJhaZFQSikVlhYJpZRSYWmRUEopFZYWCaWUUmFpkVBKKRWWFgmllFJhaZFQSikVls92AKUiIbewqAPQE+hR788eQBaQDnQA0tw/674EqHK/Kut9Xw7sALYD2+r9uQ1YXzp5wt5YPS+lbBNjjO0MSjVJbmGRBzgOGNTAV1YMo+wEPgc+A1a6X8uAktLJE0IxzKFU1GmRUHErt7CoB3A6cJr750ggw2qoYzsALATmAfOBeaWTJ6y2G0mp1tEioeJGbmFRDvA14CvAmUBfu4kiYhcwDXgPeK908oTP7cZRqnm0SChrcguLUoCzcQrD+cBgu4liYi3wPk7ReLt08oR9lvModUxaJFRM5RYWpQMXAt8ELsDpTG6vKoF3gJeBN7RDXMUjLRIq+gJ+L05r4TuXVt6bt8gMGGo7UhyqXzBeLZ084YDlPEoBep+EiqaAfygB/0PABqAIuOpW36u7LaeKVynARcCzwObcwqLHcwuLhtsKIyK1IrJYRJaIyEIROdN9PFdElrXwmKUi0q2F+04TkZFhHl8pIktFpEREHhGRTsc4zlvH+r06mt4noSIr4PcB1wI/BoYd+esxnuAJMc+UeDoCE4GJuYVF84AngBdj3LooN8YMBxCRrwH/C4yN4fmb4xpjzHwRScbJ+TpHZBURwbly8nUbAROZtiRUZAT8KQT8PwRWA8/QQIEASJLanLM8y1r0SbSdOhV4CtiUW1j0UG5hUS8LGTKBo1qAIpIqIs+ISFBEFonIOe7jXhH5nfv4UhG59Yj9OojI2yLyfRFJF5GnRWSee4yL623zorv/P3FufjwmY0wV8FOgr4gMc1s9xSLyGM7Q5D51rRkReUBEflgvU0BE7nS//4mbZ6mI3Os+9lMRuc39/mER+dD9/lwRec79/nERmS8iy+vtd66IvFrvPF8VkVea/tLbp0VCtU7An07AfyfOqJ1HcW52O6Zbfa/uinquticTuANYm1tY9FRuYdGAKJ+vg3u5qQSnSP2mgW0mARhj8oFvAVNFJBW4CegHjDDGDAWer7dPBvAm8IIx5i/A3cCHxphTgXOAB0UkHbgZOOju/1vglKaENsbUAktwbrAEGAj83Rgzwhizrt6mLwJX1fv5SuBlETkPGACMAoYDp4jI2cAMYIy77UggQ0SSgNHATPfxu40xI4GhwFgRGQp8COSJSHd3m+txPkQlDC0SqmUCfj8B//8A64Df4UyF0SSnSslAIaR3JrdMMvA9oCS3sOjl3MKik6N0nnJjzHBjzCCc4cl/dy/Z1Dcapw8FY0wJzt+FE3Huc5lijKlxf1f/Q8HrwDPGmL+7P58HFIrIYpz7SVJx7o85G3jO3X8psLQZ2evnXGeM+fTIDYwxi4AsEeklIsOA3caYL9w85wGLcFofg3CKxgKcgtERZ5DBJzjFYgyHisSVIrLQ3XcwcJJxRgY9C1zr9oWcAfy3Gc/FOu2TUM0T8HcDbsf5FOlvySG8YrLP8yxY/E7oVGsds22AB7gCuCK3sOgVoLB08oTPonEiY8wnbodz9yN+dWTRqP94uGGTs4ELROQF9w1UgMuNMSsPO4BTj5o99FJEvEA+UOw+dKx+nH/hvIY9cFoWddn/1xjzRAPHLsVpCXyMU7TOAU4AikWkH3AXcKoxZreI/A2n4IHTcngTqABeriueiUJbEqppAv4eBPy/x/m0+AtaWCDq/ND3ut5EFjmXAStyC4sezS0sivgcViIyCPDizFlV3wzgGnebE3FaACuBd4GJIuJzf9el3j6/dI/zmPvzO8Ctda0UERnRwLGH4FzCaSxnEk7H9Xq39dGYF4GrcQrFv+rluUFEMtxj9haRutd0Bk4hmIHTepgILHaLXSZOQSoTkWyce4AAMMZsAjYB/wP8rQm54ooWCXVsAb8Q8E8ESnBaEBG5+S1f1gzxUVMdiWMpwLkq8ENgdW5h0T3uTYutUdcnsRj4J1DgXu+v7zHAKyJBd5vvGmMqcfowvgCWisgS4NtH7PdjIFVE/g+nryPJ3XYZh/o+Hse57r8UpzN67jGyPu9utwxnxt+Lm/IEjTHLcUaSbTTGbHYfexd4AfjEfV7/crcBpzD0BD4xxmzFaRnMdPdbgnOZaTnwNE6L6bCMOMVrRVOyxRO9mU6FF/CfBDwJnBWNw99ZNXHev0NnnxqNYys2AreWTp7waqNbqqgTkUeARcaYv9rO0lxaJNTRAv4UnEtKhTgdpVGxKtT74/OqHjwzWsdXgNNRfGvp5AnrbQdpr0RkAc6lqK+6La2EokVCHS7gH4PTehjU2KatZQz78yqf8VaQ0ugYeNUq+4F7gD+XTp5w5CUjpY5J+ySUI+DvRMD/JDCdGBQIABEyrvJOWxKLc7VzGcDDwJzcwqJ822FUYtGWhIKA/5vAn3CGAsbUF6GsT8+u+sPpsT5vO1aJcwPb70snT9B//KpRWiTas4C/O/BX4Bu2IhhDRX7lU1X7Scu0laGd+gi4rnTyhI22g6j4ppeb2quAfwTOEpvWCgSACKkF3neDNjO0U+cAS3ILiy6yHUTFN21JtEcB/9U4Y7njosN4i+k8//TKR4+aBlrFzMPAT7RTWzVEi0R7EvB7gPuBn9mOUp8x1JxcOWXvbjK7NL61ipIPgKtKJ0848q5q1c7p5ab2IuD348wfE1cFAkAE302+Ip0+3K5zgXm5hUW6aqA6jBaJ9iDgH4gzrUHcLrhylfejVs0FpSKiH/BJbmHRlbaDqPihRaKtC/gnAHNwpnCOW53Zn9+TnVts51CkAf/MLSwK2A6i4oMWibYs4P858AatnLE1FkTw/ND3+srGt1Qx8qvcwqIpuYVF+h7RzmnHdVsU8CcBU3FWC0sY+0yH5fmVfx1sO4c6zCvAt0snT0i4OYdUZOinhLYm4E8G/k2CFQiAjlI+uJ9s+sJ2DnWYy4C3cwuL9GbHdkqLRFvizN76KpZvkGuNW32vrbGdQR1lHDA9GgsaqfinRaKtCPhTgdeI4xFMTXGBZ05v2xlUg4YDH+QWFnWzHUTFlhaJtiDg74DTQX2+7Sit1UGqBwyWtatt51ANGgK8l1tY1Nl2EBU7WiQSndMH8QrwVdtRIuU236sbbGdQYQ0H3s0tLIr7EXMqMrRIJLKA34uzdm7CtyDqO8ezqJ/tDOqYRuJ0ZndsdEuV8LRIJKqAX3BWkLvCdpRIS5ba40ZJccItGN/OnA68mVtYFLXlbVV80CKRuB4CbrAdIlpu9b263XYG1aixwDO5hUViO4iKHi0SiSjg/wVwu+0Y0XSGZ8WJoHd6JoBvA7+xHUJFjxaJROPMxXSf7RjR5pNQz/GeRboYUWK4O7ew6HrbIVR0aJFIJAF/LvAs0C6a95N8r++xnUE12RO5hUVfsR1CRZ4WiUTh3E39L6DdjFEfIatP8lJbYzuHapIk4F+5hUX9bQdRkaVFInH8ETjFdohY8ojp9nXPnMW2c6gm8+MUilTbQVTkaJFIBAH/dcAPbMew4WbfGzr7aGIZBjxqO4SKHC0S8S7gHwJMsR3Dljz5Ykgy1VooEssNuYVFbXZ4dnujRSKeBfyZONN+p9mOYosI/iu80/WSU+J5JLewaJjtEKr1tEjEt6eJ82VHY+FG71sh2xlUs3UAXs4tLGq3H3DaCi0S8Srgvx243HaMeNBPtgxLo+KA7Ryq2QYAD9gOoVpHi0Q8CvhPB/7Pdox4IULatd73l9jOoVpkUm5h0XjbIVTLaZGINwG/D2fiPp/tKPGkwPeOvh6JSYCndcbYxKVFIv7cAuTbDhFverFzuJ/9egd2YjoO+L3tEKpltEjEk4C/B3Cv7RjxSITkG3z/1bmcEteNuYVFbWrdk/ZCjE60GT8C/meBa23HiFc7TOaikZVTRtjO0RSmpootL/wMU1MNoRBpA8+i05hrqC3fx47XH6Bm71Z8mdl0u6QQb2pGk/YF2D3tGcrXLCA5qx/dLrwTgP3LPiRUsY/MkRfH/Hk20+fA4NLJE/S+lwSiLYl4EfCPQQvEMXVl79AsdifGOhPeJLKvvp9eNzxCz+v/RPnaBVRuLGHvpy+TmjuM3jf9hdTcYez99OUm7xuqPEDlxmJ63fAIxoSo2l5KqLqSA8vep+OICbF/js13AvAT2yFU82iRiAfOMqSP2I4R70TwTvS9WWw7R1OICJ7kDgCYUA2EakGEg6vnkD7kXADSh5zLwc8+bfK+IJjaGowxmJoqxONl79xX6HjKRYg3Yfr1f55bWNTXdgjVdFok4sMtwFDbIRLB5d4ZCTMLrgnVsumZW9nw52tJzR1OSq+B1B7Ygy+jCwC+jC6EDjTcF9/Qvp6UNNIGnsnmv92Gz5+NpKRTtXkVaQNOj+XTaq00tBM7oWiRsC3gz0Y7q5ssk4ND+srWDbZzNIV4vPS6/s/k/PBvVG5eRdX20lbv6z/tCnpd/2e6jL+RspnP0WnMtexb8g7bX5vMno9fjM4TibzLde2JxKFFwr4HcaZYVk0ggkzyvrbado7m8KRmkNonn/I1C/Gmd6Jm/y4AavbvwpPeqcn71le19XMAfJ17c2DZh3S/pJDq7euo3rUxOk8i8v6QW1ik7z8JQP8n2RTwjwausx0j0XzD+2lP2xkaU3uwjFDFfgBC1ZVUrFtMUtcc0vqfxoFlHwBwYNkHpPU/rcn71rdn5nP4R18DoRow7tRW4sHUJMzAocHoQI2EkDC9XW3Un2wHSERpUjlwoHyxdqXp2892lnBq9+9iR9HDzhu4CZE2aAxp/UeR0nsQO16fzP6l7+LL7E63i38OQM2+nex8+09kf/PesPvWObjqE5J7DMDXsSsAKb0Gsemvk0jKyiU563grz7eF7s0tLHqxdPKEKttBVHh6n4QtAf/5wH9tx0hU/6k9bdot1T8aZzuHarUflk6e8LjtECo8vdxkz522AySyr3oW6DDKtuEXuYVFybZDqPC0SNgQ8A8DdHRHK6RIzfEj5LOVtnOoVssBbrQdQoWnRcIObUVEwG2+V7bYzqAi4qe5hUVe2yFUw7RIxFrA3xu42naMtmCMJ3gCaKdaG3AccJntEKphWiRi7zYgyXaItsAnoZwxnuBy2zlURNxuO4BqmBaJWAr4M4CbbMdoS27xvbbTdgYVEWfkFhYdfdOIsk6LRGzdCBz7FlvVLCNl5UkeQrW2c6iI0NZEHNIiESvOTK8/sh2jrfGK6X6eZ56uf902XK4zxMafRouEiOx3/8wVkWXu9+NE5D+RDiMi00RkZJjHV4rIEhGZLSIDm3HML3Mf8fhIEYnlHc9XALkxPF+7Mcn3xkHbGVRE+IDv2Q6hDpdILYlrjDHDgKk4k+I1SkTCDqszxsw3xtwWqXBNoMNeo2SwrB2SRI1O7dA2fCe3sEhsh1CHtLpIiEi6iDwtIvNEZJGIXOw+niYiL4nIUhH5p4jMqWsliMjjIjJfRJaLSHOnyZ4B9HdbCDNFZKH7daZ77HEi8pGIvAActiayiBzvZjy1fmtIRALuc5gmImtE5LZ6+9wjIiUi8p6I/ENE7mr2ixTwDwdObfZ+qkk8QqdLvLP0klPbkAuMtR1CHRKJCf7uBj40xtwgIp2AuSLyPnAzsNsYM1REhgCL6+9jjNnlftL/QESGGmOWNvF838B5898GfNUYUyEiA4B/AHWXqkYBQ4wxa0UkF8C9RPUicL0xZrGIjDviuIOAc4COwEoReRwYBlwOjMB5rRYCC5qYs76rWrCPaoabvEXVL9eOsx1DRUYBMM12COWIxOWm84BCEVmM8z82FegLjMZ5U8YYswyoXwSuFJGFwCKcKYNPasJ5nnfPcRZwF869Bn8RkSDw8hHHmGuMWVvv5+7A68C1xpj6xaq+ImNMpTFmB04Bynafw+vGmHJjzD7gzSbkbMiVLdxPNVF/2Tg0lcpy2zlURFyRW1iUbjuEckSiSAhwuTFmuPvV1xhT7D5+9MYi/XDe5M81xgwFinAKS2OucY9/iTFmPc5wua04n/ZHAvUnCTtwxL5lwHqcAhNO/Yn4a3FaDq2/NhrwjwQSav7mRCRCxtXej8J9AFCJJQOnBa/iQCSKxDvArSIiACIywn18Fu4naBE5Cch3H8/EeRMvE5Fs4IIWntcPbDbGhHAW7jnW3C9VwCXAd0Tk2804xyzgGyKSKiIZwIQW5NRLTTFyg/e/2uHZdmjrO05Eokj8BufSz1J3qOlv3McfA7qLyFLgZziXm8qMMUtwLjMtB54GZrfwvI8BBSLyKXAiR7ceDmOMOQBcCNxe17neGGPMPOANYAnwCjAfp1XSNAG/oH/ZY6aPbB+RwcG9tnOoiDhXLznFh6gtOuR2Sie5HcsnAB8AJxpjEmqooohkGGP2i0gazsiqm4wxCxvbD4CA/xScwqJi5HfV35z1SO2lo23nUBFxWenkCa/aDtHeRfM+iTRglogsAV4Fbk60AuF60u0wXwj8u8kFwvGNKGVSYVzne6+D7QwqYprU4lfRpcuXRlPAP49Dw3JVDBhDzSmVj5ftwt/VdhbVajuA7NLJE0K2g7RniXTHdWIJ+HsAp9iO0d6I4PuBr2iF7RwqIroBZ9oO0d5pkYieCURiCK1qtiu90zJtZ1AR09LRjypCtEhEz4W2A7RXndg/tBc7NtvOoSLibNsB2jstEtEzznaA9koE+aHv9VW2c6iIODW3sKgpN9uqKNEiEQ0Bfz90cSGrLvHO7m47g4qIFEBXrLMoEhP8qaOdHOsTri8L8Z3Xytmy3+ARuOnkJH50egpLttQysaiC/VWG3E4enr+sA5kpR3eV7Kkw3PhGOcu2hRCBpy9K5Yw+Pn72XgX/XV3D8B5e/n6pM7r02SVV7Co3/Oj0lFg/zSbLkIqTjpdN69aYXsfZzqJa7Wxguu0Q7ZW2JKJjROObRJbPAw+dl0rxpAw+/V46j86rZsX2Wm58s5zJ56YQvDmDSwf5eHB2ZYP7/+jtCs7v76PklgyWTEwnr7uXsgrDxxtqWXpzBrXGENxaS3m14W9LqvnhqckNHiee3Op7dW3jW6kEoFOHW6RFIjpi3pLo2dHDyT2d6as6pgh53T1s3GtYuSPE2cc5j3/1eB//Lq45at+9lYYZ62r43ogkAJK9QqdUwSNQVWswxlBeDUleePDjKm4blUySN/4Hbl3gmZtjO4OKiNNzC4v0vcoSfeGjI+YtifpK94RYtLmW03K8DMny8sZKpzC8vKKa9XuPvi9pze4Q3dOE61+vYMQT+7nxjXIOVBk6pgiX5yUx4okD9OvkwZ8izNtUy8WDkmL9lFokVar758uaz2znUK2WDvS3HaK90iIRac5NdD1snX5/leHylw7yh/NTyUwRnr44lUfnVXHKk/vZV+m0Eo5UE4KFm0PcPDKJRT/IID1JmDzLuSz107NSWDwxg4e+lso9H1Xy63EpPLWwiitfPsh9Mxq+dBVPbvO9usl2BhURQ20HaK+0SERezC811amudQrENflJXJbnfNof1M3Lu9els+CmDL6V7+OEzkcXiZxMISdTOC3HGcdwxUk+Fm45vMWxaHMtACd29fD3JdW89M00lm2r5bOdtVF+Vq0zzrM413YGFRHDbAdor7RIRJ6VS03GGL73RgV53bzcccahUUfbDjhv9iFjuG9GFRNHHt3h3CPDQx+/h5U7nDf8D9bWcFK3w/9q3PNRJb8+J4XqENS60315BA5WR+kJRUiS1B53ume5TtOR+LQlYYkOgY08K0Vi9vpanl1aTX6Wh+FT9gNw/7kpfLYzxKPznHfyy/J8XD/caWFs2hfixjcqeOuaNAD+fEEq17xSTlUtHN/ZwzMXH5pM9bWSak7t5aVXR6dwnJHjJf/x/QzN9jCsx7HWeooPt3pf2/5paLDtGKp1tEhYorPARlrAvwboZzuGOqTWyJb+lc9mGTzack5cBuhUOnmCLioVY/qPJpIC/k5ogYg7XjE9xnsWLbWdQ7WKoGvFW6FFIrLyG99E2XCL7/V9tjOoVutrO0B7pEUisrJtB1ANGyafn+Sl9ug7CVUi0SlWLNAiEVndbAdQDfOI6Xqh59PFtnOoVtEiYYEWicjSJTPj2ETfG/F/9586Fr3cZIEWicjSIhHHBsn6/BSqKmznUC2mLQkLtEhElhaJOCZC5hXeGUts51At1st2gPZIi0RkaZGIczd6i46e4VAlCr/tAO2RFonI0iIR53Jl6/B0yvfbzqFaJCO3sCj+b/FvY7RIRJYWiTgnQodrve/rJafEJECm7RDtjRaJyNIikQC+63sn/pfVU+HoJacY0yIRKQG/B+hkO4ZqXA92De/Evt22c6gW0X9jMaZFInI6o69nQhAh6UbfW8ts51AtopebYkzf1CJHLzUlkG95P8ywnUG1SGKsnduGaJGInJTGN1Hxogv7hmWza5vtHKrZdHRTjOmiQ5Fz0HYA1XQieCZ63lz6+5rv6sy9CSSErn8Ta1okIkeLRAJ5PjPjk/mbl6c8tPCNtWv6XeSv9aXm2c6kVDzSIhE5B2wHUI07KHLguz2zFxWnJI9OzjQHJ7053ddn4/Tkrd1PXrhqwJVUJ3c82XZGdUw63XuMaZGIHC0ScW5hSnLxjT2zU6tFRgNUJUna/lSWdKxgWPb2hSdnb1/Ibn//FSWDrt1bntptFCLaZxd/qm0HaG/0H0GkBMpqgSrbMdTRDJhA1y7TC3pmn1AtctjyssFc2VP/585lq086Y07g9FHzfruu474vZmGM/j+NL1okYkxbEpF1ANC7eePINq9325W9eqzf6fOObej304ZK5zNLju4MzTi4ud+pCx7oV5HSaUvJwGtW7uqcdzIiHaMeWDVGLzfFmLYkIksvOcWR1zLS536lTy/PTp/3lHDbBHMlzxzj/1tq5Z4ew5c+OnbM7J+EsrfMnY4JbY9OWtVE2pKIMS0SkaUjnOJApVDxnZ5ZM+7p3nWUETnmkrK1XknanUFxY8dMqin3Dy6ZOnbszDsy+qz/YIaEatdHLrFqhh22A7Q3WiQiS1sSlq1ITlp9Vt+c9YtSU89u6j6LTpAm/3/zhqo7DPj8lbPHzfhRrxM+f+VjT23VqpYlVS1QA2y2HaK90SIRWVokLHqwS6cZV/XqkVPp8Qxozn7T8j1ZzT2XYLzHrf/gzHEzbz8xr3jqfF/1gaXNPYZqti2TpozXRaNiTDuuI0svN1mwy+PZeVXvHp9v8fma3Hqob1UOAw3sFmeSxmbruXXuyJ5b57Kzc16wZOC3yytTOp+KiLTkWK2xdc96nn7/N1/+vHPvZiaM/C7nDL38y8eMMfzr40dZ/sUckn0pXDfup/TpfiL7yvfwl3d/RXnlfi489XqG9RsNwBNv38NVY35Ep/RjXrWLlQ22A7RHWiQiS1c8i7H30josvCurW6+QyKiWHsOIeLb5WZVdxmmtydJ1d3H+WZ/ew76MPqtXDLpuy4H0XqcjErN/Y9md+vDzK54EIBSq5e7nrvryzb7OivVz2V62gV9d/XdKtxXz4qw/8pNLH2XB6g857cTzOOWEc3jsrUKG9RtNsPRj+nQbEC8FArRIWKGXmyJL/xLHSDVUT8zuPv2OrG4jQiI9Wnu8eSdKZSRyAXTcv77/afPvH33GnF9t7bRn1QyMiXkLc+XGRXTP7EWXjtmHPb60dDajTjwPEaFf9kmUV+6n7MBOvB4f1TWV1NRWIyLUhmr5KPgKXxl2ZayjH4v++7JAi0RkrbYdoD34PMlXOvq4nM9mp3UYG6nLOtPzPTmROE59HSp29j558R/PHv3xzyq6b1s0HWNittDRgs8/4pT+4496fM+BHXRO7/7lz53Su7Pn4A5G9h9P8Yb5PPpWIV8/pYCZy19n1IlfJTkpNVaRm0KLhAV6uSmytEhE2eOdMmc91sk/HJGIrgexLluOrxW2eA2tbpUcKbn6QJf8FU+NrfUkH1h9wiUzNvYa3R/x9or0eerU1FYTXPcxF436XpO2F4QOKRncfMH9ABys3Md7S17k++fdywvTH+Jg5T7GD/0mx/cYHK3ITaVFwgJtSUSWFoko2euRsgtzen78WOdOoyNdIOps6sqaaBy3jjdUlT7ws5fOHjfjx937rX1ztidU/Xk0zrNi/Vz6dBtAZlqXo37XKb0buw8cuh9wz4Ht+NMOXy/rvwue5WsjrmH+6g/p0/1Erhn3E96c99doRG0uLRIWaJGIrFKg1naItmZWh9SlZ/fN2bcuKenMaJ7nk0GemAyv9JhQUr91b581dsaPjx+08vk53pryiC6lOn/1h5xywtGXmgDyjzuTuavexRjD2q0r6JCcjj/9UJHYVraBsgM7GdBrGFU1FYj7X3VNXExhpTcwWqBFIpICZdXAF7ZjtBW1UHtHVrdpN2d3H1wrEvE+gyPNHHL45H/RJiC9Nn982thZdw0ZGpyyJLlyz/zWHrOquoKSDQsYXm9U08wVbzJzxZsADO57Gl079uTeF6/jhRm/58oxPzps/zfnPs2Fo64HYGT/8cxZ9Q6/e+0WzrXfgR0CNtkO0R6JMbrSU0QF/EXA123HSHTrfb4NV/XqsWuf1zM0lud94YGadb4Qx8XynPWVdcxdWTzoup0H07JPQ0SX6jxk06Qp43vbDlgd9wcAAB7aSURBVNEeaUsi8oK2AyS6ZzM7fvz1nJ4dY10gAEqz7bYE/ftKB54+7zdnnj731xszy9bMwJgKm3niyBLbAdorHd0UeTo9QwsdENlf0DN78cqU5NGNbx0ds07yePtvtj/zQ1r5tr4jFz3UtzKp4/aSgd+es7Nr/nBE/LZzWdTqS3GqZbQlEXlaJFpgfmrKijHH5eywWSAAZp8kAwzEzTXYlOp93Ycte2Ls2bPukp6bZ0/DhLbazmSJFglLtEhEXgm6Ql2TGTC/7NZl+vU9sgZUi+TazlOWId2rfPE3lNlXW5GZt/KFceNm3N7puHVvz5RQTantTDHW5CIhIrUislhElovIEhG5QyK0FK2I5IrIMvf7kSLyp0a2/0WYx/8mIj844rFLROStYxxrmoiMbODxpuQolUamzQ9Hi0SkBcpqoPH1CRRs8Xq3jOvbe9GrHTPGIpJkO0+dz3pJ3E5H7TE1KSesfXPMuBk/7jvgs5c+9dZUtIe/a5snTRnfnJFN5caY4caYwcBXcQaS/KqpO0sTBwwYY+YbY25rZLMGiwTwD+DqIx672n28WZqYo8W0SETHXNsB4t0rGelzz+vTK2mX13uy7SxHmjFE4mouioYIxtNn4/TTx866M2/w8r8uTKrat9B2pihq8b8nY8w24CbgFnF4ReRBEZknIkvrPs2LyDgR+UhEXgCC4barz93nP+73GSLyjIgE3e0vF5HJQAe3VfP8Ebu/DwwSkZ7u/mnAV4DXROQUEZkuIgtE5J26bVzfFJG5IrJKRMY0JUcDua91j7FYRJ5orChqx3V0vAt833aIeFQpVNzYI3vu4tSUFk3rHQtzBsqgm9+iViAhhqBmb194cvb2hez2919RMujaveWp3UYRocsrcWJWa3Y2xqxxLzdlARcDZcaYU0UkBZgtIu+6m44Chhhj1orITWG2C9dfdY+7fT6AiHQ2xvxbRG4xxgxvIFOtiLwCXAn8EbgI+AioAP4MXGyM2S4iVwG/BW5wd/UZY0aJSF3r6CuN5aj/SxHJA64CzjLGVIvIY8A1wN/DvX5aJKLjPZxVtPT1rWdZcvJn3+2ZJZUeT9wWCIDyVMksT2Z5WhXWJytqjs5lq086Y06A/Wk91xbnfWfjvow+oxBJtp0rAmZE4Bh1E0GeBwwVkSvcn/3AAJx+xLnGmLWNbBduJcKvUO/ykWnaZI7/AB7EKRJX47xRDwSGAO+5c1d6OXw1vlfcPxcAuS3IcS5wCjDPPX4HYNuxQuqbWDQEysoI+OcAZ9mOEi8e6NJpxnOZHUch8X8pB2BFX9kxcnXcDHJqloyDm/uduuCBfhUpnbaUDLxm5a7OeScj0tF2rhbaD7TqUpqIHI8zXc42nGJxqzHmnSO2GcfhK0uG2y433Glo/qi42UBPERkGnInz5j4AWG6MOSPMPnVT2tfS8Pt3YzkEmGqM+XlTQ7alJmm8+a/tAPFgl8ez8yt9es19zp95dqIUCIAZ+ZJpO0NrpVbu6TF86aNjx8z+SSh7y9zpmND2xveKO59MmjK+pqU7i0h3YArwiHGml3gHuFncgRIicqKIpDewa1O3q/MucEu989Zd5qmWMIMy3DwvAVOBt4xz4+RKoLuInOEeJ0lEmtOiDZejzgfAFSKS5f6+i4gcc4YBLRLR87btALa9nZ624Jy+vWu2+nwtXjXOloUnyCBz6FNbQkuqKfcPLpk6duzMOzL6rP9ghoRqE2mivJkt2Keus3g5Tgfxu8C97u+eAlYAC92hrE/Q8Cfypm5X5z6gs4gsE5ElwDnu408CSxvouK7zD2AY8CKAMaYKuAJ4wD3OYpxWRlOFy4F7/BXA/wDvishSnEvjPY8+zCE6d1O0BPwCbMHpLGtXqqDqluzun3zSIfVsG2s9R8pTf6hZnFnOUZ2Oic4gtV/0GT9nbe6F3ULe5BNt52nEGZOmjP/Udoj2TFsS0RIoMzifYNqV1UlJa0cfl/P5JxFcNc6Wpf1kj+0M0SAY73HrPzhz3MzbT8wrnjrfV30gXmcJ+AKYYztEe6dFIrraVb/Eo538sy7t3SOr3OPJs50lEqblt+wO1UTSc+vckWfP/unQ4Uv+HEyp2DmX+Lq08NKkKePjKU+7pKOboutdnHnw23QxLvNI2bd79VjxRVKS1XmXIm1ZrgwysE8gUUcGNVmX3SX5Z336S/Zl5Hy+YtB3thxI7zUqDu6C/6fl8yu0TyL6Av65wKm2Y0TLjA6pS27L7t6tVqRNzvX/+CM187rua7v//8IpT+26sXjgtav3dBowkmOP6omWzydNGd/fwnnVEdr0J9w40SZHOdVC7Y+zuk2blN19SFstEAAL+stB2xls6FCxs/fJS/44dvTHP6vM2rZwOsbsinEEbUXECS0S0feG7QCR9oXPt2FM35wVH6SnjWvrq6dNz/ccc3hgW5dcfaDLkBV/HTt25h0pvTdOn4GpjdUSolok4oReboqFgH8hMMJ2jEj4W2bHjx/q0mlwu1kAxxjz4uTaXR7oajtKPAiJp3pd3/PmrOt7fs+QN+mEKJ2mZNKU8W1i8ENboC2J2HjcdoDWOiCy/7LePWY91LXzme2mQACIyNbOfGY7RrzwmFBSv3Vvjx4788fHD1r5/FxvTfmyKJxGWxFxRItEbDwPlNkO0VLzUlNWjD4uZ+dnyXZXjbNl7kDRRaSOICC9Nn88auysu4YMDU5Zkly5J5Irx2mRiCN6uSlWAv4/AbfajtEcIQjd063LzDcy0s+Mg+GQ1uRsN6W/f6o213aOeFfWMXdl8aDrdh5Myz6tFX1VwUlTxg+NaDDVKnqfROw8TgIVic1e7+arevfYstvrHWs7i20bukturbDZa449x017599XOvD0eb/hYIesL1YMuq50b2a/lsz6+0JUwqkW08tNsRIoKwam2Y7RFP/KSJ/ztT69UnZ7vW2isz0SNnRjje0MiSKtfFvfkYseOvusj3++r+uOpdMxpqmXWsuBv0Qzm2o+bUnE1mPAONshwqkQKf9ej6x5S+N41ThbPs7zmOO2h2zHSCgp1fu6D1v2xNgab+rez/pfNm1zjzPyEE/2MXb5+6Qp43fGLKBqEm1JxNZrHL7KVNwIJievOqtvziYtEA2bOUSiNdyzzfPVVmTmrXxh3LgZt3c6bt3bMyVUU9rAZgZ4OMbRVBNox3WsBfy/xlmHNm7c36XzjH9kZpyGs5avCuP5/6tZm1RLP9s5Ep1BQht6nz13Tb+L/LW+1Lr7If4zacr4b1gNphqkLYnYexJn6UHrdno8O87t02veP/wdz9YC0bi12Wxozf53b97M6NWfcdHao7s3nt61k5NWlrC7puFF2GYe2M/X16zha2s+5y87D12ReWj7Ni5Zu5bCzYduhH6jrIxnd8d6Fo2mE4ynz8bpp4+ddWfekOVPLUqq2rsI+L3tXKphWiRiLVC2AXjTdoy30tPmj+/bO7TN52t3k9e11KzBnlYNA77U7+fJnD5HPb65uppPDhykp6/hLsJaY7hv61aeyMnhzX7H89a+vayurGRfbS2Lyst5rV8/ag2sqqygIhTi1b1lXN3pyFUr41PW9kUjxnz886pJU8Z/ZDuLapgWCTsesHXiKqi6sUfW9J9173pKyF3nVjXNx3kywDR/sfsvjUxLw+89+p/cA9u2cWf37oRboSlYUUHfpGT6JCeTLMIFHTP5cP9+PALVxmCModKE8CE8vWsX13bqTFJirff0G9sBVHhaJGwIlH0KvBzr065yVo1bM6dDasKvGmfD3nTpWpkU2Sk6Pty/jyyfj0Gp4W8n2FpTTY+kQ62MHj4f22qqSfd4OS+jI5etK6V3UhIdvV6WVZRzbseEWv5iYV5JcZHtECo8LRL2FAIxm+7hT539My/v3SO73OMZFKtztkWrekvERqeVh0I8sXMnt3Y79gJ4x2q6fK9rV17N7cfPsrL5047t3NKtO//as4fbN21kys4dkYoaTdqKiHNaJGwJlK0BHon2aco8nj0X5PT89C+d/GMQSYv2+dq6GUMi9xqur65iY3U1l5au5Sufr2ZrTQ2Xrytl+xGd1z18SWypPvTYlpoasnyHd4+sqKgAIDc5mdf3lvFwr958VllJaVVcTzu1FHjddgh1bFok7LoPiNowlGlpHRaf3bd3+YakpNOjdY72Zt6JMshAw0OQmunElFRm9R/A+yf05/0T+pPt8/Hv43LpfkQH9pDUVNZVV7GhqooqY/jvvr2ck5Fx2DZ/3rGdW7t1o8YYQm7Tw4NQEYrrGwB/mVdSrGPw45wWCZsCZbtxCkVE1UDNbVndpt+a1W1oSETnG4qg8hTpeDCFkpbse9emjXxr3TpKq6o45/PV/HvPnrDbbqup5gcb1gPgE+HurGy+v2E931i7hq917MiAlEMjlt/ft48hqR3I8iWR6fUyrEMHLl67FuCYfR2WFeWVFGsrIgHozXS2BfzJwAogInf0rvP51l/du0fZfo9nSCSOp452179rp41aZcbZzpHAyoHBeSXFa20HUY3TloRtgbIqnE7sVnva33H2hTk9/Vogomt6vnSynSHB3a8FInFokYgHgbJ/AR+3dPf9Ivsu7d1j9sNdOp+FSGYEk6kGLDpe8ozzaVg13yrg/2yHUE2ns8DGjzuBT5q705zUlOUTe2R1rBE5KwqZImrDXzewb/E+fJk+Bvx2AADlX5SzaeomQpUhkrsmkzMxB2+Ho9eraWhfgC0vbWHf0n106NuBnJtyANg9eze1B2rpdt6xh5a2VI1PUvamsch/sG2sWx5jk/JKiuN6yJU6nLYk4kUzb7ALQejn3btOu7FH1sAakb5RTBYxnUd3JvfO3MMe2/TMJnp8swcD7htA5imZ7Hir4bH9De1be7CWg6sPMuC+AZiQoWJ9BaGqEHtm7aHr+K5RehaOxcdLwi5Ha9GLeSXF79sOoZpHi0R8uQvY29hGm3zezWP79l76n4z0cYgkTGswfWA63vTDWwmVmytJG+jcepA+OJ29Cxp++g3ti4CpcaalMNUG8Qo7/ruDrl/tiviie0P5tHzpHtUTtD17gTtsh1DNp0UingTKvgBuO9YmL3XM+PT8nF6pe7ze4TFKFVUpOSnsW7QPgL3z9lK9q7rJ+3o7eMkcmcnnv/ycpG5JeNI8lK8pJ/Pk6HfLFPeVQQa0NdF0v8wrKY7LtVTUsSXMp9B2I1A2lYD/YuDS+g+Xixy8oWfWgmUpKWMsJYuKnBty2PT8Jra9vo3MEZmIt3ktgO5f7073rzsf6jc+vZGsy7LYNX0X+5ftJ7VPKlkXRWcOw5BHvDsyWdl9L6OicoK2ZTExmF1ARYe2JOLTTcDWuh+WpiSvHN03Z3NbKxAAKb1S6PeTfvS/tz/+0/0kZyW36Djl65zBRik9Utgzew99J/WlckMllVsqIxn3MPMHiI5walwNMDGvpDgu1lBRzadFIh4FynYANxow93XtPP2antm5VZ62uXxmzV5nhgsTMmx/YztdzunSouNse2UbWZdmYWoM1M1E4YFQVfSmpZie7+kVtYO3HYV5JcVzbIdQLad3XMexy58c+NtVKcm/sJ0jUtY/vp4DJQeo2V+DL9NH1iVZhCpD7PrAmb4q85RMsr+ZjYhQvbuajc9sJPeO3LD7dhnrFJS9C/ZSsb6CrEucS0ubX9zsXG7KSaXPxKMX+YkYY8yLD9Tu8Bi0E7th/84rKb7CdgjVOlok4lj+1PwOwFxA76COU394ouaTXrs4w3aOOLQKODWvpLjR0XoqvunlpjgWLAiWA1cBB21nUQ2bM1AiMiNsG3MQuFwLRNugRSLOBQuCK4BbbedQDZue70mIGxljbGJeSfEy2yFUZGiRSADBguDTwJ9s51BH29RVjqv1sMF2jjgyJa+k+FnbIVTkaJFIHHcAb9sOoY72RXdKbWeIE/OAH9sOoSJLi0SCCBYEa3H6J5bbzqIO93GeR/8dwU7gm3klxdG7MUVZoX+5E0iwILgXuBDYbjuLOmTm4LZ5D0szhIBr80qK19kOoiJPi0SCCRYES3Gm7NBPbHFiV6ZkV3lZYzuHRbfklRTrpdA2SotEAgoWBGcD37edQx2ypme77by+I6+k+HHbIVT0aJFIUMGC4LM4U4urODBzsCfFdgYL7s4rKX7YdggVXVokEliwIPgQ8HPbORR8kicD680a1R7cl1dSfL/tECr6tEgkuGBBcDIQsJ2jvdvfQTpVJLHKdo4YeSivpPge2yFUbGiRaAOCBcF7gd/aztHercyRLbYzxMBjeSXFepmzHdEi0UYEC4L/A/yf7Rzt2fR86Wg7Q5Q9DdxiO4SKLS0SbUiwIPgzQDsSLZk/QAYZaPr6q4nlBeD7eSXFOm10O6NFoo0JFgTvAH4B6D/mGKtMlvQDqRTbzhEFLwEFeSXF7aljXrm0SLRBwYLg/wLfoe1+qo1bwVzZZTtDhP0OuDqvpFinRG+ntEi0UcGC4HPA+UCZ7SztyfR8adn6q/GnFrg5r6T4J3qJqX3TItGGBQuCHwKjod3eDRxzS/vJIJP4i0TtAy7MKymeYjuIsk+LRBsXLAguA04HltrO0h7UeCV5T3pC90usA8boXEyqjhaJdiBYENyI06L4l+0s7cHiE2S/7Qwt9BEwMq+keIntICp+aJFoJ4IFwX3BguA3gduAKtt52rJp+Z7utjO0wB+Ar+aVFO+wHUTFFzFG+6Tam/yp+acC/wT62c7SFokxoRcn1+4T8NvO0gTlwE15JcXP2Q6i4pO2JNqhYEFwHnAy8JrtLG2REfFs91NiO0cTLAXObG6BEBEjIg/V+/kuEQk0ss9EEflOy2I2OdcFIjJfRIpFpEREfhfN80WSiDwlIic1ss00ERkZq0x1tEi0U8GC4J5gQfBSnLWz9X6KCJs3QOJ5UahqnEkhR+aVFC9uwf6VwGUi0q2pOxhjphhj/t6CczWJiAwBHgGuNcbkAUMgvhaCEhFvuN8ZY240xqyIZZ6m0iLRzgULgg8DpwGLbGdpS6bne3rbzhDGQpzicG9eSXFLPxzUAE8Ctx/5CxE5TkQ+EJGl7p993ccDInKX+/1tIrLC3eZF97F0EXlaROaJyCIRubiZmX4K/NYYUwJgjKkxxjzWSKa/icjjIvKRiKwRkbFuhmIR+Vu957RfRB4QkQUi8r6IjHI/1a8RkYvcbbwi8qCbf6mI/MB9fJx7/BeAoLvd70Qk6G53q7vdl60EN9N8EVkuIvc283WIOC0SimBBcBEwCigEKizHaRNKe8gJIWGb7Rz1VAJ3A6fllRRHYjj0o8A1InJkv8sjwN+NMUOB54E/NbBvITDC3Wai+9jdwIfGmFOBc4AHRSS9GXmGAAvC/O5YmToD43EK3ps4c58NBvJFZLi7TTowzRhzCs49JPcBX8VZRvjX7jbfA8rc/KcC3xeRuj6/UcDdxpiTgJtw+gJH1MtzpLuNMSOBocBYERna9Jch8rRIKACCBcGaYEHwAZy/mNNt52kLNnXhM9sZXHOBk/NKiu+P1PQaxpi9wN9xRsvVdwbOZIAAz+IMvT7SUuB5EbkWp1UCcB5QKCKLgWlAKtA3ElkbyfSmcUbvBIGtxpigMSYELAdy3W2qgLr7RoLAdGNMtft93TbnAd9x888BugID3N/NNcasdb//CjDFGFMDYIxpaBqXK0VkIU7rfjBwzL6KaNMioQ4TLAh+hvNJ7gfolB6t8ukgsT10sALnMsyZeSXF0bje/QecT9DH+sTf0GswAaclcgqwQER8gACXG2OGu199jTGH3ZQoIr8VkcXuG/GRlrvHa4r6mer6jkL1vq/72ed+X20ODQP9cju3mNRtI8Ct9fL3M8a86/7uQP2nwTEm33RbH3cB57otjSKcgmmNFgl1lGBB0AQLgk/ifIJ5EZ1RtkWmD/HkWjz9LGB4Xknxg3klxbXROIH7KfglnEJR52Pgavf7a9wcXxIRD9DHGPMRTgHrBGQA7wC3ioi4241o4Hx3170JNxDnQeAXInJi3XlE5I6mZIqQd4CbRSTJPf+JYS6XvQtMdAsjIkfN9ZWJU1TKRCQbuCAKWZtFi4QKK1gQ3BQsCH4L55rqh7bzJJqtXSSnxsP6GJ92MXBRXknxmLyS4pUxON9DQP1RTrcB14vIUuA64EdHbO8FnhORIM7llIeNMXuA3wBJwFIRWeb+3GTGmKXAj4F/iEgxsAzo2cRMkfAUsAJY6OZ/gkOtjCO3+wLneS4Bvn3E81iC87osx1nkaXYUsjaL3kynmix/av75QF2/hWqC/32mZuYJWxgTg1MtB34FvKKztqpI0paEarJgQfBtYATOWhVfWI6TEGaf5Ak7Nj5CPsO5hDI0r6T431ogVKRpS0K1SP7U/BSczu3bOTTCQx2h036z/ck/10ZjLqe1OMMvn41Wn4NSoEVCtVL+1HwvcBlwJ85NeeoIzz1Yszq5hv4ROtwGnHH6T7fiZjilmkyLhIqY/Kn5Z+IUi0vQS5lf+tVzNdMHr2dsKw8zG6cj8/m8kuJ4nvJDtTFaJFTE5U/NPwFnpMl1JMZMqFE1fnFo7sT/hka1YNfNODesPZ1XUrwqwrGUahItEipq8qfmp+JMXXA9cC7ttHWRVmHKnnm4NkOc4Z+NqcKZHuIZ4G3tb1C2aZFQMZE/NT8HuAr4Fk2/M7bN+NtDNSvSqo45vcJSDl1O0oV/VNzQIqFiLn9q/gDgSuDrOJ3d0R4mal3hS7XTT/7cHNkvUYIzJ9BzeSXF4SanU8oqLRLKqvyp+Z1wJj37mvvVx26i6DijOLTg9tdC/YEPcKZweCevpHid5VhKNUqLhIor+VPz83CKxVeAkUC23UStsg9nVNL0DpXmo6m/r10QqVlYlYoVLRIqruVPze+N04dxCs6Sq6dwaE6eeLIVp19hKbDE/XN5sCCoRUElNC0SKuHkT83vCQzDWbzlOPcr1/2zB850zJFmgO3AJmCj+7UKtyAEC4LxtMCQUhETd0VCRAzwe2PMne7PdwEZxpjAMfaZCByM1hq67pS9f8W5Xp4ElBpjvi4iucCZxpgXjrF7c87T4PFEZAHOwinX4kyDYXCGk95tjHldRH4NzDDGvH/EfuOAu4wxF0YiXwN59xtjMqJ9nuZwpwvp435l4kxDXf8r3f0zDajFWXOh0v2qqPdnBYcXhc3BgqDe4azanYamsrWtbpH1/zXGNGkooDFmSpQz/Rp4zxjzR4B6ywnm4kz1e1SREBFf3epTzXDU8dzCsRHIwlni8WRjTJmIZADdAYwxv2zmedqsYEGwEljtfimlWikeb26Kx0XWe+LMmQN8OXc9wGRgjLta1u0i8l0ReVlE3gTeDXfecIumH3k897ELcIZJZuF0hO53M+yvWxLRXdD9Cvf780WkRERm4cypVPfahcvyVl3Rcx//pfv9b0TkRhHJcF/rhe7i7cd87UTkVPc4xzfzNVZKxSNjTFx94bwJZgKlOFM63AUE3N+9CRS4398AvOZ+H8C53AHO5YEU9/tO7p/3A9fWPYZzLTm9GZm+BuwBPsL5NN/LfXwc8J96230Xp5h0OdZ5cRZD/x/38RRgPs719cOO5/7+deB4nHsJ3sGZovsZ4Bv1tvkbcAXOMofrcdbWFZxVw/7TSJZCYJL7ms8D3nG3+QgYiNPazHQf64bzCb3uMuX++q8DcCbOYvR9bf890i/90q/IfMVjSwITZ4usG2PewXmj/gswCFgkIuGmf37PHFrcPNx5j7Vo+pdEJBnIMcasMcbUAufjFINVwMMiEjhil0HAWmPMZ8YYAzxX73fhsswEzsZ5LYuADBFJA3KNMStxis397qpe7wO9aXhYah5OC/Abxhhda0KpNiIe+yTq/AFYiPOpOZxwi6yfDVwE3CMigzm0yHrY5RxF5LfuvpgG1tB13/hfAF4Qkf+459jZwKGOXPT8qPO66/je6haf+o+PO+JYY6i3Hq/7xj8XmCsi7+G8NoEjozb8DMNmSca5H2EN8B5Oa+H7OC0CcBa06Q6cYoypFpFSGl6YfbP7+Aic1pxSqg2Iy5YExNci6yIy3v10jYh0BE7AueyzD+h4jKcR7rzhFk0/8njnA/91t+klIifX+91w4Mg7dkuAfiJygvvztxrLYoypwrlEdSXwKU7L4i73T3Au+W1zC8Q5OMNMG7IHp8je30CxU0olqLgtEq64WGQd5wau+e55PwGeMsbMw7m0VSMiS+p1NNcX7rzhFk0/8njjgOnuPknA79xO6cU4k+Ud9vyNMRU4/R1Fbsd1/SJyrNdgJrDVGHPQ/T6HQ0XieWCkiMzHKcwl4V4kY8xW4BvAoyKiCxAp1QbE3X0SyiEiOcBfjDEX2M6ilGq/tEgopZQKK94vNymllLJIi4RSSqmwtEgopZQKS4uEUkqpsLRIKKWUCkuLhFJKqbC0SCillApLi4RSSqmwtEgopZQKS4uEUkqpsLRIKKWUCkuLhFJKqbC0SCillApLi4RSSqmwtEgopZQKS4uEUkqpsLRIKKWUCkuLhFJKqbC0SCillApLi4RSSqmwtEgopZQKS4uEUkqpsLRIKKWUCkuLhFJKqbC0SCillArr/wHW2B2i6E6wtwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sortedComplaintType = sortedComplaintType.head()\n", + "plt.figure(figsize=(5,5))\n", + "plt.pie(sortedComplaintType['count'],labels=sortedComplaintType[\"Complaint Type\"], autopct=\"%1.1f%%\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "#Group dataset by complaint type to display plot against city\n", + "groupedby_complainttype = NYC311_df.groupby('Complaint Type')" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(77044, 54)" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grp_data = groupedby_complainttype.get_group('Blocked Driveway')\n", + "grp_data.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Unique Key 0\n", + "Created Date 0\n", + "Closed Date 2164\n", + "Agency 0\n", + "Agency Name 0\n", + "Complaint Type 0\n", + "Descriptor 5914\n", + "Location Type 131\n", + "Incident Zip 2615\n", + "Incident Address 44410\n", + "Street Name 44410\n", + "Cross Street 1 49279\n", + "Cross Street 2 49779\n", + "Intersection Street 1 256840\n", + "Intersection Street 2 257336\n", + "Address Type 2815\n", + "City 2614\n", + "Landmark 300349\n", + "Facility Type 2171\n", + "Status 0\n", + "Due Date 3\n", + "Resolution Description 0\n", + "Resolution Action Updated Date 2187\n", + "Community Board 0\n", + "Borough 0\n", + "X Coordinate (State Plane) 3540\n", + "Y Coordinate (State Plane) 3540\n", + "Park Facility Name 0\n", + "Park Borough 0\n", + "School Name 0\n", + "School Number 0\n", + "School Region 1\n", + "School Code 1\n", + "School Phone Number 0\n", + "School Address 0\n", + "School City 0\n", + "School State 0\n", + "School Zip 1\n", + "School Not Found 0\n", + "School or Citywide Complaint 300698\n", + "Vehicle Type 300698\n", + "Taxi Company Borough 300698\n", + "Taxi Pick Up Location 300698\n", + "Bridge Highway Name 300455\n", + "Bridge Highway Direction 300455\n", + "Road Ramp 300485\n", + "Bridge Highway Segment 300485\n", + "Garage Lot Name 300698\n", + "Ferry Direction 300697\n", + "Ferry Terminal Name 300696\n", + "Latitude 3540\n", + "Longitude 3540\n", + "Location 3540\n", + "dtype: int64" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#To get nan values in the entire dataset\n", + "NYC311.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "#fix blank values in City column\n", + "NYC311['City'].dropna(inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(298084,)" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Shape after dropping nan values\n", + "NYC311['City'].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "283" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#count of null values in grouped city column data\n", + "grp_data['City'].isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\pandas\\core\\generic.py:6245: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " self._update_inplace(new_data)\n" + ] + } + ], + "source": [ + "#fix those NAN with \"unknown city\" value instead\n", + "grp_data['City'].fillna('Unknown City', inplace =True)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOcAAANeCAYAAABZAGqCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde9zl5bz/8de786SUathKNdTGVjFyU6QUtmOliEoOtdva2DayRWjbIYqcSg67UCQVIYfCZtM56p6aZqIDKTr9MpWOKpo+vz++111r1tz3Pfcc18z0ej4e6zFrXdf1va7P97u+35v16bq+31QVkiRJkiRJkpa8FQYdgCRJkiRJkvRwZXJOkiRJkiRJGhCTc5IkSZIkSdKAmJyTJEmSJEmSBsTknCRJkiRJkjQgJuckSZIkSZKkATE5J0nSEpbkjCT/upjHmJKkkqy0GMfYK8n/Lqa+r0nywvb+/Um+vDjG6RvzSUkuTnJnkrfPx3bbJrlinPqNktyVZMVFE+mY4+yd5JzFOcb8WFz7vSSun4UxP9/Dkjq321iTkvwwye1Jvr0kxlxUkhyc5BsL2cciuT4W19/WJF9K8l+Lsk9J0rLD5JwkSYtBSy7d05ITNyU5Nska89nHYk+wLYyqOqGqXrQExvlYVc0zGbMIkjbvAc6oqjWr6sj5iO/sqnpSTxwPJhZb/Z+qao2qmr0Qsc1hUZ8bSbZPct2i6GvE4tjv5c1Ez21YJAmq3YDHAOtW1asXQ/8LrF2797a/l7cnOSvJFoOIZWH1/O2/M8ltSc5L8uYk4/7uqqo3V9VHllSckqSli8k5SZIWn52qag1gS+CZwEEDjkfj2xj4zaCDWFYs7pmAWuQ2Bq6sqvsHHcgY3tb+Xq4LnAEcP9hwFspOVbUm3TE/DHgv8JWxGnstSZJMzkmStJhV1fXAj4HN++uSrJDkoCR/TPLnJF9PslarPqv9e1ubUfLsUbZ/VpLhJHe0GXqf7muyV5I/Jbk5yQd6tls1yWeT3NBen02yaqs7M8mr2vvnthlaL2ufX5hkens/xzKx1u7NSX6X5C9JPp8krW7FJJ9qcVyd5G0TnfnVO6MnyWpJvpHkljYr5cIkj0nyUWBb4Kh2rI4ao6+dk/ymbXtGkn9q5b8AdujZ/omjbLtOmwF5Q9u/U1v5g7POkhwPbAT8sPXznv5ZbknWSvKVJDcmuT7JISM/zpNs2o7/7e1YnTzGYRnz3EjyyRbf1Ule2lO+T5LL2oyePyT5t1b+CLrzc/3W111J1h9l/49L8sUkpye5G9ghycvTLQW+I8m1SQ7uad+/33u3ce9sse3V0/ZfWmx/SfLTJBv31P1zksvbMTkKyBjHZOQ8e3+Sq9o405Js2Oqe086X29u/z+nZ7oz2PZzX9v+HSdZNckLbtwuTTOlpX0ne3vbn5iSHZ4yZUUmOaMfmjhbPtj11vef2yPF6Y/qu2SQvAd4P7N7iu2SMsf6p7ctt7TzfuZV/CPhgz/b79m03V/9JXp1kWl+7/+w5749LtxTzZ+1Yn9n3vT251d2a5Iokrxnre+vVkocnAU8Zq03GuI5b3YZJvptkVrq/E2P9LTg8yTnprsfxrskV011TNyf5A/DyiexH25fbq+oHwO7AG5Ns3voc7Vo6Lskhrf6yJDv2xLpSG3/L9nnrdq7e1r6r7Vv5Dklm9mz38yQX9Hw+J8ku7f2BPdfJb5Ps2spXbd/ZFj3bPTrdbMDJE913SdL8MTknSdJi1pIDLwMuHqV67/baAXgCsAYw8mNyu/bv2m154PmjbH8EcERVPRLYBPhWX/1zgScBLwA+2PMj9gPA1sBU4GnAs3hoZt+ZwPY9MfwBeF7P5zPH2d0d6WYJPg14DfDiVv4m4KVtvC2BXcbpYzxvBNYCNqSbYfNm4J6q+gBwNm32TVW9rX/DdAm3E4F3ApOB0+mSaKtU1fP7tr9ylLGPB1YHNgMeDXymv0FVvR74E23WZFV9YpR+vgbcD2wKPB14ETCytPEjwP8CjwIeB3xujOMw1rmxFXAFsB7wCeArSUaSWX+m+34eCewDfCbJllV1N913c0Pra42qumGMcV8LfBRYEzgHuBt4A7A2XdLiLSM//nulSwAeCby0zSh6DjCS5N2FLjH0Srrv5Wy674kk6wHfoTs31wOuArYZIzaAdwF70l1vjwT+BfhrknWA01oM6wKfBk5Lsm7PtnsArwc2oLuWzgeOBdYBLgP+u2+sXYEhuvP5FW2s0VxId96vA3wT+HaS1cbZh7mu2ar6CfAx4OT2/Tytf6MkKwM/pDt/Hg38B3BCkidV1X/3bT/HLK4x+v8B8PjexBfwOuac0bYX3Tm7Ht33eUKL5RHAz9r+PpruO/lCks3G2e+R/Vil9furMerHvI5bQu1HwB+BKXTf5Ul926+Q5BjgqcCLqup2xr8m30R33Tyd7vvebV770K+qLgCuo/sPCCP6r6VeJ9IdsxEvBm6uqouSbEB3Lh9Cd069G/hOS5ydD2yaZL10SfHNgcclWTPJJOAZdNcXdNfStnR/Tz8EfCPJY6vqPrpj9rqe8fcEfl5Vs+Z33yVJE2NyTpKkxefUJLfR/fA6k+7Hb7+9gE9X1R+q6i7gfcAemfi9xP5O+zFWVXdVVf8P2g9V1T1VdQlwCV3SbGTcD1fVn9sPrg/RJSZosfYm4w7t+fw8xk/OHVZVt1XVn4Bf0iUloEvUHVFV11XVX+iWei2Iv9MlVzatqtlVNa2q7pjgtrsDp1XVz6rq78AngUl0iaJxJXksXQLrzVX1l6r6e1WNdxzG6ucxrZ93VtXdVfVnuiTfHq3J3+mWwq1fVfdW1fzewP6PVXVMu8/b14DH0t1njKo6raquqs6ZdEmcbcfpazTfr6pzq+qBFt8ZVTWzfZ5Bl1R43hjbPgBsnmRSVd1YVSNLiP8NOLSqLmuzpj4GTG2zsF4G/LaqTmnf2WeB/zdOfP8KHFRVV7T9vKSqbqFLHP6uqo6vqvur6kTgcmCnnm2PbcfndrqZhFdV1c9bTN+mS870+nhV3drO9c8yZzLlQVX1jaq6pY37KWBVuuTbWMa6Zudla7rk/mFV9beq+gVdomrUuOalJWlOpiVpWmJtSutzxGlVdVZr+wHg2e0/RuwIXFNVx7b9voguyTpeYuvI9vfyLuBtdH+TRjPedfwsYH3ggHZ99V9DK9Odo+vQJdD/OoFr8jXAZ6vq2qq6le7v4YK4oY07Yo5rqa/tN4Gdk6zePr+2lUH3fZxeVae3bX8GDAMva/0M0/3dHgJm0P3vzzZ058fv2vVAVX27qm5ofZwM/K4dP+j+drw2D80GfT3L9jJjSVrqmZyTJGnx2aWq1q6qjavqrVV1zyht1qeb5THij8BKtITKBOwLPBG4PN3Sux376nsTGX+l+/E+1rgjSxnPB57YfrROBb4ObNhmMT2Lh5ZUjma88a7tqet9Pz+OB34KnJRueekn2oyhiZhjn6vqgRbHBhPYdkPg1pZYXBgb0yUIbmxL0m4D/odudhF0D6UIcEFbtjfWbKyxPHj8q+qv7e0aAElemuRXbcnabXSJr/Xms/85vrckWyX5ZVtCeDvdTMa5+myz83Zv9TcmOS3Jk1v1xsARPcfjVrpjsAF9501VVX8MfTakmxHUr/98p33u/e5v6nl/zyif+x/o0htH7/Uzh3RLQS9Lt5z2NrqZSuMd97GuoXlZH7i2nde9cU3k/B7LSJImdAmab7VE3Ije7+Yuuu9ufbrvdKuR77Tt917AP4wz1turam1gNbrk3ilJnjpKu/Gu4w3pEtRj3VdvU7pZjh+qqr+1snldk/1/u/rPo4nagO74jBjzPK6q39PN1typJeh25qHk3MbAq/uO7XPpEvHw0MznkVnOZ9AlzOf4DytJ3pBkek8fm9POy6r6Nd2s2Oe163RTupmUkqTFxOScJEmDdQPdj60RG9Etr7oJqHltXFW/q6o96X5IfpzuB+0jFnDcG1qffwWmAe8ALm0/Ys+jWzJ4VVXdPIH++91It0xzxIYL0AdtxtqHquopdDNldqRbVgnzPl5z7HNLOGwIXD+Boa8F1kmy9kTCnEc/9wHrtcTt2lX1yKraDKCq/l9Vvamq1qebUfaFJJvO5xhzSXc/we/QzTJ6TEuCnM5D92+baH/97b5J96N9w6paC/hST59zblj106r6Z7okwuXAMa3qWuDfeo7H2lU1qarOoztvHjxXer6zsVxLtyS1X//5Dt05P5Hvfiy9cTx4/fRKd3+599LNvnpUO+63M85988YxkfN7w8x577v52ce5+q9uJu7f6GZYvpa5Z0/1fjdr0M0Mu4Hueziz7ztdo6reMs8guplcZwO/p1te2m+86/haYKNxZh5fRrek+8dJRmYvjntN0ncO0h3T+ZLkmXTJud5ZfPP6PkeWtr6Cbvbo73viPb7v2D6iqkZmI/cn50ZmQj+YnGuzUo+hm6G4bjsvL2XO8/JrdLP0Xg+cMsrsPknSImRyTpKkwToR2D/J49uP25H7Pt0PzKJbCviEsTZO8rokk9vskdta8ewJjntQksltRtwHgW/01J9J98NtZKbFGX2f59e3gHck2aAluN67IJ2ku+H5Fu3eUnfQLQMd2d+bGOdYtRhenuQFbbbdf9L9KD9vXuNW1Y10Sx2/kORRSVZOst0YzceMo/Xzv8Cnkjyy3f9qkyTPa/v36iQjScy/0P2AH+37nOe50WcVuuWUs4D70z0oojfxcROwbh56GMlErUk3o/DeJM+iS+DMJd1DO3ZuieP76JYujuzXl4D3jdyPLN3N+V/d6k4DNkvyypZweTvjz776MvCRJP+YzlPT3VfudLrZoK9Nd3P93ekeOPCjcfqalwPaubAhXSJ7tId3rEmXbJ8FrJTkg3T3wlsQNwFTMsaDJ4CR2U7vaefn9nTLdk8ao/1E+/863X0w76+5l1m/LN1DY1ahu/fcr6vqWrrj+sQkr2+xrJzkmZnz/nVjSveAk6cw+tOTx7uOL6BLph2W5BHpHiAzxz0K25Lm9wM/T7LJvK7JNt7bkzwuyaOAAyeyD20/HpluNvNJwDeqaua8tulxEt01+hYemjUH3d/pnZK8ON3DKlZL91Cakb8b59Etm34WcEF1y8c3prsf5cis50fQ/W2Z1eLch7kfWHQ83X0VX0d3DkiSFiOTc5IkDdZX6X4EnQVcDdxLdyP3kRlsHwXObUuPth5l+5cAv0lyF93DIfaY4AyHQ+juTTQDmAlc1MpGnEmXWDhrjM/z6xi6H8Az6B6McTpd0mIiicRe/wCcQpeYu6zFNZJUPALYLd0TP4/s37CqrqD7ofk54Ga6xMVOPcvb5uX1dMnAy+kervDOMdodSpf4vC3Ju0epfwNdsuy3dAm4U3hoSdozgV+37/MHwDuq6upR9mUi50Zv+zvpElvfamO+lp5lalV1OV3C9g+tv1GXaI7ircCHk9xJl+DtfyDJiBXokig30C3te17blqr6Ht2sz5OS3EE3g+elre5m4NV09yi8BfhH4Nxx4vl0i+F/6c6RrwCT2n22dmwx3EK3fHjHBZwFOuL7dDNMp9MlEb8ySpuf0iV1r6RbDnkvC76k+9vt31uSXNRf2c7jnemO3c3AF4A3tO92Yfo/ni5xM9o9x75J96CMW+keNrBXi+VOusTSHnTf+f+j+45XHWf8kScl39XGOqiqfjzKfo55HVd3r8Wd6JZh/onuIQy7j9LH14APA79I9xTe8a7JY+i+x0vo/k5+d5x9GPHDdk1cS3cvvk/TzdibsJY0PJ9uhvDJPeXX0s2mez9dcu1a4ADa77q2hPwi4Dc9f9vOp1vu++fW5rfAp1r5TcAW9F1XVXVd66d46CESkqTFJN2tOyRJkpacNnPrS1XVv9RQWuolKeAfe5YaLrfSPeXzz8CWVfW7nvLjgOuq6qCxttWyLclX6Z7i7HcsSYvZRJ8EJ0mStMDaD/wd6GY0PYZuts33BhqUpIl4C3Bhb2JOy782o/CVzP2UYknSYmByTpIkLQkBPkS3POseumWAHxxoRJLGleQaumt3lwGHoiUoyUeA/YFDR1tWL0la9FzWKkmSJEmSJA2ID4SQJEmSJEmSBsRlrZrDeuutV1OmTBl0GJIkSZIkScuNadOm3VxVk0erMzmnOUyZMoXh4eFBhyFJkiRJkrTcSPLHsepc1ipJkiRJkiQNiMk5SZIkSZIkaUBMzkmSJEmSJEkDYnJOkiRJkiRJGhCTc5IkSZIkSdKAmJyTJEmSJEmSBsTknCRJkiRJkjQgJuckSZIkSZKkATE5J0mSJEmSJA2IyTlJkiRJkiRpQEzOSZIkSZIkSQNick6SJEmSJEkaEJNzkiRJkiRJ0oCYnJMkSZIkSZIGxOScJEmSJEmSNCAm5yRJkiRJkqQBMTknSZIkSZIkDYjJOUmSJEmSJGlATM5JkiRJkiRJA2JyTpIkSZIkSRoQk3OSJEmSJEnSgJickyRJkiRJkgbE5JwkSZIkSZI0ICbnJEmSJEmSpAExOSdJkiRJkiQNiMk5SZIkSZIkaUBMzkmSJEmSJEkDYnJOkiRJkiRJGhCTc5IkSZIkSdKAmJyTJEmSJEmSBsTknCRJkiRJkjQgJuckSZIkSZKkAVluk3NJ7ur7vHeSowYUyxlJhsYovyLJ9CSXJdlvEY+7fZIfLco+JUmSBu3Ui69nm8N+weMPPI1tDvsFp158/aBDkiRJWmArDTqA5U2Slarq/vnYZK+qGk6yDnBVkuOq6m+LKz5JkqRl2akXX8/7vjuTe/4+G4Drb7uH9313JgC7PH2DQYYmSZK0QJbbmXPjSbJxkv9LMqP9u1GSFZP8IZ21kzyQZLvW/uwkmyZ5VpLzklzc/n1Sq987ybeT/BD43ySTkpzU+j8ZmDSBsNYA7gZmtz5flOT8JBe1vtdo5R9McmGSS5McnSStfNMkP09ySdtmk5F+k5yS5PIkJ4y0lyRJWhYd/tMrHkzMjbjn77M5/KdXDCgiSZKkhbM8J+cmteWi05NMBz7cU3cU8PWqeipwAnBkVc0GrgSeAjwXmAZsm2RV4HFV9XvgcmC7qno68EHgYz19Pht4Y1U9H3gL8NfW/0eBZ4wT5wlJZgBXAB+pqtlJ1gMOAl5YVVsCw8C7RmKvqmdW1eZ0Sb8dR/oBPl9VTwOeA9zYyp8OvLPt1xOAbfoDSLJfkuEkw7NmzRonVEmSpMG64bZ75qtckiRpabc8L2u9p6qmjnxIsjcwct+3ZwOvbO+PBz7R3p8NbAc8HjgUeBNwJnBhq18L+FqSfwQKWLlnvJ9V1a3t/XbAkQBVNaMl38Yysqx1MnBekp8AW9Al085tE91WAc5v7XdI8h5gdWAd4DdJzgA2qKrvtTHvbfsMcEFVXdc+TwemAOf0BlBVRwNHAwwNDdU4sUqSJA3U+mtP4vpREnHrrz2RhQqSJElLn+V55tz8GElInQ1sCzwLOB1YG9geOKvVfwT4ZZu1thOwWk8fd4/R58QCqJoFXARsBYQu2Te1vZ5SVfsmWQ34ArBbVW0BHNNiGG+p6n0972ezfCdkJUnScu6AFz+JSSuvOEfZpJVX5IAXP2lAEUmSJC2ch2ty7jxgj/Z+Lx6aSfZruiWhD7TZZ9OBf6NL2kE3c27kcWB7j9P/Wa1fkmwOPHVeASVZnW4J6lXAr4Btkmw6UpfkiTyUDLy53YNuN4CqugO4Lskurf2qrT9JkqTlyi5P34BDX7kFG6w9iQAbrD2JQ1+5hQ+DkCRJy6yH6yyqtwNfTXIAMAvYB6Cq7ktyLV1yDLqk3J7AzPb5E3TLWt8F/GKc/r8IHNuWs04HLhin7QlJ7gFWBY6rqmnw4DLcE9s97wAOqqorkxzT4rmGh5bbArwe+J8kHwb+Drx6/EMgSZK0bNrl6RuYjJMkScuNVHmLMT1kaGiohoeHBx2GJEmSJEnSciPJtKoaGq3u4bqsVZIkSZIkSRo4k3OSJEmSJEnSgJickyRJkiRJkgbE5JwkSZIkSZI0ICbnJEmSJEmSpAExOSdJkiRJkiQNiMm5xSTJ45J8P8nvkvwhyVFJVk2yd5Kj+tqekWSovb8mycwk09vryFZ+XJKre8rPa+V7J3kgyVN7+rs0yZT2/l9afzNa+SuW1DGQJElaHA46dSabvO90phx4Gpu873QOOnXmoEOSJElaYCsNOoDlUZIA3wW+WFWvSLIicDTwCeDiCXSxQ1XdPEr5AVV1yijl1wEfAHbvi+NxrXzLqro9yRrA5PnYFUmSpKXKQafO5Bu/+tODn2dXPfj5kF22GFRYkiRJC8yZc4vH84F7q+pYgKqaDewPvAFYYzGM9yNgsyRP6it/NHAncFeL466qunoxjC9JkrREnPjra+erXJIkaWlncm7x2AyY1ltQVXcA1zCx2Yq/7Fm+un9P+eE95Sf0lD9ANyvv/X39XALcBFyd5NgkO402WJL9kgwnGZ41a9YEwpMkSRqM2VXzVS5JkrS0c1nr4hFgtP+HGGCtMbbpbT+/y1oBvgl8IMnjH+ywanaSlwDPBF4AfCbJM6rq4DkGrjqabtktQ0ND/j9bSZK01FoxGTURt2IygGgkSZIWnjPnFo/fAEO9BUkeCTwGuAh4VF/7dYDRknETVlX3A58C3ttXXlV1QVUdCuwBvGphxpEkSRqkPbfacL7KJUmSlnYm5xaP/wNWT/IGgPZAiE8BRwEXANsk+YdWNwSsCiyKG6UcB7yQ9tCHJOsn2bKnfirwx0UwjiRJ0kAcsssWvG7rjR6cKbdiwuu23siHQUiSpGWWy1oXg6qqJLsCn0/yX3TJspOr6qMASd4BnJ5kBbqHNexZVQ/0dPHLJLPb+xlV9Yb2/vAkB/W0e1bfuH9LciRwRCtaGfhkkvWBe4FZwJsX3Z5KkiQteYfssoXJOEmStNxIefPcxS7Jc4ATgVdW1bR5tR+koaGhGh4eHnQYkiRJkiRJy40k06pqaLQ6Z84tAVV1HrDxoOOQJEmSJEnS0sV7zkmSJEmSJEkDYnJOkiRJkiRJGhCTc5IkSZIkSdKAmJyTJEmSJEmSBmSZTs4luWsJjnVGklGfqtHqj0uy2+IcK8nKSQ5L8rsklya5IMlLW93pSdZur7cuijgkSZIkSZK0ePm01mXLR4DHAptX1X1JHgM8D6CqXgaQZArwVuALA4pRkiRpsZpy4GlzlV1z2MsHEIkkSdLCW6Znzo0mydQkv0oyI8n3kjyqlZ+R5ONtttmVSbZt5asn+VZrf3KSX89jhtyKbZbcpUlmJtl/lDYfTHJha3N0kswjhklJThqJAZg0Sp+rA28C/qOq7gOoqpuq6lut/pok6wGHAZskmZ7k8CTHJ3lFTz8nJNl5gQ+wJEnSAI2WmBuvXJIkaWm33CXngK8D762qpwIzgf/uqVupqp4FvLOn/K3AX1r7jwDPmEf/U4ENqmrzqtoCOHaUNkdV1TOranO6RNuO84jhLcBfWwwfHSOGTYE/VdUd84jvQOCqqppaVQcAXwb2AUiyFvAc4PR59CFJkiRJkqQlYLlKzrXk09pVdWYr+hqwXU+T77Z/pwFT2vvnAicBVNWlwIx5DPMH4AlJPpfkJcBoybId2gy8mcDzgc3mEcN2wDdaDDMmEMOEtWOxaZJHA3sC36mq+3vbJNkvyXCS4VmzZi2qoSVJkiRJkjQPy1VybgLua//O5qH77WV+OqiqvwBPA84A/p1uZtqDkqxGd7+33drMumOA1eYRA0DNY+jfAxslWXN+4m2OB/aim0E310y/qjq6qoaqamjy5MkL0L0kSZIkSZIWxHKVnKuq24G/jNzLDXg9cOY4mwCcA7wGIMlTgC3Ga9zu67ZCVX0H+C9gy74mI4m4m5OsAUzkCa5n0SXPSLI58NT+BlX1V+ArwJFJVmltH5vkdX1N7wT6E3jH0S2jpap+M4F4JEmSJEmStAQs68m51ZNc1/N6F/BG4PAkM+juD/fhefTxBWBya/9euiWlt4/TfgPgjCTT6ZJe7+utrKrb6GbLzQROBS6cwH58EVijxfAe4IIx2h0EzAJ+m+TS1v8c61Cr6hbg3PYwisNb2U3AZYx+fzxJkqRlxlhPZfVprZIkaVmVqnmtply+JVkRWLmq7k2yCfB/wBOr6m8DDm2RaU96nQls2WYXjmloaKiGh4eXTGCSJEmSJEkPA0mmVdXQaHUrjVb4MLM68MskK9Pdf+4ty1li7oXAV4FPzysxJ0mSJEmSpCXrYZ+cq6o7gVEzl8uDqvo5sNGg45AkSZIkSdLclvV7zkmSJEmSJEnLLJNzkiRJkiRJ0oCYnJMkSZIkSZIGxOScJEmSJEmSNCAP+wdCLKgknwH+WFWfbZ9/ClxbVf/aPn8KuL6qPr2A/W8PvLuqdhyjfn3gyKrabZS6M9q2wwsytiRJ0tJsyoGnzVV2zWEvH0AkkiRJC8+ZcwvuPOA5AElWANYDNuupfw5w7uIavKpuGC0xJ0mStDwbLTE3XrkkSdLSzuTcgjuXlpyjS8pdCtyZ5FFJVgX+CVg7ycVJZib5aisnyQvGKH9JksuTnAO8cmSgJM9LMr29Lk6yZpIpSS5t9ZOSnJRkRpKTgUk9274oyflJLkry7SRrLImDI0mSJEmSpHkzObeAquoG4P4kG9El6c4Hfg08GxgCrgS+DOxeVVvQLSF+S5LVgOPGKD8G2AnYFviHnuHeDfx7VU1tdff0hfMW4K9V9VTgo8AzAJKsBxwEvLCqtgSGgXf170uS/ZIMJxmeNWvWwh0YSZIkSZIkTZjJuYUzMntuJDl3fs/n64Grq+rK1vZrwHbAk8Yof3Ir/11VFfCNvnE+neTtwNpVdX9fHNuNtK+qGcCMVr418BTg3CTTgTcCG/fvRFUdXVVDVTU0efLkBTsSkiRJkiRJmm8+EGLhjNx3bgu6Za3XAv8J3AFcBPzzKNtknP5q1MKqw5KcBrwM+FWSFwL3TmDbAD+rqj3H2wlJkiRJkiQNhjPnFs65wI7ArVU1u6puBdamW9p6LDAlyaat7euBM4HLxyl/fJJNWvmDCbUkm1TVzKr6ON3S1Cf3xXEWsFdruznw1Fb+K2CbkbGSrJ7kiYtm1yVJkpa8sZ7K6tNaJUnSssqZcwtnJt1TWr/ZV7ZGVYwQah4AACAASURBVF2XZB/g20lWAi4EvlRV941Tvh9wWpKbgXOAzVuf70yyAzAb+C3wY+CxPWN+ETg2yQxgOnABQFXNSrI3cOLIQyfo7kF3JZIkScsoE3GSJGl5ku72ZlJnaGiohoeHBx2GJEmSJEnSciPJtKoaGq3OZa2SJEmSJEnSgJickyRJkiRJkgbE5JwkSZIkSZI0ICbnJEmSJEmSpAExOSdJkiRJkiQNiMm5JSzJrkkqyZPn0e79C9j/6UnWXrDoJEmSJEmStCStNOgAHob2BM4B9gAOHqfd+4GPTbTTJAFSVS9bqOgkSZKWclMOPG2usmsOe/kAIpEkSVp4zpxbgpKsAWwD7EuXnCPJY5OclWR6kkuTbJvkMGBSKzuhtXtXq780yTtb2ZQklyX5AnARsGGSa5Ks1+pPTTItyW+S7DeIfZYkSVqURkvMjVcuSZK0tHPm3JK1C/CTqroyya1JtgR2AH5aVR9NsiKwelWdneRtVTUVIMkzgH2ArYAAv05yJvAX4EnAPlX11ta2d7x/qapbk0wCLkzynaq6ZUntrCRJkiRJksbnzLkla0/gpPb+pPb5QmCfJAcDW1TVnaNs91zge1V1d1XdBXwX2LbV/bGqfjXGeG9PcgnwK2BD4B9Ha5RkvyTDSYZnzZq1IPslSZIkSZKkBWBybglJsi7wfODLSa4BDgB2B84GtgOuB45P8obRNh+n67vHGG974IXAs6vqacDFwGqjta2qo6tqqKqGJk+ePLEdkiRJkiRJ0kIzObfk7AZ8vao2rqopVbUhcDVdYu7PVXUM8BVgy9b+70lWbu/PAnZJsnqSRwC70iX1xrMW8Jeq+mt7MuzWi3qHJEmSJEmStHBMzi05ewLf6yv7DnAcMD3JxcCrgCNa3dHAjCQnVNVFrd0FwK+BL1fVxfMY7yfASklmAB+hW9oqSZK0TBvrqaw+rVWSJC2rUlWDjkFLkaGhoRoeHh50GJIkSZIkScuNJNOqami0OmfOSZIkSZIkSQNick6SJEmSJEkaEJNzkiRJkiRJ0oCYnJMkSZIkSZIGxOScJEmSJEmSNCAm5yRJkiRJkqQBWWnQASwuSWYDM4EAs4G3VdV5SaYAlwFXAKsAw8C+VfX3JNsD3weu7unq3VX1857+RpwEnAD8sG/oJwBfBDYEzq6qL7Z4tgKOAbasqvt74jwDeCxwL3AX8C9VdUWSVYBPADsBDwC/Bf69qq5r291VVWu0/bkaeHtVfa7VHdX265nANm0/H9/2GeCQqjplosdSkiRpabLXMedz7lW3Pvh5m03W4YQ3PXuAEUmSJC245TY5B9xTVVMBkrwYOBR4Xqu7qqqmJlkR+BnwGrpEG3QJtR3H66/Pg2VJtgBOBz5Ll1A7P8kpwC3AUcBbexNzPfaqquEk+wGHAzsDHwPWBJ5YVbOT7AN8N8lWVVV92/8ZeEeS/6mqv40UVtW/t7imAD8aI35JkqRlRn9iDuDcq25lr2PON0EnSZKWSQ+XZa2PBP7SX1hVs4ELgA0WdoAkq9El+P69qm6sqpuAT9LNfnszMKOqzplHN2cBmyZZHdgH2L/FSFUdC9wHPH+U7WYB/we8cWH3Q5IkaWnWn5ibV7kkSdLSbnmeOTcpyXRgNbplo3MltVpCbSvgHT3F27btRryqqq7q6W/EoVV1cs/nTwDnVtUPesq+RJcw2x4YmkDMO9Etnd0U+FNV3dFXPwxsRpeI63cY8OMkX53AOHNoM/b2A9hoo43md3NJkiRJkiQtoOU5Ode7rPXZwNeTbN7qNmmJtn8ETqmqGT3bze+yVpK8FHghfQm4qnogyf8AQ1V1yzixnpDkHuAa4D+AdYD+pavQ3T9vtHKq6uokFwCvHWecUVXV0cDRAENDQ6P2L0mSJEmSpEXvYbGstarOB9YDJreiq1qibVNg6yQ7L2jfSSYD/0N337i/jtLkgfYaz15VNbWqdqmqa4HfAxsnWbOv3ZZ0D4YYy8eA9/Iw+V4lSdLDzzabrDNf5ZIkSUu7h0USJ8mTgRXpHszwoKq6ETgQeN9CdP9V4HNVdfFC9DGHqrob+Brw6fbQCpK8AVgd+MU4211Ol7wbbeafJEnSMu+ENz17rkScT2uVJEnLsuV5WWvvPeICvLE99bS/3anAwUm2bZ/77zl3SFWdwtz3nPsJ8H26RNhGSfbqqftZVR2wkPG/j+6BElcmeQC4HNh1lCe19vsosMgShZIkSUsbE3GSJGl5knnnevRwMjQ0VMPDw4MOQ5IkSZIkabmRZFpVjfqw0IfFslZJkiRJkiRpaWRyTpIkSZIkSRoQk3OSJEmSJEnSgJickyRJkiRJkgbE5JwkSZIkSZI0IMtUci5JJflUz+d3Jzm4vT84yfVJpve81k5ycZKprc1KSe5O8rqePqYl2bJvnO2T/Kiv7LgkuyX5WJKP95RvnOQPbawzklyRZEaSy5MclWTtnraz++I7cJR9PC7J1a3+oiTP7qk7ou3jCj1leyeZ1dpfnmT/nrqDk7y7vV8tyc+S/Pd8HnZJkiRJkiQtJisNOoD5dB/wyiSHVtXNo9R/pqo+2VuQ5DzgOcB04GnAFe3zN5I8AngCcMl8xPAR4OIkx1XVZcARwH9V1W1JAPaqquEkqwCHAt8Hnte2vaeqpk5gjAOq6pQkLwL+B3hqS8jtClwLbAec0dP+5Kp6W5J1gSuSnFJV1/Ycg1WA7wDTqupD87GvkiRJS50pB542V9k1h718AJFIkiQtvGVq5hxwP3A0sP+8GvY4ly4ZR/v3S8BIguxZwEVVNXuinVXVPcC7gC8keSmwZlWdMEq7vwHvATZK8rT5iLfXWcCm7f0OwKXAF4E9x4jtFuD3wGN7ilcCTgJ+V1VzzdSTJElaloyWmBuvXJIkaWm3rCXnAD4P7JVkrVHq9u9ZMvrLVjYyc47271nAfUnWbJ/PHWOcbXuXoAI7j1RU1enArcDXgbeOFWhL+l0CPLkVTepb1rr7PPZ1J2Bme78ncCLwPWDHJCv3N06yEbAaMKOn+D3A/VX1znmMJUmSJEmSpCVsWVvWSlXdkeTrwNuBe/qq51rWWlXXJFklyT/QJcmuAC4EtqJLzn1ujKHOrqodRz4kOa6v/vPApKq6Yh4hp+f9RJe1Hp7kIGAWsG9blvoyYP+qujPJr4EXASP/iXj3JDsATwLeVFX39vR1DvDsJE+sqitHDTDZD9gPYKONNppAeJIkSZIkSVoUlsWZcwCfBfYFHjHB9ucDuwE3VlUBvwK2oVvW+qsFjOGB9hpTkhWBLYDL5rPvA6pqalX9c1VdCrwEWAuYmeQa4LnMubT15KraDNgW+FRLRI44C3gn8OMk6482WFUdXVVDVTU0efLk+QxVkiRJkiRJC2qZTM5V1a3At+gSdBNxLt196s5vn88H3gD8v6q6bdFHCG3Z6aHAtVU1Y17t52FP4F+rakpVTQEeD7woyeq9jarqfOB44B195d8BDgd+0vv0WEmSJEmSJA3WMpmcaz4FrNdXtn/fPd2mtPJz6Z7Kej5AVd0IrEh3P7pF7YQkM+ge3vAI4BU9df33nDtsXp21BNyLeWgJK1V1N91y1Z1G2eTjwD7tnnr0bPMl4LvAD5KsNr87JUmStDQY66msPq1VkiQtq9Kt8pQ6Q0NDNTw8POgwJEmSJEmSlhtJplXV0Gh1y/LMOUmSJEmSJGmZZnJOkiRJkiRJGhCTc5IkSZIkSdKAmJyTJEmSJEmSBsTknCRJkiRJkjQgJuckSZIkSZKkAXnYJeeSzE4yvec1Jcn2SX40StvNkvwiyZVJfpfkv5Kk1e2dZFbr4/Ik+/dt+/QkleTFfeV3zSO+3n5/m+RNPXW7tj6f3FM2Jck9Pe2/nmTlVjfHfiU5JMlPk6w6v8dNkiRpaTHlwNPmekmSJC2rHnbJOeCeqpra87pmtEZJJgE/AA6rqicCTwOeA7y1p9nJVTUV2Ab4QJINe+r2BM5p/86vkX63Bz6W5DF9fe7R1/6q1n4L4HHAa0bZnw+0OHepqvsWICZJkqSBGysRZ4JOkiQtqx6OybmJei1wblX9L0BV/RV4G3Bgf8OqugX4PfBYgDa7bjdgb+BFSVZbkACq6s/AVcDGSdagS67ty9zJuZH2s4ELgA16y5P8J/AyYKequmdBYpEkSZIkSdKi93BMzk3qWdL6vXHabQZM6y2oqquANZI8src8yUbAasCMVrQNcHVrfwZdYmy+JXkC8AS6xN8uwE+q6krg1iRbjtJ+NWAr4Cc9xdsAbwZeWlWjLqlNsl+S4STDs2bNWpBQJUmSJEmStAAejsm53mWtu47TLkCNUTdSvnuS3wB/AI6oqntb+Z7ASe39Scz/0tbdk0wHTgT+rapunUefm7T2twB/qqoZPXW/b/vyorEGq6qjq2qoqoYmT548n6FKkiRJkiRpQa006ACWYr8BtustaDPZ7qqqO9tzIU6uqrcleTZwWpIfA7OAVwE7t/u8BVg3yZpVdecExz65qt7WM+66wPOBzZMUsCJQSd7TmlxVVVOTPBY4I8nOVfWDVncTsBfwf0luqapfzv+hkCRJkiRJ0uLwcJw5N1EnAM9N8kJ48AERRwKf6G9YVecDxwPvAF4IXFJVG1bVlKraGPgO3bLUBbUb8PWq2rj1uSFwNfDcvjhupLsn3vv6yq8EXgl8I8nUhYhDkiRpoK457OXzVS5JkrS0c+bcQ16Q5Lqez68GXgF8Lsnn6WarHQ8cNcb2HwcuAp4I9N/L7jvAW9r2q/eN8+mq+vQ8YtsTOGyUPl/bxu11KnBwkm17C6vqwiT7AD9IskO7H54kSdIyx0ScJElanqRqrNuq6eFoaGiohoeHBx2GJEmSJEnSciPJtKoaGq3OZa2SJEmSJEnSgJickyRJkiRJkgbE5JwkSZIkSZI0ICbnJEmSJEmSpAExOSdJkiRJkiQNiMk5SZIkSZIkaUBWGnQAy4MkuwLfBf6pqi5PMgW4DLgCWAUYBvYFPgCsWlXv69l2KnBiVf1TkmuAO4HZrfqsqnp7kuOA5wG3AwHeVVX/17Y/A1hj5HG8SYaAT1bV9km2B74PXN0T7rur6ueL+hhIkiQtKVMOPG2usmsOe/kAIpEkSVp4zpxbNPYEzgH26Cm7qqqmAlsAjwNeA5wI7N637R7AN3s+71BVU9vr7T3lB7T+3gl8qa+PRyd56Rixnd3T31QTc5IkaVk2WmJuvHJJkqSlncm5hZRkDWAbuplxe/TXV9Vs4AJgg6q6ArgtyVY9TV4DnDQfQ54PbNBXdjhw0PzELUmSJEmSpMEzObfwdgF+UlVXArcm2bK3MslqwFbAT1rRibQkXpKtgVuq6nc9m/wyyfT22n+U8V4CnNpXdj5wX5IdRmm/bU9/05Ns0t8gyX5JhpMMz5o1awK7LEmSJEmSpEXB5NzC25OHZr6d1D4DbJJkOnAL8KeqmtHTZrckK9Al6U7s6693WetnesoPT/IH4BvAx0aJ4xBGnz3Xv6z1qv4GVXV0VQ1V1dDkyZMnsMuSJEmSJElaFEzOLYQk6wLPB77cHuZwAN095cJD95zbFNg6yc4AVXUtcA3dAx5eBXxrgsMd0Po6CPhaf2VV/QJYDdh6wfdIkiRJkiRJS5LJuYWzG/D1qtq4qqZU1YZ0T0Z93EiDqroROBB4X892JwKfoUvgXTfRwarqAeAIYIUkLx6lyUeB98z/bkiSJC0bxnoqq09rlSRJy6qVBh3AMm5P4LC+su8A7+8rOxU4OMm2VXU28G26JNt/jNLnL5PMbu9nVNUbeiurqpIcQpeE+2lf3elJ+m8at21bXjvikKo6ZV47JkmStLQyESdJkpYnqapBx6ClyNDQUA0PDw86DEmSJEmSpOVGkmlVNTRanctaJUmSJEmSpAExOSdJkiRJkiQNiMk5SZIkSZIkaUBMzkmSJEmSJEkDYnJOkiRJkiRJGpCVBh3A0ijJY4DPAFsDfwH+Bnyiqr6XZHvg3VW1Y982ZwCPBe5pRb+vqt2SHAy8B5hSVX9ube+qqjVGGXct4HPANq3oXOA/qur2njZHALsBG1bVA61sb2Coqt6WZAXgWGA2sC+wD7A/UHTJ2A9U1fcX/OhIkiQN1pQDT5ur7JrDXj6ASCRJkhaeM+f6JAlwKnBWVT2hqp4B7AE8bgKb71VVU9trt57ym4H/nMD2XwH+UFWbVNUmwNXAl3tiWwHYFbgW2G6M2L8ErAz8K7AB8AHguVX1VLpk44wJxCFJkrRUGi0xN165JEnS0s7k3NyeD/ytqr40UlBVf6yqzy1En18Fdk+yzlgNkmwKPAP4SE/xh4GhJJu0zzsAlwJfBPYcpZsjgHWBN7RZdY8G7gTuavtxV1VdvRD7IUmSJEmSpEXI5NzcNgMuWsBtT0gyvb0O7ym/iy5B945xtn0KML2qZo8UtPfTW0zQJeROBL4H7Jhk5Z7tX0uX3Nujqu5vZZcANwFXJzk2yU6jDZxkvyTDSYZnzZo14Z2VJEmSJEnSwjE5Nw9JPp/kkiQXTqB577LWA/rqjgTemOSRYw1Fd1+4UcuTrAK8DDi1qu4Afg28qKfdRcDGwLNGClpy7yV096i7EvhMuwfeHKrq6KoaqqqhyZMnT2A3JUmSJEmStCiYnJvbb4AtRz5U1b8DLwAWKmtVVbcB3wTeOs64T2/3lQMevMfc04DL6JJsawEzk1wDPJc5l7ZeDrwGODnJyEw7qnNBVR1Kd++8Vy3MfkiSJEmSJGnRMTk3t18AqyV5S0/Z6ouo708D/8YoT8mtqt8DFwMH9RQfBFzU6vYE/rWqplTVFODxwIuSrN7Tx3nAm4HTkmyUZP0kW/b0NxX44yLaF0mSpCVurKey+rRWSZK0rJorSfRwV1WVZBe6JaDvAWYBdwPv7Wn2giTX9Xx+dfv3hCT3tPc3V9UL+/q+Ocn3gP3HGH5f4HNJfk+3nPV8YN+WgHsxXWJvpK+7k5wDzHEfuar6UZLJwE+AlwKfTLI+cG/blzdP6EBIkiQtpUzESZKk5UmqRrvNmR6uhoaGanh4eNBhSJIkSZIkLTeSTKuqodHqXNYqSZIkSZIkDYjJOUmSJEmSJGlATM5JkiRJkiRJA2JyTpIkSZIkSRoQk3OSJEmSJEnSgJickyRJkiRJkgZkqUjOJfmHJCcluSrJb5OcnuSJPfX7J7k3yVo9ZdsnqST79pQ9vZW9u30+LsnVSaYnuTzJf/e0PSPJFUkuSXJhkqk9ddckWa/n866t3yePsw939X3eO8lR7f3BSa5vcYy81m778KOebV6S5IIW6/QkJyfZqGdfdusfM8kWPX3e2rO/P0+yQpIjk1yaZGbbz8dP9HuRJElaGk058LS5XpIkScuqgSfnkgT4HnBGVW1SVU8B3g88pqfZnsCFwK59m88Edu/5vAdwSV+bA6pqKjAVeGNfcmqvqnoa8AXg8HHC3BM4p/W/oD5TVVN7Xrf1VibZHPgc8MaqenKL+QRgynidVtXMkT6BH9D2t/4/e3cebVdZ33/8/RFEwaCoRMUBLyKihiHCcUIcolRRULGggFhLtUV/SlUUJAq2VK2kzDLYNg5FrAwO4ABanKAgROQGQgARlBIUnIIToBEh+f7+OPvi5uTcISRw7r15v9ba6+79fcZ98k/Wdz3Ps6t2ovvbPBbYpqq2pvv7/W6M7iRJkia10RJxJugkSdJUNfDkHDAHuLOq/mMkUFWLqupCgCSbAzOAQ+kmydp+Ajw4yaObJN/OwNdHGefBzd8/9ClbADyuX6MkM4DnAW9m9ZJz4zkY+EhVXTMSqKqvVNUFq9HnJsDPq2pF099NVfXb1ZynJEmSJEmS1pDJkJzbClg4RvnewGnAhcCWSR7VU/4F4LXADsBlwB095UcmWQTcBJxeVb/qM8bOwJdGGX834H+q6jrgN0m2G6Xe+u1tq8AHe8oPaJWf16f9rGb+YzmyZ4zxfA54ZVP/6CTP6FcpyX5JhpMML126dALdSpIkSZIkaU2YDMm58exFN6m2AjiTbiKu7XNNbCSJ12tkW+tjgJck2aFV9tkkN9FdtXbCKOPvDZze3J/Oyqv3Rixrb1sF/qmnvL2tdc4ofQCQ5JFNQu26kfPz2u/SGmNMVXUTsCXwPmAF8O0kL+lTb35VdaqqM3PmzPG6lSRJkiRJ0hoyGZJzVwPb9ytIsg2wBfDNJEvoJurukRyrql8AdwJ/BXx7tEGq6nbgfGDHVngfYDPgVOCkPuM/Engx8Ilm/IOAPZsttGva1cB2zVx/3STf5tPd0nuvVdUdVfX1qjoI+AjdlYCSJEmSJEmaBCZDcu47wIOS/MNIIMkzk7yQbiLusKoaaq7HAo9L8sSePv4JOLiqlo82SJJ1gWcD17fjVXUn3fPsnpPkaT3N9gBOqaonNuM/AbiBeyb41pQjgEN65rDB6nSYZLskj23uHwBsA9y4On1KkiQN0pJ5u6xSXJIkabJbd9ATqKpK8hrguCRzgT8BS4B30V0p9/KeJmc18UtafVw8xhBHJjkUWI/uyroz+8xhWZKjgQPpfvhhxN7AvJ7qXwReT/cMvFVxQJI3tJ7vsYKtqq5M8k7glCQbAr+m+8GLf17FcdoeBXw8yYOa5+8DJ65Gf5IkSQNnIk6SJE0nqapBz0GTSKfTqeHh4UFPQ5IkSZIkadpIsrCqOv3KJsO2VkmSJEmSJGmtZHJOkiRJkiRJGhCTc5IkSZIkSdKAmJyTJEmSJEmSBsTknCRJkiRJkjQg6w56Ave3JMcCN1bVcc3zucBPq+rvm+ejgZuBN1XVVq12hwG3V9VRSU4Gzgb2ATYDZgAzgRua6m8DPgJsAixrYj+uqj2SbAn8J7AR8CDgQuCLwL819Z7cjL8MWFxVb0yyI3AM8NCmzjFVNb81r/cCQ1X1qyZ2e1XNaO6XA1e2foLTq2revfv1JEmSBm9o7jkrxZbM22UAM5EkSVp9a11yDrgYeC1wXJIHABvzl6QXwA7Au4A3jddRVb0GIMmLgAOrateRsiQA+1TVcE+z44Fjq+rLTb2tq+pK4Nzm+fymr+Hm+THAqcBuVXVZko2Bc5PcXFUj/zO9BXgPcHCfaS6rqtnjvYskSdJU0C8xNxI3QSdJkqaitXFb60V0E3AAs4CrgNuSPDzJg4CnAb+9D8ffBLhp5KFJzI3l7cDJVXVZU/8Wuivl5rbqfArYM8kj1vBcJUmSJEmSdB9a65JzVfUz4K4km9JN0i0ALgGeC3SAxcCfgc2TLBq5gLfei+E+2+rjyCZ2LPCdJF9PckCSjcbpYxawsCc23MRH3E43QffOPu3Xb79Hkj17KyTZL8lwkuGlS5dO7M0kSZIkSZK02tbGba3wl9VzO9A9y+1xzf3v6W57Bbi+vR20OdttVa20rbWq/qs5525n4NXAW5JsW1V3jNJHgOoT740dDyxqzsxrG3dba3N+3XyATqfTbyxJkiRJkiTdB9a6lXONi+km47amu631e3RXzu1AN3F3n6qqn1XVp6rq1cBdwFZjVL+a7oq+tu2BH/T0+Tu6Z9O9bU3OVZIkSZIkSfedtTU5dxGwK/CbqlpeVb+h+/XU59Ld5nqfSbJzkgc2948BHkn366yjOQnYN8nsps0j6X7Z9Yg+dY8B3sLauyJSkiRNc6N99MGPQUiSpKlqbU3iXEn3K62n9sRmVNUtSWasoXE+m2RZc39LVe0EvBT4aJI/NfGDquoXo3VQVT9P8gbg40k2pLvN9biq+mqfurckOQs4oBVevzkzb8T/VNVcJEmSpigTcZIkaTpJlUeM6S86nU4NDw+PX1GSJEmSJEkTkmRhVfUeWwasvdtaJUmSJEmSpIEzOSdJkiRJkiQNiMk5SZIkSZIkaUBMzkmSJEmSJEkDYnJOkiRJkiRJGhCTc5IkSZIkSdKArDvoCUxGSZYDVwIBlgP7V9XFSYaAa4BrW9WPqapTkiwBOlV1S6uffZvY/j39LwFua/oGuKCq3pHkZOCFwO+bsd9dVd9u2qwHHAG8ElgB/AB4e1Xd1JQfAry+6XMF8JaquiTJ+cAmwLJmrB9X1R6r8fNIkiQN1NDcc1aKLZm3ywBmIkmStPpMzvW3rKpmAyR5GXA43aQZwPUjZatpTjuR13JQVX0hyRxgPrBFE/8IsCHwlKpanuTvgDOTPBt4DrArsF1V3ZFkY2C9Vp/7VNXwGpizJEnSQPVLzI3ETdBJkqSpyOTc+B4K/HYA4y4AHgeQZAPg74DNqmo5QFX9V5I3AS8GHgbcUlV3NGX9kn6SJEmSJEmaZDxzrr/1kyxK8kPgE8CHWmWbN2Uj1/Pv5Rjntfo4oE/5zsCXmvsnAz+pqlt76gwDs4BvAE9Icl2SjyV5YU+9z7bGOrJ3oCT7JRlOMrx06dJ7+TqSJEmSJElaVa6c66+9rfW5wClJtmrK7uttrUcmOQJ4FN3tqtA9f6761A1QVXV7ku2B5wNzgDOSzK2qk5t6Y25rrar5dLfQ0ul0+o0jSZIkSZKk+4Ar58ZRVQuAjYGZ99OQB9FdKXco8Okm9mPgiUk27Km7Hd0PQ1BVy6vq/Kr6Z2B/YPf7ab6SJEmSJEm6l0zOjSPJU4F1gF/fX2NW1Qrgo8ADkrysqv5AN1F3TJJ1mnm9EdgA+E6SLZNs0epiNnDj/TVfSZKk+8toH33wYxCSJGmqcltrf+snWdTcB/jb5gup0Jw516r7qao6vrlfnGRFc/85YDGwb5LdWvVHtqqel2T5SLuqemN7AlVVST4MvBc4F3gfcBRwXTPGD4HXNPVmACck2Qi4i+5Ku/1a3X02ybLm/paq2mkVfw9JkqRJw0ScJEmaTlLlEWP6i06nU8PDox5PJ0mSJEmSpFWUZGFVdfqVua1VkiRJkiRJGhCTc5IkSZIkSdKAmJyTJEmSJEmSBsTknCRJkiRJkjQgJuckSZIkSZKkAVl30BOYCpIsB66k+3vdAPxNVf2uKZsFnAA8HghwCvDhqqokCCLfNgAAIABJREFUjwY+CTwBeCCwpKpekWQIuAa4tjXMMVV1SpIlwG1NbB3gTOBDVXVHaz4fBfYAnlBVK5rYvkCnqvbvmftIf8ub0AVV9Y7V/EkkSZIGZmjuOSvFlszbZQAzkSRJWn2unJuYZVU1u6q2An4DvB0gyfrAV4B5VfUUYFtgB+BtTbsPAt+sqm2r6unA3Faf1zd9jlyntMrmVNXWwLOAJwHzRwqSPAB4DfBT4AUTnP+c1jgm5iRJ0pTVLzE3VlySJGmyMzm36hYAj2vuXw9cVFXfAKiqPwL785ck3CbATSMNq2rxqgxUVbcDbwV2S/KIJjwHuAr4d2Dve/kOkiRJkiRJmgRMzq2CJOsAL6G7Wg5gFrCwXaeqrgdmJHkocBLwySTnJTkkyWNbVTdPsqh1Pb/fmFV1K92ttFs0ob2B04CzgF2TPHACUz+vNc4Bfd5rvyTDSYaXLl06ge4kSZIkSZK0Jnjm3MSsn2QRMEQ3GffNJh6gRmlTVXVukicBOwMvBy5PslVTfn1VzZ7g+AFIsh7wCuCAqrotySXAS4Hx9nHMqapbRiusqvk0W2c7nc5o7yNJkiRJkqQ1zJVzE7OsSaQ9EViP5sw54Gqg067YJONur6rbAKrqN1V1alX9DXApEz8nbqS/DekmBa+jm+R7GHBl86GHHXFrqyRJkiRJ0pRlcm4VVNXvgXcABzbbST8L7JhkJ7j7AxHHA0c0zy9OskFzvyGwOfCTiY6XZAbwMeBLVfVbuom4v6+qoaoaAjYDXjoyhiRJ0nQ32ldZ/VqrJEmaqtzWuoqq6vIkVwB7VdVnkrwaOCHJScA6wGeAE5vq2wMnJrmLbiL0E1V1aZIhmjPnWl1/qqqOb+7PS5KmzVnAh5oE3MuAt7Tm8ock3wVe2YT2TbJbq8/ntPpb3twvrqo3ru7vIEmSNCgm4iRJ0nSSKo8Y0190Op0aHh4e9DQkSZIkSZKmjSQLq6rTr8xtrZIkSZIkSdKAmJyTJEmSJEmSBsTknCRJkiRJkjQgJuckSZIkSZKkATE5J0mSJEmSJA2IyTlJkiRJkiRpQEzO9ZHkkCRXJ1mcZFGSZydZkmTjVp0XJTm7ud83yYok27TKr0oy1NwvSfLFVtkeSU5OMivJdUnWb5Wdk2SvJI9OcnaSK5L8IMnXmvKhJFe15vD7JJcnuTbJBUl2bfV1WJKbm3cYuTa67345SZKk+97Q3HNWuiRJkqYqk3M9kjwX2BXYrqq2AXYCfjqBpjcBh4xR3kkyqx2oqquBM0faJdkNeGBVnQ58EPhmVW1bVU8H5o7S74VV9Yyq2hJ4B3Bikpe0yo+tqtmt63cTeBdJkqRJabREnAk6SZI0VZmcW9kmwC1VdQdAVd1SVT+bQLuzgVlJthyl/Cjg/X3iHwRem2Q2MA94e2seN41UqqrF402gqhY1/e0/gflKkiRJkiRpwEzOrewbwBOa7aYfS/LCCbZbARxB/wQcwOeA7ZI8uR2sqj8CBwIXAKdX1Y+aopOATyY5r9lm+9gJzuMy4Kmt5wNaW1rP69cgyX5JhpMML126dILDSJIkSZIkaXWZnOtRVbcD2wP7AUuBM5LsC1S/6j3PpwLPSbJZn7rLgSOB9/UZ86vA74CPtWLnAk8CPk432XZ5kpkTeIX0PLe3tc7p16Cq5ldVp6o6M2dOZAhJkiRJkiStCSbn+qiq5VV1flX9M90torsDvwYe3qr2COCWnnZ3AUcDB4/S9WeAFwCb9ilb0Vzt/n5TVadW1d8AlzZtx/MM4JoJ1JMkSZIkSdKAmZzrkWTLJFu0QrOBG4Hzgb9p6qwDvAHot030ZLofkVhpCVpV3QkcC7xrAvN4cZINmvsNgc2Bn4zTZhvgA3S3xEqSJE07S+btskpxSZKkyW7dQU9gEpoBnJBkI+Au4Md0t7jeCfx7kivobh39H+C/extX1Z+THA98dJT+PwkcOoF5bE/3y6t30U2ifqKqLk0y1FPv+UkuBzYAfgW8o6q+3So/IMkbWs+7VdWSCYwvSZI0KZmIkyRJ00mq+h2lprVVp9Op4eHhQU9DkiRJkiRp2kiysKo6/crc1ipJkiRJkiQNiMk5SZIkSZIkaUBMzkmSJEmSJEkDYnJOkiRJkiRJGhCTc5IkSZIkSdKArDvoCQxakturakZP7DDgdmAz4HnAes39tU2VbYErgBnATOCGJv424CPAgVU13OrvRcCXW/Vo6nyrZ9wlwMKq2r153gPYtar2TbIvcCRwc6vJ66vqB0meAhwHPAW4E7gS+Efgac04uzb9fRh4JvCqqrpjwj+SJEnSJDI095yVYkvm7TKAmUiSJK2+tT45N5aqejtAkiHg7Kqa3S5vkm53J7+a2GjdXdiuN4ZOkllVdXWfsjOqav+eOTwYOAd4d1V9tYnNoZs0bNc7hG6i8RUm5iRJ0lTVLzE3EjdBJ0mSpiK3tU4+RwHvX4X6rwcWjCTmAKrqvKq6auQ5yXuAVwCvrKpla2ymkiRJkiRJWi2unLv/PD/Jotbz7lV1fZ96nwPeluTJfcr2TLJj6/m5wFbAwjHGfR6wJbB9Vd3er0KS/YD9ADbddNMxupIkSZIkSdKa5Mq5+8+FVTW7dfVLzAEsp3u23Pv6lJ3R08dEVsH9GAjw0tEqVNX8qupUVWfmzJmjVZMkSZIkSdIaZnJucvoM8AJgIsvYrga2H6P8l3S3tB7bnEUnSZIkSZKkScLk3CRUVXcCxwLvmkD1U4Edktx9AnKSnZNs3ervOuCvgf9OMrtPH5IkSVPCaB998GMQkiRpqvLMOdggyU2t52PWQJ/nJLmzuV8AnMTKZ859uKq+MEYfnwQO7Yn1njn3tqq6OMmuwHFJjgPuBBYD7wQeOVKxqi5N8nfAV5LMGWNbrSRJ0qRmIk6SJE0nqapBz0GTSKfTqeHh4UFPQ5IkSZIkadpIsrCqOv3K3NYqSZIkSZIkDYjJOUmSJEmSJGlATM5JkiRJkiRJA2JyTpIkSZIkSRoQk3OSJEmSJEnSgJickyRJkiRJkgZkSifnkjwmyelJrk/ygyRfS/KUpmxWku8kuS7Jj5J8IEmasn2TnNinvyVJNu6J7ZtkaZJFrevpTdkWSc5uxl+Y5LwkLxivXU//y5uyq5J8PskGTfzxSb7czP36JB9Nsl5T9qIkZ7fGWZFkm1afVyUZSnJJ0/dPeuYytGb+BSRJku5/Q3PPWemSJEmaqqZscq5JtJ0FnF9Vm1fV04H3A49Osj7wFWBeVT0F2BbYAXjbvRzujKqa3bp+kOTBwDnA/Gb87YF/BJ40Vrs+fS9ryrYC/gy8tXm3M4EvVdUWwFOAGcC/jjK/m4BDeoNV9eyqmg38U89clty7n0GSJGmwRkvEmaCTJElT1ZRNzgFzgDur6j9GAlW1qKouBF4PXFRV32jifwT2B+auwfH3ARZU1Vda419VVSevRp8XAk8GXgz8qar+q+l3OXAA8KaRlXU9zgZmJdlyNcaWJEmSJEnS/WwqJ+e2AhaOUjart6yqrgdmJHnovRhrz57tqes3Y1x2L9r1lWRd4OXAlaPM/1bgJ3STd71WAEfQXTm4ypLsl2Q4yfDSpUvvTReSJEmSJEm6F6Zycm4sAWqUstHiY+ndnrpspQGTs5qz3s5clXbA+kkWAcN0k2+fHGP+Y73XqcBzkmy2Sm8GVNX8qupUVWfmzJmr2lySJEmSJEn30rqDnsBquBrYY4yyF7QDSZ4E3F5VtzXfhVgT4989RlW9JkkHOGoV+1nWnAt3tyRXA7v3xB4KPAG4HnhkbydVdVeSo4GDV3F8SZIkSZIkDchUXjn3HeBBSf5hJJDkmUleCHwW2DHJTk18feB4uls/15RTgecleVUr1u88uHvj28AGSd4IkGQd4Gjg5Ob8vNGcDOwEuPxNkiRNS0vm7bJKcUmSpMluyq6cq6pK8hrguCRzgT8BS4B3VdWyJK8GTkhyErAO8BngxFYX+ybZrfX8nObv4iQrmvvPAYvpnh23Y6vu26rq4iS7AsckOQ74JXAb8OFWvb7tVuHdPpbkA3STqF9jnDPlqurPSY4HPjreGJIkSVOViThJkjSdpOreHMGm6arT6dTw8PCgpyFJkiRJkjRtJFlYVZ1+ZVN5W6skSZIkSZI0pZmckyRJkiRJkgbE5JwkSZIkSZI0ICbnJEmSJEmSpAExOSdJkiRJkiQNyLRKziW5vXX/iiQ/SrJpksOS3JxkUevaKMnlSWY39ddN8ockb2j1sTDJdn3GeVaS85v+L0tyTpKte+pckeS0ntjJSW5oxr8iyUtaZecnuTbJ4iQ/THJiko1a5ct75j+31W64Va+T5PzmfoMkn01yZZKrknw3yYzV+IklSZIkSZK0Bq076AncF5qk1wnAS6vqJ0kAjq2qo3rqXQzsACwCtgWubZ7/O8lDgCcBV/S0eTTwOeD1VXVxE9sR2By4snl+Gt3E5wuSPKSq/tDq4qCq+kKSOcB8YItW2T5VNZxkPeBw4MvAC5uyZVU1e5RXflSSl1fV13vi7wR+WVVbN/PaErhzlD4kSZKmhKG556wUWzJvlwHMRJIkafVNq5VzAEmeD3wc2KWqrh+n+kV0k3E0f/8DGEmAPQu4rKqW97TZH/j0SGIOoKq+W1VfatV5PfAZ4BvAq0YZewHwuH4FVfVn4L3Apkm2HecdAI4EDu0T3wS4udXvtVV1xwT6kyRJmpT6JebGikuSJE120y059yC6q812q6of9pQd0NoSel4TG1k5R/P3AuCOJBs2zxf1GWMWcNk489gTOAM4Ddh7lDo7A18apYwmKXgF8NQmtH7PttY9W9UXNPOe09PNp4CDkyxI8uEkWyBJkiRJkqRJY7ol5+6km3B7c5+yY6tqdnPNAaiqJcB6SR5DNwl2LXAp8Gy6ybmL+/RzD0kuSXJNko82z88EllbVjcC3ge2SPLzV5Mgk/wf8N/CR8bpv3S9rzX92VZ3RU/fD9Kyeq6pFdLfmHgk8Ari02XLb+w77JRlOMrx06dLxXlmSJEmSJElryHRLzq0AXgc8M8n7J9hmAbAH8POqKuB7wPPobmv9Xp/6VwN3fySiqp4NfAB4WBPaG3hqkiXA9cBDgd1b7Q8Cnkw3kfbp0SaVZB1ga+CaibxEVX0HeDDwnJ747VV1ZlW9jW5C8BV92s6vqk5VdWbOnDmR4SRJkiRJkrQGTLfkHFX1R2BXYJ8k/VbQ9boIOIBuko7m7xuBX1TV7/rUPwnYN8kOrdgGAEkeALwW2KaqhqpqCHg1PVtbq2oF8FHgAUle1jtAkgfS/SDET6tq8QTeYcS/0j2rbqSf542s2ms+MvF04MZV6E+SJEmSJEn3oWmXnAOoqt/QPdPt0CSvbsIH9JzZNtTEL6K79XNB0/bnwDqMsqW1qn5B90y5w5P8uPni6x7AicALgJur6uZWkwuApyfZpKeforsV9b2t8GeTLAauAh5CN7E3ovfMuXl95vY1oL0vdXPgf5NcCVwODANf7PdekiRJU8FoX2X1a62SJGmqSjdHJHV1Op0aHh4e9DQkSZIkSZKmjSQLq6rTr2xarpyTJEmSJEmSpgKTc5IkSZIkSdKAmJyTJEmSJEmSBsTknCRJkiRJkjQgJuckSZIkSZKkATE5J0mSJEmSJA3ItEjOJVmeZFHrGmriByT5U5KHteq+KMnvk1ye5IdJjhqlzzHrJdktyeKm7Moku/WUH9iUXZXkiiRvbOLnJ+k090NJfpTkZa12X06yoPV8bJJ3tZ7PTfKJ1vPRSd7d3K+b5JYkhzfPL02yIEma53Wa32eHVf2NJUmSJouhueesdEmSJE1V0yI5Byyrqtmta0kT3xu4FHhNT/0Lq+oZwDOAXZM8b5R++9ZLsi1wFPDqqnoq8CrgqCTbNOVvBf4KeFZVbQW8AEi74ySPB84F3lNV5zaxjYDtgI2SbNZUvRjYoSl/ALAxMKvV1Q7ARc39S4FrgdclSVV9A7gReHNT/o/ApVV18SjvK0mSNKmNlogzQSdJkqaq6ZKcW0mSzYEZwKF0k3QrqaplwCLgcWP11afegcBHquqGpvwG4HDgoKb8/cDbqurWpvz3VfXpVpePAb4BHFpVX2nFdwe+CpwO7NXELqJJztFNyl0F3Jbk4UkeBDwNuLwp3xv4KPAT4DlN7ADgfUlmAfsDB4/1rpIkSZIkSbr/TJfk3PqtLa1nNbG9gdOAC4Etkzyqt1GShwNbABeM1XmferOAhT3VhoFZSTYENqyq68fo8hTgxKr6fE98ZM6nNfdU1c+Au5JsSjdJtwC4BHgu0AEWV9Wfk6wPvAQ4u6f9z4HjmnYfrqrf9Hm//ZIMJxleunTpWD+FJEmSJEmS1qDpkpxrb2sd2cK6F3B6Va0AzgRe26r//CSLgV8AZ1fVL0bpd7R6Aaqn7kisX1mvbwF/k2SDuxsnjwaeDHy3qq6jm5DbqikeWT03kpxb0Hoe2aK6K3BeVf0R+CLwmiTrNGUnAetU1cn9JlNV86uqU1WdmTNnjjN1SZIkSZIkrSnTJTl3D83Zb1sA30yyhG6irr219cKq2gbYGvh/SWaP0tVo9a6mu2qtbTvgB81W1j8kedIYUzyC7uq3zydZt4ntCTwcuKGZ8xB/2do6cu7c1nS3tX6P7sq59nlzewM7NW0XAo8E5gA0CcrxEoaSJEmSJEm6n03L5BzdRNVhVTXUXI8FHpfkie1KzQq1wxnnHLY+9Y6ie47bEHS/ukr3nLmjm/LDgZOSPLQpf2iS/Xq6PQC4Ffhk8zXVvYGdR+YMbM89z53bFfhNVS1vtqZuRDdBt6AZZ0dg01b7tzPKWXuSJElT1ZJ5u6xSXJIkabJbd/wqU9JewMt7Ymc18Ut64v8BHJhks5EPPIyiXW9RkoOBryZ5IHAn8N6qWtTU/Xe6H6O4NMmdTfnR7c6qqpL8Ld0z4j4HbEp3RdxI+Q1Jbk3ybLrn2W0MnNrq4kpgRlXdkmRf4DtVdUer/MvAEUke1BOXJEma0kzESZKk6SRV7nbUX3Q6nRoeHh70NCRJkiRJkqaNJAurqveINGD6bmuVJEmSJEmSJj2Tc5IkSZIkSdKAmJyTJEmSJEmSBsTknCRJkiRJkjQgJuckSZIkSZKkAZkUybkkt/eJPSzJKUmub65TkjysKRtKUkn+sVX/xCT7tp7fneSHSa5MckWSY5I8sM845yfpNPdvauovTnJVklc38ZOT7DHK3J/RzOVlPfFKcnTr+cAkhzX3hyW5OcmiJD9KcmaSp4/x+xzYvMtVzbu8sT33JJc0ff0kydLmflGSU5P8v1Y/z27ebd3RxpIkSZIkSdL9ZzInaT4JXFVVI4mofwE+Aby2Kf8V8M4k/1lVf243TPJW4KXAc6rqd0nWA94NrA/c2W+wJI8HDgG2q6rfJ5kBzJzAPPcGvtv8PbcVvwP46ySHV9UtfdodW1VHNWPvCXwnydZVtbTPu/wV8KyqurVJUO7WrlNVz27q7gt0qmr/5vnRwIIkXwB+DZwIvK2q7prAe0mSJE1KQ3PPWSm2ZN4uA5iJJEnS6psUK+d6JXkysD3woVb4g0AnyebN81Lg28Df9uniEOD/VdXvAKrqz1U1r6puHWPYRwG3Abc3bW6vqhvGmWeAPYB9gZcmeXCr+C5gPnDAWH00Y50BfAN4fZ/i99NNqN3a1P19VX16vD6bur8EjgKOAN4KLK6q706krSRJ0mTULzE3VlySJGmym5TJOeDpwKKqWj4SaO4XAbNa9eYB70myzkggyYbAjPESa31cAfwSuCHJfyV55QTaPA+4oaquB84HXtFTfhKwz8h23HFcBjy1HWjeZcOm/3vrP+j+ngcB712NfiRJkiRJkrSGTdbkXIAaL94k4L7PPVec3aNOkpc1568tSbLDaAM2yb+d6a6Euw44duSMuDHsDZze3J/ePLf7vBU4BXjHOP2MzLtfrN/vMGFVtQL4T+DrVfXrvgMn+yUZTjK8dOnSflUkSZIkSZJ0H5isybmrgWckuXt+zf22wDU9dT8CHEzzLk1C7A9JNmuez62q2cBVwHpjDVpd36+qw4G9gN1Hq9us1tsd+KckS4ATgJc3q93ajgPeDDxkzDeGZ/S+W+tdnjRO2/GsaK6+qmp+VXWqqjNz5kSO2ZMkSZIkSdKaMCmTc1X1Y+By4NBW+FDgsqasXfeHwA+AXVvhw4F/T7IR3H02XPs8uJUkeWyS7Vqh2cCNYzTZCbiiqp5QVUNV9UTgi6z8sYbfAJ+jm6Abbezd6X7A4rQ+xYcDJyV5aFP3oUn2G+tdJEmSJEmSNDVMluTcBklual3vppvMekqSHye5HngKoye4/hV4fOv534FvAZckWQxcRDfZd/kYc3ggcFSSHyZZBOwJvLNV/p+t+S2gu4X1rJ4+vkj/jzocDWzcEzug2W77I+ANwIt7v9TaepfzgEuTXAX8L/DHMd5DkiRp2hrtq6x+rVWSJE1VqVqtI800zXQ6nRoeHh70NCRJkiRJkqaNJAurqtOvbLKsnJMkSZIkSZLWOibnJEmSJEmSpAExOSdJkiRJkiQNiMk5SZIkSZIkaUBMzkmSJEmSJEkDYnJOkiRJkiRJGpB1Bz2B6SbJcuBKIMByYP+qurhVfgBwOPBo4FbgQuBfq+rrTfnrgDdV1c5JDgFe3/SzAnhLVV2S5HzgwKoaTrIEuK3pfh3gTOBDVXVHkiHgGuDa1hSPqapT7ot3lyRJuj8MzT1npdiSebsMYCaSJEmrz5Vza96yqppdVdsC76ObiGvbG7gUeE1VFfBW4JgkD07yEOBfgbcneS6wK7BdVW0D7AT8dJQx51TV1sCzgCcB81tl1zfzGblMzEmSpCmrX2JurLgkSdJk58q5+9ZDgd+OPCTZHJgBHAS8Hzi5qq5K8lXgYOAhwClVdX2SbYFbquoOgKq6ZbzBqur2JG8FfprkEWv+dSRJkiRJkrQmmZxb89ZPsgh4MLAJ8OJW2d7AaXS3sm6Z5FFV9SvgX4DLgD8DnabuN4B/SnId8C3gjKr63/EGr6pbk9wAbAH8Eti8mc+If6yqC9ttkuwH7Aew6aabrur7SpIkSZIk6V5yW+uaN7Kt9anAzsApSdKU7QWcXlUr6J4N91qAqvoDcAbwmdZKuduB7ekmzZYCZyTZd4JzSOu+d1vrhb2Vq2p+VXWqqjNz5sxVfmFJkiRJkiTdO66cuw9V1YIkGwMzkzyG7mq2bza5uvWA/wNOaqqvaK52++XA+cD5Sa4E/hY4eawxk2wIDAHXAQ9bQ68iSZIkSZKk+4Ar5+5DSZ5K9wuqv6a7pfWwqhpqrscCj0vyxFHabplki1ZoNnDjOOPNAD4GfKmqfjtWXUmSpKlotK+y+rVWSZI0Vblybs1bv3XGW4C/rarlSfYCXt5T9yy6W13/rU8/M4ATkmwE3AX8mOZcuD7Oa7bOPqDp80Otst4z5z5VVcev0htJkiRNIibiJEnSdJKqGvQcNIl0Op0aHh4e9DQkSZIkSZKmjSQLq6rTr8xtrZIkSZIkSdKAmJyTJEmSJEmSBsTknCRJkiRJkjQgJuckSZIkSZKkATE5J0mSJEmSJA3IlErOJakkn2k9r5tkaZKzm+d9k5zY3B+W5OYki5L8KMmZSZ7eant+kmuTLE7ywyQnJtmoVX57n/HbfY5cG/XUuSHJlj2x45K8N8mL+s21p+6SJBuP8v4HJPlTkof1xHdO8v3mPRYlOSPJpk3Zyc2cRuZ78Vi/sSRJkiRJku4/6w56AqvoD8BWSdavqmXAXwE3j1H/2Ko6CiDJnsB3kmxdVUub8n2qajjJesDhwJeBF44zh7v7HMXpwF7AvzTjPgDYA3gesNk4fY9nb+BS4DXAyU3/WwEnAK+qqmua2KuAIeAnTbuDquoLqzm2JEnSpDA095yVYkvm7TKAmUiSJK2+KbVyrvF1YOR/X3sDp02kUVWdAXwDeH2fsj8D7wU2TbLtas7vNLrJuREvAJZU1Y2r02mSzYEZwKF033vEwcBHRhJzAFX1laq6YHXGkyRJmoz6JebGikuSJE12UzE5dzqwV5IHA9sAl6xC28uAp/YrqKrlwBWjlbcc0Noiel6ffhYDK1pJvr2YYAJxHCOJyAuBLZM8qonPovteYzmyNefProG5SJIkSZIkaQ2Ycsm5Jvk1RDdZ9bVVbJ7VLIfuttbZzTVnlDqn0U0grgu8Gvj8qkxyFHsBp1fVCuBM4LW9FZI8sknAXZfkwFbRQa0579On3X5JhpMML126tLdYkiRJkiRJ95Epl5xrfAU4ilVfkfYM4Jp+BUnWAbYerXwVnQa8DtgJWFxVv1qdzpJsA2wBfDPJErqJupGtrVcD2wFU1a+rajYwn+4W2AmpqvlV1amqzsyZM1dnqpIkSZIkSVoFUzU59yngg1V15UQbJNkdeCl9EnpJHkj3gxA/bVbmrZaquh74NTCv33j3wt7AYVU11FyPBR6X5InAEcAhSZ7Wqr/BGhhTkiRJkiRJ97EpmZyrqpuq6qMTqDpyPtyPgDcAL259qRXgs0kWA1cBD6G7BXXEBklual3v7ulz5BoaZezT6J5fd9YY89u3Z4zHN/HFrdgxdFfK9fZzFrBXk6B8J3BKkh8muQh4GnBqq+6RPXNeb4w5SZIkTVqjfZXVr7VKkqSpKlU16DloEul0OjU8PDzoaUiSJEmSJE0bSRZWVadf2ZRcOSdJkiRJkiRNBybnJEmSJEmSpAExOSdJkiRJkiQNiMk5SZIkSZIkaUBMzkmSJEmSJEkDYnJOkiRJkiRJGpB1Bz2B+1qSIeDsqtqqFTsMuL2qjhqj3b5Ap6r2v4+nOGFJ3gi8F0hzfaqqjkryQeCCqvpWkncB86vqj4OcqyRJ0n1laO45K8WWzNtlADORJElafa6cmyKSvBx4F/DSqpoFbAf8HqCq/qmqvtVUfRewwWBmKUmSdN/ql5gbKy5JkjTZrfXJuSTnJ/m3JN9Pcl2S5/cbRAq+AAAgAElEQVSps0uSBUk2TnJykuOTXJzk/5Ls0dRJkiOTXJXkyiR7NvGPJXlVc39Wkk81929O8uEkQ0muSfLxJFcn+UaS9ftM9X3AgVX1M4Cq+lNVfbzp6+QkeyR5B/BY4Lwk5zVjHNt6j39Icsya/QUlSZIkSZJ0b631ybnGulX1LLqrzv65XZDkNcBc4BVVdUsT3gTYEdgVmNfE/hqYDWwL7AQcmWQT4AJgJOH3OODpzf2OwIXN/RbASc2KuN8Bu/eZ41bAwrFeoqqOB34GzKmqOcDpwKuSPLCp8nfAf/W2S7JfkuEkw0uXLh1rCEmSJEmSJK1Ba0NyriYQP7P5uxAYasXnAAcDu1TVb1vxL1XViqr6AfDoJrYjcFpVLa+qXwL/CzyTbgLu+UmeDvwA+GWTtHsucHHT9oaqWjTKHO61qvoD8B1g1yRPBR5YVVf2qTe/qjpV1Zk5c+aaGFqSJEmSJEkTsDYk534NPLwn9gjgltbzHc3f5dzzIxn/B2wIPKWn/R2t+/T8vYequrkZf2e6q+guBF5H94MUt/Xpr3cOI64Gtu83xjg+AezLKKvmJEmSJEmSNDjTPjlXVbcDP0/yEoAkj6CbKPvuBJrfSHe76ilJZo1T9wJgzyTrJJkJvAD4flO2gO6W2ZHk3IH8ZUvrRB0OHJHkMc17PKg5Y67XbXQTigBU1SXAE4DXA6et4piSJEmTymhfZfVrrZIkaarqt0JrOnojcFKSo5vnf6mq6yfSsKquTbIP8Pkkrxyj6ll0t6peQXfL7Hur6hdN2YV0v7L64yQ30l25t0rJuar6WpJHA99KkmaMT/WpOh/4epKfN+fOAXwOmN2zNVeSJGlKMhEnSZKmk1SNdiSbposkZwPHVtW3x6vb6XRqeHj4fpiVJEmSJEnS2iHJwqrq9Cub9tta12ZJNkpyHbBsIok5SZIkSZIk3b/Wlm2ta6Wq+h0rf8xCkiRJkiRJk4Qr5yRJkiRJkqQBMTknSZIkSZIkDYjJOUmSJEmSJGlATM5JkiRJkiRJA7LWfBAiybHAjVV1XPN8LvDTqvr75vlo4GbgXOAE4PFAgFOAD1dVNfV2Az4IrAfcCXygqr7UlJ0MvBC4FVgf+B7wvqq6uSlfAnSq6pbm+UXAgVW1a2ueXwYeVVXPbZ5vAHauqmtbdY4DfgZ8H/gycEPrVQ+sqm8lKeCYqnpP0+ZAYEZVHbZaP6QkSdKADc09Z6XYknm7DGAmkiRJq29tWjl3MbADQJIHABsDs1rlOwALga8A86rqKcC2TfxtTbttgaOAV1fVU4FXAUcl2abVz0FVtS2wJXA5cF6S9SYywSQbAdsBGyXZrAmfDuzVqvMAYA/gjCZ0YVXNbl3fauJ3AH+dZOOJjC1JkjQV9EvMjRWXJEma7Nam5NxFNMk5ukm5q4Dbkjw8yYOApwFPBS6qqm8AVNUfgf2BuU27A4GPVNUNTfkNwOHAQb2DVdexwC+Al09wjrsDX+WeCbnTWvcALwCWVNWN4/R1FzAfOGCCY0uSJEmSJOl+ttYk56rqZ8BdSTalm6RbAFwCPBfoAIvprnZb2NPuemBGkofSTerdoxwY5p4r8HpdRjfpN+K8JIuSLAI+0VN3b7rJuNOae6pqMbCiWbUH3UTdaa02zx/pr7k2b5WdBOyT5GFjzI8k+yUZTjK8dOnSsapKkiRJkiRpDVprknONkdVzI8m5Ba3ni+meMVejtK1RysdqM1LeNmdkCyrw93dXSh4NPBn4blVdRzeRuFVTfBqwV5J1gVcDn2/117ut9fq7J1x1K90z894xxvyoqvlV1amqzsyZM8eqKkmSJEmSpDVobUvOjZw7tzXdba3fo7tybge6ibur6a6iu1uSJwG3V9Vt/crpnhH3gzHGfAZwzQTmtifwcOCG5sMRQ9xza+vrgJ2AxVX1qwn0N+I44M3AQ1ahjSRJkiRJku4Ha1ty7iJgV+A3VbW8qn4DbEQ3QbcA+CywY5KdAJKsDxwPHNG0Pwp4X5KhpnwIeD9wdO9A6XoHsAnwPxOY2950v8o6VFVDwPY0yblmNdyvgXncc0vruJp3/BzdBJ0kSdKUNtpXWf1aqyRJmqrWHfQE7mdX0v1K66k9sRlVdQtAklcDJyQ5CVgH+AxwIkBVLUpyMPDVJA8E7gTeW1WLWv0dmeQDwAZ0V+bNqao/jzWpJsm3aVOfZqwbktya5NlVdQndpNzhwFk9zZ/fnF834sNV9YWeOkfT/bCFJEnSlGciTpIkTSepGuu4NK1tOp1ODQ8PD3oakiRJkiRJ00aShVXVe1QasPZta5UkSZIkSZImDZNzkiRJkiRJ0oCYnJMkSZIkSZIGxOScJEmSJEmSNCAm5yRJkiRJkqQBmVByLskhSa5OsjjJoiTPbuLnJ7k2yRVJLkqyZZ/4pUlmt/pakmTj5r6SHN0qOzDJYa3nNzRjXt309YkkG/WMsai59mjitzd/h5Isa5UvSvLG3jm0xto3ydIklyf5UZJzk+wwxm8y6tya8plJ7kzylp52S5Jc2bT93yRPbJUtb+Y50ue7kzygKXtRkt/3vM9O4/2OSbZsfqtFSa5JMn/sf21JkqTJbWjuOStdkiRJU9W4ybkkzwV2Bbarqm2AnYCftqrsU1XbAp8GjuwT/1hPvO0O4K97E2XNuDsDBwAvr6pZwHbAxcCje8aY3Vxf6NP/9a3y2VV1yjive0ZVPaOqtgDmAWcmedq9nNtrge8Be/cZZ07zW54PHNqKL2vmOQv4K+AVwD+3yi/seZ9vNfFRf0fgeODYpv7TgBPG+Q0kSZImrdEScSboJEnSVDWRlXObALdU1R0AVXVLVf2sT70LgCf3iS8AHjdK33cB8+kmunodAhxYVTc34y6vqk9V1bUTmPNqq6rzmrntdy/ntjfwHuD/s3fn4XbV5d3/3x8Zg4ggBhnjQUVQEEM4PiqCgliLBQs8aCFqFW2NVnlULAiKVrQOKGBEwQFbAX0QsKKCoBZ/Aj+ZFE8whEEGMUHBKWgrRAKVcD9/7HVgsbPPkOSEfU58v65rX9nr/k732ucfrpvvd62tk4x0/yP+NlX1u2btw5JkjHRH+x23AO5ozXvdGHNJkiRJkiTpUTKe4txFwDZJbknymSQvGqHfy4FehZ99gG+OMv8pwKuTPL4rviNwzRi5ndk64rlpj/andh0D3WOM+bpdA+zQIz5qbkm2ATavqquBrwIHj9B11N+mqn5O52+0WRPao+t+ntrqPtLvOBe4OMl3khzePnrbyndOkqEkQ4sXLx4pHUmSJEmSJE2wMYtzVbUE2JXOLq7FwDlJDm11OTPJfOAFwBFd8TuAoxjlKGVV3Q18CXjbSH2SPKspRt2WpF3oah9r/X2Pod3HWi8b43aXW3rMDr1zO4ROUQ7gbJY/2npJkt/ROSL8lRXIoftY623DDSP9jlV1GvAM4D+APYEfJlmvq8+pVTVYVYPTp08f65YlSZIkSZI0Qcb1Qojm2OalVfV+4DDgoFbzcIHsgKp6xLPogG3pFJ9OGWOJTwL/ADy2FbuBzrPcqKrrqmom8B1g2nhyniC7AD/tER8rt9nAoUkWAecDz06yXWv8XsCTm3k+ONLiSZ4CLAN+N858e/2OVNWvmmO3+9M5ArvTOOeTJEmSJEnSajSeF0Js31VYmgncPp7Jq+rPdF548LxeL1Zo9fsDnZ1m/9AKfxQ4IcnWrdijVphrju/OAb7Qo3nE3Jo31j62qraqqoGqGmj6H9KeoKqWAu8AXpvkCT3Wnw58Dji5qmo8Off6HZPsk2Sd5vvmwKbAneOZT5IkabJZdNy+KxSXJEma7NYeR58NgU83zyp7APgZvV+S0FNVLU1yIp0jr/8wStcT6ezKGx737aZA9Z0kawH/DVwP/Od416Z55lzr+otV9anm+4IkDzbfvwosAA5OsjuwAbAQOKiqlts5N0ZubwK+0TXkXDrHW/+1a55fJzkLeGvTNq3Jdx06v/WXgU+0huzRdT8f6vGW2kf8jsBLgZOS3NdcH1lVv+m+J0mSpKnCQpwkSVqTZJybsvQXYnBwsIaGhvqdhiRJkiRJ0hojybyqGuzVNq5nzkmSJEmSJEmaeBbnJEmSJEmSpD6xOCdJkiRJkiT1icU5SZIkSZIkqU8szkmSJEmSJEl9YnFOkiRJkiRJ6pO1+53AVJakgP9bVX/fXK8N/Br4UVXt1+p3HrBZVT2/Fdse+DywMbAecFlVzUmyJ3Ae8HNgfeDsqvpAK76wlcJHgXc33zcHlgGLm+v/BfyhqjZsrXkoMFhVh03IDyBJktQHA0dfuFxs0XH79iETSZKkVWdxbtX8CdgpybSqWgr8FXBnu0OSjYFZwJIk21bVcHHtU8Dcqjqv6fes1rDLqmq/JI8F5ie5oB3vyuGcZvyxwJKqOqG19oTcpCRJ0mTRqzA3HLdAJ0mSpiKPta667wDD/yU4Gzirq/0g4FvA2cAhrfgWwB3DF1V1XffEVfUnYB7w1AnMV5IkSZIkSZOExblVdzZwSJL1gZ2BH3W1Dxfszmq+D5sLXJzkO0kOb3bYPUKSTYHnATc0oT2SzG99xiraTWv3Bz7Yq1OSOUmGkgwtXry4VxdJkiRJkiStBhbnVlFVLQAG6BTevt1uS/Ik4GnA5VV1C/BAkp2acacBzwD+A9gT+GGS9ZqheyT5CXARcFxVDRfnLquqma3PbWOkt7TdH/iXEe7h1KoarKrB6dOnr9gPIEmSJEmSpJXmM+cmxvnACXSKbJu24gcDmwALm+e/bUTnaOt7AarqV8AXgS8muR7YqRnX69lykiRJkiRJWsO4c25ifBH4YI/nxs0G9qmqgaoaAHalee5ckn2SrNN835xOUe9OJEmSNKKRXvrgyyAkSdJU5c65CVBVdwAntWNJBoAZwA9b/RYmuTvJc4GXAiclua9pPrKqfpNkh1GW2qN5dtywD1XV1ybiHiRJkqYKC3GSJGlNkqrqdw6aRAYHB2toaKjfaUiSJEmSJK0xksyrqsFebR5rlSRJkiRJkvrE4pwkSZIkSZLUJxbnJEmSJEmSpD6xOCdJkiRJkiT1icU5SZIkSZIkqU8mfXEuydZJzktya5KfJzk5yXpN26FJTu7qf2mSweb7oiTXJZnffD7VxE9PsrAVv7I134NJdm7Nd32Sgeb7G5r5FjTx/bvW3jPJVV2xtZP8NskWzbqv6M6za/wFo/wW1yY5q8f8H2l+n+H7OabVvqwVn5/k6LF+c0mSpMls4OgLl/tIkiRNVZO6OJckwNeBb1bVdsB2wDTg4yswzV5VNbP5vK0VP7IV360VvwM4pmsOkmzdxHevqp2B5wELurr9ANh6uJjXeAlwfVX9egVyXk6SZ9D5e70wyWNbTR8CtgSeVVUzgT2AdVrtS1v3ObOqjluVPCRJkvpppEKcBTpJkjRVTeriHPBi4L6qOg2gqpYBhwOvTbLhalrzAmDHJNt3xTcD7gGWNLksqaqF7Q5V9SDwH8DBrfAhwCN2u62kVwFfBi4C/hYgyQbAG4H/U1X3NTncU1XHTsB6kiRJkiRJWs0me3FuR2BeO1BVdwOLgKeNc45LWkc6D2/Fj2/Fz2zFH6SzM+89XfNcC/wWWJjktCQvH2G9s+gU5GiO3/4NcO44cx3NwcA5zfyzm9jTgF9U1T2jjJvWdaz14O4OSeYkGUoytHjx4glIVZIkSZIkSeOxdr8TGEOAGiHOCG3d8b2q6q4efY6sqq+NMP4rwDFJtn1owqplSfYBngPsDcxNsmv3LrWq+nGSDZudd88AflhV/zXCOuOS5DnA4qq6PckdwBeTbNKj3+uBtwObArtV1S9pjrWONn9VnQqcCjA4ODjSbypJkiRJkqQJNtl3zt0AdL80YSPgScDNwO+B7iLVE4Bexbhxq6oHgBOBo7riVVVXV9VH6eyOO2iEKc5u2ifqSOtsYIcki4DbgI2atX8GzEjyuCa/05pC3B+BtSZgXUmSJEmSJK1Gk704931ggySvBUiyFp2i2clVtRT4MfCCJJs37YPAesAvJ2Dt0+m8zGF6M/eWSWa12mcCt48w9izgNXSemXf+qiSR5DHAK4Gdq2qgqgaA/YHZVXUv8O/AyUnWb/qvBay7KmtKkiRNVouO23eF4pIkSZPdpD7WWlWV5EDglCTvo1MoO6eqPty0/zbJ24FvN0WsJXSKVg+2prkkybLm+4Kqem3z/fgk7231+19da/9Pkk8BJzWhdYATkmwJ3AcsBt48Qt43JrkXmFdVfxrlFi9M8ufm+1XAKcDezdHVYacAd1bVna3YD4BnJtmCzhtk/xW4Psk9wFLgDOBXTd9pSea3xn63qo4eJSdJkqRJzUKcJElak6Rq6jxiLMludHal/e+qmjdWf624wcHBGhoa6ncakiRJkiRJa4wk86pqsFfbpN45162qrgSe3O88JEmSJEmSpIkw2Z85J0mSJEmSJK2xLM5JkiRJkiRJfWJxTpIkSZIkSeoTi3OSJEmSJElSn1ickyRJkiRJkvpkyhTnkixLMj/J9Um+lWTjVtuOSS5OckuSW5O8L0la7S9LMpTkp0luSnJCEz82yRHN9/WTfC/J+1vjDk9yX5LHN9f7J/lmq/3dSX7Wun55kvNb1+cluar5vlmShUk2b7V/JsnRXfc5kGRpc683Jvlcksc0bdOT/DnJm7rGLEpyXZIFSf7/JE9utS1pff+b5veZsWK/viRJ0uQxcPSFy30kSZKmqilTnAOWVtXMqtoJ+APwVoAk04DzgeOq6unAs4HdgLc07TsBJwOvqapnADsBP29PnGRd4FxgXlV9oNU0G/gxcGBzfSXw/Fb784G7k2zWXO8GXNHMuTEwC9g4ybZV9TvgY8BwYXAWsDtwYo97va2qZgI7A88EDmjirwR+2OTVba+q2hm4FHhvd2OSvYFPA/tU1S96jJckSZr0RirEWaCTJElT1VQqzrVdBWzVfH8VcEVVXQRQVfcChwHDO9LeBXy4qm5q2h+oqs+05lobOBu4taoe2sWW5KnAhnQKXbObsYuBPyZ5WtNtKzpFvd2a693oFPAADgK+1cx9SBM7FXhqkr3oFAwPq6o/j3STVfVAM9/werOBfwa2TrLVCMPav83wvewBfAHYt6puG2k9SZIkSZIkPbqmXHEuyVrA3nR2ywHsCMxr92kKUBsm2YjOTrlHtHd5F/BAVb2jKz4bOAu4DNi+tTvuSmC3JNsDt9LZybZbkrXp7HT7cdf4s3i4uPcg8E90Cnq3VNUPxrjXDZp7vS7JNsDmVXU18FXg4BGG7QN8s3W9HnAecMBwgbLHOnOaY79DixcvHi0lSZIkSZIkTaCpVJyblmQ+8HvgCcD3mniAGmHMSPG2y4HnJ3l6V/wQ4OymoPZ1OkdKoXNsdbfmcxVwNfBcYBfg5qq6L8mT6Ox2u7yqbgEeaI7XUlXzgeuB9u69bk9t7vUK4MKq+k6Tz1eb9rNZ/mjrJUl+B7wE+Eor/mc6BcV/GGmxqjq1qgaranD69OmjpCVJkiRJkqSJNJWKc0ub57A9GViX5plzwA3AYLtjkqcAS6rqnqZ911Hm/QHwDuA7SbZsxu8MbAd8L8kiOoWx4WLYlbSKc80a6wN70jxvjs6utk2Ahc34AR4+2grwYPMZyW3N8/V2qapjm9hs4NBmvvOBZyfZrjVmLzq/zQ3AB7vW+jvgOUneM8qakiRJkiRJepRNpeIcAFX1R+BtwBFJ1gHOBHZP8hJ46AURnwI+3gw5HnjP8M64JI9J8s6uOc9t+n23eZHDbODYqhpoPlsCWzVvQb0R2BLYA/hJM8V84M08/Ly52XRevDBQVQN0ioPt4twKaY7QPraqtmrN+dHuOatqKZ1C42uTPKEVvxfYD3h1khF30EmSJE12i47bd4XikiRJk93a/U5gZVTVT5JcCxxSVV9Osj/w6SSnAGsBX6bzwgWqakGSdwBnNc9wK2C513lV1eeSbE5nV9o2wMu6unyjWe9jSX4EPL71MoergDnAlUkGgBl0nkU3PPfCJHcneW5V/Wglbnl2s37buXSOt/5r1338OslZdHYW/msr/ock+wA/SHJXVZ23EnlIkiT1nYU4SZK0JknVeB7Lpr8Ug4ODNTQ01O80JEmSJEmS1hhJ5lXVYK+2KXesVZIkSZIkSVpTWJyTJEmSJEmS+sTinCRJkiRJktQnFuckSZIkSZKkPrE4J0mSJEmSJPXJ2v1OYEUlWQZc1wqdXVXHNW3TgV8Bh1XV51tj3gAcDhSdguQxwEuBFwDrAtsCNzfdP1RVX2uNPRZ4I7C4teaewEzgiKraryu/S4GnAE+u5lW4Sb4JvKSqNkwyAFxQVTt1rbGkqk5oxh9RVUNN20P9k+wJnAf8HJjWxI9o+j0J+HdgG2AdYBFwFPDlZpkZwB+bz11V9ZIeP68kSdKkN3D0hcvFFh23bx8ykSRJWnVTrjgHLK2qmSO0vRL4ITAb+DxAkq3pFONmVdUfk2wITK+q85r2ATpFrpHmBJhbVSe0A0lGy/G/6RT+Lk+yMbDFWDe1Ai6rqv2STAN+kuQbVXUF8EHge1V1UpPfzlV1HZ0iIklOp3OfXxtpYkmSpMmuV2FuOG6BTpIkTUVr2rHW2cA/A1sn2aqJbQbcAywBqKolVbVwNedxNnBI8/1/A1+f6AWqaikwHxi+zy2AO1rtCyZ6TUmSJEmSJE2sqVicm5ZkfutzMECSbYDNq+pq4KvAwU3/a4HfAguTnJbk5Sux5uGt9S4ZR//vAy9MshadIt05Xe1Pbd8D8OYVTSjJJsB2wA+a0CnAvye5JMkxSbZcgbnmJBlKMrR48eKxB0iSJEmSJGlCTMXi3NKqmtn6DBe+DqFTlIPOzrXZAFW1DNgHeAVwCzC3ecbbipjbWm+vcfRfBlxOp0A4raoWdbXf1r4H4HOttuoxXzu2R5IFwG/oHFP9DUBV/SedZ919AdiBzpHX6eO5uao6taoGq2pw+vRxDZEkSZIkSdIEmIrFuZHMBg5Nsgg4H3h2ku0AquPqqvoonSLeQY9CPmcDn+bhguF4/R7YpHX9BOCu1vVlVbUz8Czgn5I89Ky8qvpDVX2lqv4e+DHwwpXKXJIkSZIkSY+KNaI4l2R74LFVtVVVDVTVAPBR4JAkWyaZ1eo+E7j9UUjrsiaHs1Zw3KXAa/LwGydeByx3lLaqbmnmPwogyYuTbNB8fxzwVOAXK5W5JEnSJDXSSx98GYQkSZqqpuLbWqc1z2kb9l3gPuAbXf3OpbN77UvACc0z2O4DFrPiz3g7PMlrWtcHNP/uneSOVvyVw1+qqoBHvOF1nE6lcyz12iQFDAHvHqHv54AjkmwL7AqcnOQBOkXXf6uqH6/E+pIkSZOahThJkrQmSaeGJHUMDg7W0NBQv9OQJEmSJElaYySZV1WDvdrWiGOtkiRJkiRJ0lRkcU6SJEmSJEnqE4tzkiRJkiRJUp9YnJMkSZIkSZL6xOKcJEmSJEmS1CcW5yRJkiRJkqQ+mZTFuSTLksxvfQaS7Jnkj0l+kuSmJCe0+h+aZHHXmGcmeUySTyW5Psl1SX6cZNtmzKIkT2zNsWeSC3rksmeSSvIPrdguTeyI5vr0JAtba1/ZNcd5Sa7qih2b5M6m/61Jvp7kma32dZN8MsltTft5SbZu2uYmeUer738m+bfW9YlJ3jna/UuSJE1VA0dfuNxHkiRpqpqUxTlgaVXNbH0WNfHLqmoXYBdgvyQvaI05p2vMjcDBwJbAzlX1LOBA4L9XIp/rmrmGHQJc29XnyNbauw0Hk2wMzAI27lEYm9v03w44B7g4yfSm7SPA44CnN+3fBL6eJMCVwG7N/I8Bngjs2Jp3N+CKCbx/SZKkSWGkQpwFOkmSNFVN1uLcqKpqKTAf2GqMrlsAv66qB5txd1TVf63Ekr8A1k/ypKY4tg/wnXGOPQj4FnA2naJeT1V1DnAR8KokGwCvBw6vqmVN+2nA/cCL6RTehguAOwLXA/ck2STJesAzgJ8wcfcvSZIkSZKk1WCyFuemtY6IfqO7MckmwHbAD1rhg7uOtU4Dvgq8vLk+MckuXVNdMtwf+DdG9zXglXSKYtfQKZS1Hd9a+8xWfDZwVvOZPcYa1wA7AE8DflFVd3e1DwE7VtWvgAeSzGjyuQr4EfB8YBBYUFX/M477ByDJnCRDSYYWL148RoqSJEmSJEmaKJO1ONc+1npgK75HkgXAb4ALquo3rbbuY61Lq+oOYHvg3cCDwPeT7N0as9dwf+Afx8jpq3SKc8PFtm7tY62vBkjyJDqFtsur6hY6BbWdRlkjrX9rhPbh+PDuueHi3FWt6yuhs1OO0e+fpt+pVTVYVYPTp0/vbpYkSZIkSdJqMlmLcyO5rKp2Bp4F/FOSmWMNqKr7q+o7VXUknee4HbAyCzeFwD8DfwV8f5zDDgY2ARYmWQQMMMrRVjrP0vsp8DPgyUke19U+C7ix+T783Lln0TnW+kM6O+eGnzc3nPeE3L8kSZIkSZIm3lQrzgHQ7EL7KHDUaP2SzEqyZfP9McDOwO2rsPS/AEcNPwduHGYD+1TVQFUNALsyQnEuyUHAS4GzqupPwBnAJ5Ks1bS/FtgAuLgZcgWwH/CHqlpWVX8ANqZToLuqGTPR9y9JktRXi47bd4XikiRJk93a/U5gFXwOOKL1BtSDk+zean8LsBHwheYlCQBXAyev7IJVdeUozccneW/r+u+AGXR2tA2PX5jk7iTPbUKHJ3kN8Fg6u99eXFXDD317N3ACcEuSB4GbgAOravhY63V03tL6ldaa1wEbVtVdzfVmTOD9S5IkTQYW4iRJ0pokD9d6JBgcHKyhoaF+pyFJkiRJkrTGSDKvqgZ7tU3JY62SJEmSJEnSmsDinCRJkiRJktQnFuckSZIkSZKkPrE4J0mSJEmSJPWJxTlJkiRJkiSpTyzOjSDJ3CTvaF3/Z5J/a12fmOSdSXZMcnGSW5LcmuR9SdLqd4H/QIoAACAASURBVECSBUluSnJdkgNabacnWZjk2mb8l5Js1Wp/QzNmQZLrk+zfGveK5vulSW5urXFyko1bcyxLMr/1OXr1/WqSJEmSJElaEWv3O4FJ7ErglcAnkzwGeCKwUat9N+Bo4Hzgn6rqoiQbAOcCbwFOSfJs4ATgr6pqYZJtge8l+XlVLWjmObKqvtYU9N4BXJJkJ2Az4BhgVlX9McmGwPQRcn11VQ0lWRf4KHAe8KKmbWlVzZyIH0SSJGkyGDj6wuVii47btw+ZSJIkrTp3zo3sCjoFOIAdgeuBe5JskmQ94BnADsAVVXURQFXdCxxGp2gHcATwkapa2LQvpFM8O7J7seqYC/wGeBmd4tw9wJKmfcnwPCOpqv8B3gXMaAqDkiRJa5RehbnR4pIkSZOdxbkRVNWvgAeSzKBTpLsK+BHwfGAQWABsD8zrGncbsGGSjegU9R7RDgw18ZFcQ6fody3wW2BhktOSvHyceS9rxu7QhKZ1HWs9eDzzSJIkSZIkafXzWOvohnfP7QZ8Atiq+f5HOsde1wNqhLEFpEd7r1h3O1W1LMk+wHOAvYG5SXatqmPHkXda38c81ppkDjAHYMaMGeOYXpIkSZIkSRPBnXOju5JOMe5ZdI61/pDOzrnd6BTubqCzi+4hSZ4CLKmqe3q1A7OAG0dZcxfgp/DQUderq+qjwCHAQWMlnGStJt+fjtV3WFWdWlWDVTU4ffpIj7WTJEmSJEnSRLM4N7orgP2AP1TVsqr6A7AxnQLdVcCZwO5JXgKQZBrwKeDjzfgTgHcnGWjaB4D3ACd2L5SOtwFbAN9NsmWSWa0uM4HbR0s2yTp0nmn3y9YLJyRJkiRJkjRJWZwb3XV03tL6w67YH6vqrqpaCuwPvDfJzU3bj4GTAapqPnAU8K0kNwHfAt7VxIcdn+Ra4BY6R1j3al7ssA5wQpKbkswHDgbePkKeZyZZQGd332ObnIZ1P3PuuJX/OSRJkvprpLey+rZWSZI0VaVqtMef6S/N4OBgDQ0N9TsNSZIkSZKkNUaSeVXV/egzwJ1zkiRJkiRJUt9YnJMkSZIkSZL6xOKcJEmSJEmS1CcW5yRJkiRJkqQ+sTgnSZIkSZIk9YnFOUmSJEmSJKlP1u53AhMhyTHAq4BlwIPAm4CjgW2BDYHpwMKm+1uq6sok1wI3VtXsJK8H3t60PxO4uZnru8BNwPHAna0lXwXc28z5tqr6dJPHycBQVZ3eld+xwJKqOiHJ84CTgPWazzlVdWySQ4HBqjqsx/2tDfwG+EJVvbsVvxTYcPhVvEkGgROqas8kewLnAT8HNgB+C3y8qi4Yz28qSZI0WQ0cfeFysUXH7duHTCRJklbdlN85l+T5wH7ArKraGXgJ8MuqOrCqZgL/CFxWVTObz5VJnkHn3l+Y5LFVddpwO/ArYK/m+uhmmXNa42dW1Y1N/HfA25OsuwIpnwHMadbaCfjqOMa8lE7B8O+SpKttsyQvG2HcZVW1S1VtD7wNODnJ3iuQqyRJ0qTSqzA3WlySJGmym/LFOWAL4K6quh+gqu6qql+NMeZVwJeBi4C/XYW1FwPfB163AmM2A34NUFXLWoW+0cyms9vuF8DzutqOB9471gRVNR/4ILDczjxJkiRJkiT1x5pQnLsI2CbJLUk+k+RF4xhzMHAOcBadwteY/ZPMb32mtdqOA/45yVrjzHcucHOSbyR5U5L1R+vcrLU3cMEI+V4F3J9kr3GsfQ2wQ4815iQZSjK0ePHicd2EJEmSJEmSVt2UL85V1RJgV2AOnZ1s5zTPb+spyXOAxVV1O51db7OSbDLGMt3HWpe21l8IXE1nN9548v0gMEinqPgqOs+1G81+wCVVdS9wLnBgj0LghxjH7jmg+0jscE6nVtVgVQ1Onz59HNNIkiRJkiRpIkz54hw8dDz00qp6P51jmweN0n02sEOSRcBtwEZj9B+PjwBHMc7fs6puq6rP0tkR9+wkm47SfTbwkibfecCmwCN2yVXVxcD6LH/ktdsuwE/Hk6MkSZIkSZJWvylfnEuyfZLtWqGZwO0j9H0M8Epg56oaqKoBYH/Gd7R1RFV1E3AjnV1uY+W7b+ulDtvReSvsf4/QdyNgd2BGK9+3jpDvh4F3jbLuzsD7gFPGylGSJGmyGumtrL6tVZIkTVVr9zuBCbAh8OkkGwMPAD+jc8S1lxcCd1bVna3YD4BnJtmiqn49wriDk+zeun4Lnbe6tn0Y+Mk48v17YG6Se5t8X11Vy5p63aFJDmj1/Rxw8fDLLhrnAR9Psl570qr6dpLuB8btkeQnwAZ03iz7tqr6/jhylCRJmrQsxEmSpDVJqqrfOWgSGRwcrKGhoX6nIUmSJEmStMZIMq+qBnu1TfljrZIkSZIkSdJUZXFOkiRJkiRJ6hOLc5IkSZIkSVKfWJyTJEmSJEmS+sTinCRJkiRJktQnq704l+SYJDckWZBkfpLnNvF1k3wyyW1Jbk1yXpKtm7aBJNd3zXNskiOSnNLMc2OSpc33+UlekeT0JK/oGrdkhLy2bta8tcnhpCTrNm0fbs07P8ktSZYl2bBpP6C5n5uSXJfkgNa8pye5M8l6zfUTkyxq3dfSrrlf2yO3S5PcnOTaJFck2b7Vdl6Sq3r8Nne2fpfZXfm8ovn+hCQ/SfL6cfzpJEmSJEmStJqtvTonT/J8YD9gVlXdn+SJwLpN80eAxwFPr6plTcHo68PFu5FU1VubuQeAC6pqZmu9/caZV4CvA5+tqv2TrAWcCnwYOLKqjgGOafU/E/hqVS1J8mzgBOCvqmphkm2B7yX5eVUtaIYsA94AfLbH8re1cx7Fq6tqKMkc4Hjgb5NsDMwCliTZtqoWtvrPraoTkmwHzEvytar6c+seHg/8J3BqVZ02jvUlSZImpYGjL1wutui4ffuQiSRJ0qpb3TvntgDuqqr7Aarqrqr6VZINgNcDh1fVsqbtNOB+4MWrOSeaNe4bLlI1ORwOvKHJ7SFJXgM8DTi2CR0BfGS4MNb8+1HgyNawTwKHJ5mI4ucPmvUBDgK+BZwNHNKrc1XdCtwLbNIKbwh8B/hKVfUqGEqSJE0JvQpzo8UlSZImu9VdnLsI2KY5FvqZJC9q4k8DflFVd3f1HwJ2XMU1j28fGx2hz47AvHagyeUXPFwIG96ddxydXWwPjDS2R96/AC4H/r7H2k/tOta6xxj383Lguub7bOCs5jO7V+cks4Bbq+p3rfAngMurau4Ya0mSJEmSJOlRtFqPtTbHQHcF9gD2As5JcjTwE6B6DEkT79XGKPG2I6vqaw9N2PuZc8PrjBhvjrr+X+B9VfWzMcb2in0EOB/o/t+44z3WemaSpcAi4P8keRKdwuHlVVVJHkiyU1UNP5vv8CRvBJ4C7NM118XA/klO6Cra0dzrHGAOwIwZM8aRmiRJkiRJkibCan8hRFUtq6pLq+r9wGF0jmb+DHhyksd1dZ8F3Aj8nkceywR4AnDXBKV1AzDYDiTZCNgGuK0JvRf4dY/nsy03lofzfkhT0JsP/N1K5vjqqppZVQdU1S+Bg+n8JgubF0wM8MijrXOravum35eSrN9qO5vO8+++3eM3p6pOrarBqhqcPn36SqYrSZIkSZKkFbVai3NJtm9eUDBsJnB7Vf0JOAP4RLNDjeatpRsAF1fVEuDXSfZu2p5AZzfY5ROU2veBDYbflNrkcCJwelXdm+R5wKE0u8m6nAC8uznyOnz09T3N+G4fpvOMuokwG9inqgaqagDYlR7Pnauqr9M5Zvu6rvgn6dz3N4bfSitJkiRJkqT+Wt075zYEzkhyY5IFwDN5+MUK7wbuA25JcivwSuDAqho+Hvpa4L3Nc+MuBj5QVbcxAZo1DgRe2ax9S5PLe5ouH6BTKLyk6/lwT62q+cBRwLeS3ETnBQ3vauLd69wAXNMV7n7m3NvGyrcpAM4AftiaeyFw9whvt/0g8M4kj/j7VtVRwC+BL3e3SZIkTQUjvZXVt7VKkqSpKg/XwiQYHBysoaGhfqchSZIkSZK0xkgyr6q6H5MGPArPnJMkSZIkSZLUm8U5SZIkSZIkqU8szkmSJEmSJEl9YnFOkiRJkiRJ6hOLc5IkSZIkSVKfWJyTJEmSJEmS+mTtfifwlyTJkqrasHV9KDBYVYc113OAdzbNdwPvrKrLm7ZLgSOqaqg1fs8mtl/XOg/1TfIG4HCg6BRjj6mq81bLDUqSJD0KBo6+cLnYouP27UMmkiRJq86dc5NEkv2ANwG7V9UOwJuBryTZfBXm3Bo4pplzZ+B5wIKJyFeSJKkfehXmRotLkiRNdhbnJo+jgCOr6i6AqroGOAN46yrMuRlwD7CkmXNJVS1c1UQlSZIkSZI0MTzW+uialmR+6/oJwPnN9x2BeV39h4DXrcJ61wK/BRYm+T7w9ar6Vnen5jjtHIAZM2aswnKSJEmSJElaEe6ce3QtraqZwx/gX8boHzrPilspVbUM2Ad4BXALMDfJsT36nVpVg1U1OH369JVdTpIkSZIkSSvI4tzkcSOwa1dsVhNfadVxdVV9FDgEOGhV5pMkSZIkSdLEsTg3eXwc+FiSTQGSzAQOBT6zshMm2TLJrFZoJnD7qiQpSZLUTyO9ldW3tUqSpKnKZ85NElV1fpKtgCuTFJ0XObymqn7d6nZhkj83368CTgH2TnJHq88rW9/XAU5IsiVwH7CYzltgJUmSpiwLcZIkaU2SqpV+pJnWQIODgzU0NNTvNCRJkiRJktYYSeZV1WCvNo+1SpIkSZIkSX1icU6SJEmSJEnqE4tzkiRJkiRJUp9YnJMkSZIkSZL6xOKcJEmSJEmS1CePSnEuydZJzktya5LbkpyUZN2uPucluaordmySI5rv6yf5XpL3N9dLRlnvpCR3JnlMK3ZokgeT7NyKXZ9koPm+KMl1zefGJB9Kst4I8z8pyVeS/DzJvCRXJTlwnDksTjI/yU1JDu+61zubtluTfD3JM1vtlya5uWmfn+RrrXH3Jtms1XdJ6/sxSW5IsqAZ99yRfjdJkiRJkiQ9utZe3QskCfB14LNVtX+StYBTgQ8DRzZ9NgZmAUuSbFtVC7vmWBc4F5hXVR8YY73HAAcCvwReCFzaar4DOAY4eIThe1XVXUk2bHI8FXhdj/v5JnBGVb2qiT0Z+Ntx5nBOVR2WZFPg5iRfq6pfNm1zq+qEZo6DgYuTPKuqFjftr66qoR553wX8M3BUV67PB/YDZlXV/UmeCKzbY7wkSdKUMXD0hcvFFh23bx8ykSRJWnWPxs65FwP3VdVpAFW1DDgceEOSDZo+BwHfAs4GDukav3YTv7Wqjh7HensB1wOfBWZ3tV0A7Jhk+9EmqKolwJuBA5I8ocf9/E9Vfa7V//aq+vQ4cxge83vgZ8AWI7SfA1wEvGq0XBtfBA7ukesWwF1VdX8z511V9atxzCdJkjQp9SrMjRaXJEma7B6N4tyOwLx2oKruBn4BPK0JzQbOaj7dxax3AQ9U1TvGud7wXN8A9kuyTqvtQeDjwHvGmqTJcSGwXVfTjsA1q5ADAElmAOsDC0aZ5xpgh9b1ma1jrce34kvoFOje3jX+ImCbJLck+UySF42RtyRJkiRJkh5Fj0ZxLkCNFE/yJDpFusur6hbggSQ7tfpdDjw/ydPHXKhz/PVvgG82xbUfAS/t6vYV4HlJth1n7mOteUqSa5P8eJw5HJzkBuDnwElVdd8KrP/qqprZfI7savsU8LokGw0Hmh2AuwJzgMXAOUkO7XEPc5IMJRlavHhxd7MkSZIkSZJWk0ejOHcDMNgONAWkbYDb6Dz/bRNgYZJFwACPPNr6A+AdwHeSbDnGWvsAjweua+bana6deFX1AHAiXc9n65bkcU0ut/S4n1mt+d4K7A1MH2cO51TVjsAewIlJNh8ljV2An46WZyuP/6ZTeHxLV3xZVV1aVe8HDqNzhLh77KlVNVhVg9OnT+9uliRJkiRJ0mryaBTnvg9skOS1AM0LIU4ETq+qe+kUrvapqoGqGqCz0+sRz52rqnOB44HvNi+PGMls4B9bc20LvLT1bLthpwMv4eGC2iM0L4T4DJ3db//V1XwxsH6Sf2rF2vOPK4equgr4MssfRR3O4SA6O+7O6n2rPX0CeBPNiz6SbJ+kfSx3JnD7CswnSZIkSZKk1Wi1F+eqqui8ufSVSW6lsxPtPuA9SQaAGcAPW/0XAncneW7XPJ+j89bX85OsT6fgd0fr8x7gr4ELW2P+ROdY7Mu75vofOsdAN+tK95Ik1wNX03km3ptGuJ8DgBclWZjkauAM4KimADeuHBofA17f7NIDOLx5ntytwGuAF7fe1AqPfObc/9cjt7voPOduvSa0IXBGkhuTLACeCRzbIw9JkqQpYaS3svq2VkmSNFWlU2uSOgYHB2toaKjfaUiSJEmSJK0xksyrqsFebY/GsVZJkiRJkiRJPVickyRJkiRJkvrE4pwkSZIkSZLUJxbnJEmSJEmSpD6xOCdJkiRJkiT1icU5SZIkSZIkqU+mVHEuyZKu60OTnNy6npPkpuZzdZLdm/j+Sb7Z6vfuJD9rXb88yfmt6/OSXNW11rFJ7kwyP8mNSWa32k5PsjDJtUluSfKlJFuNcA+XJrm5meenSea02hYlua5pm5/kU622tZPcleSjXfNtmOTzSW5LckOSHyR57nh+L0mSpKlo4OgLl/tIkiRNVVOqODeaJPsBbwJ2r6odgDcDX0myOXAl8PxW9+cDdyfZrLneDbiimWdjYBawcZJtu5aZW1Uzgf2BzydZp9V2ZFU9G9ge+AlwSZJ1R0j31c08LwA+1tVvr6qa2Xze1oq/FLgZ+LskacX/DfgDsF1V7QgcCjxxhHUlSZKmtJEKcRboJEnSVLXGFOeAo+gUyO4CqKprgDOAt1bVYuCPSZ7W9N0KOJdOUY7m3yub7wcB3wLOBg7ptVBV3QrcC2zSo62qai7wG+BlY+S8IfAnYNk47m82cBLwC+B5AEmeCjwXeG9VPdis//Oq8r9OJUmSJEmSpoC1+53ACpqWZH7r+gnA8HHUHYF5Xf2HgNc1368EdkuyFnAr8EPgr5NcAOwM/LjpNxv4APBb4GvAI46RAiSZBdxaVb8bJddrgB2A83q0nZnkfmA74B1V1S7OXZJk+PqMqpqbZBqwN52dgRs3OV7V3PP8rvFto/1e7fuZA8wBmDFjxii3JEmSJEmSpIk01YpzS5vjoEDnGWrA4Cj9A1Tz/Qo6O+TWolPYuhr4F2AX4Oaqui/Jk4CnAZdXVSV5IMlOVXV9M8fhSd4IPAXYZ4xcM0rbq6tqKMl04Mok362q25u2vYZ3/7XsB1xSVfcmORd4X5LDx1gfxvl7VdWpwKkAg4OD1d0uSZIkSZKk1WNNOtZ6I7BrV2xWE4dm51zzuaqq7gHWB/aked4ccDCdo6oLkywCBnjk0da5VbV90+9LSdYfJZ9dgJ+OlnBz3PYaOkdTRzMbeEmT0zxgU2Av4Abg2UnWpL+jJEmSJEnSX4w1qajzcTovV9gUIMlMOi9H+EzTfiOwJbAHnRc2AMyn8+KI4efNzQb2qaqBqhqgU+xb7rlzVfV1Hnlk9iHpeBuwBfDd0RJOsgGdIt5to/TZCNgdmNHK663A7Kq6rcnjA8MviUiyXZL9R1tXkiRpqlp03L4rFJckSZrsptqx1hFV1flJtqJzTLSAe4DXVNWvm/ZK8iPg8VX152bYVXSetXZlkgFgBp1n0Q3PuTDJ3Ul67Wz7IJ23wX6huT4+yfuADZo59qqq/xkh3TOTLAXWA06vqvaz8trPnFsAXAxcXFX3t/qcB3w8yXrAPwInAj9Lci/we+DIUX4qSZKkKc1CnCRJWpOkykeM6WGDg4M1NDTU7zQkSZIkSZLWGEnmVVXP9yasScdaJUmSJEmSpCnF4pwkSZIkSZLUJxbnJEmSJEmSpD6xOCdJkiRJkiT1icU5SZIkSZIkqU8szkmSJEmSJEl9sna/E1iTJNkc+CTwHOB+YBHwDmAd4NPA1kCALwEfqqpKcihwPHAnsD7w+aqa25pzDvDO5vJu4J1VdXnTdimw4fCreJMMAidU1Z6t8ScBrwC2qaoHV8d9S5IkPZoGjr5wudii4/btQyaSJEmrzp1zEyRJgG8Al1bVU6vqmcB7gCcB5wPHVdXTgWcDuwFvaQ0/p6pmAi8AjkmyTTPnfsCbgN2ragfgzcBXmiLgsM2SvGyEnB4DHAj8EnjhxN2tJElSf/QqzI0WlyRJmuwszk2cvYA/V9XnhgNVNR94OnBFVV3UxO4FDgOO7p6gqn4P/AzYogkdBRxZVXc17dcAZwBvbQ07HnjvKDldD3wWmL3SdyZJkiRJkqTVwuLcxNkJmNcjvmN3vKpuAzZMslE7nmQGnaOtC0YaCww18WFXAfcn2avH2rOBs+js6NsvyTq9Ek8yJ8lQkqHFixf36iJJkiRJkqTVwOLc6hegRmgbjh+c5Abg58BJVXXfCs73Ibp2zyVZF/gb4JtVdTfwI+ClPZOoOrWqBqtqcPr06aPejCRJkiRJkiaOxbmJcwOw6wjxwXYgyVOAJVV1TxM6p6p2BPYATmw9U+7GHnPOauIPqaqL6ey4e14rvA/weOC6JIuA3fFoqyRJkiRJ0qRicW7iXAysl+SNw4EkzwFuBXZP8pImNg34FPDx7gmq6irgy8Dbm9DHgY8l2bQZOxM4FPhMj/U/DLyrdT0b+MeqGqiqAWBb4KVJNliFe5QkSeqrkd7K6ttaJUnSVLV2vxNYU1RVJTkQ+GSSo4H7gEXAO4D9gU8nOQVYi04B7uQRpvoYcE2Sj1TV+Um2Aq5MUsA9wGuq6tc91v92ksUATQHur+m86XW4/U9JLgdeDpwzITctSZLUBxbiJEnSmiRVIz0OTX+JBgcHa2hoqN9pSJIkSZIkrTGSzKuqwV5tHmuVJEmSJEmS+sTinCRJkiRJktQnFuckSZIkSZKkPrE4J0mSJEmSJPWJxTlJkiRJkiSpTyzOraAky5LMb30GkuyZ5IKufocmObkrdmmSweb7G5Jcl2RBkuuT7N/ET0/yiq5xS5p/B5Jc33zfM0kleXmr3wVJ9my+r53kI0lubeV6zGr4SSRJkh5VA0dfuNxHkiRpqrI4t+KWVtXM1mfRik6QZGvgGGD3qtoZeB6wYCVyuaOZp5cPAVsCz6qqmcAewDorsYYkSdKkMVIhzgKdJEmaqtbudwJ/oTYD7gGWAFTVkuHvK+haYJ0kf1VV3xsOJtkAeCMwUFX3NWvcAxy7inlLkiRJkiRpArlzbsVNax0T/cZKznEt8FtgYZLT2kdTG8e3j86OMdeHgPd2xZ4G/KIpyI0pyZwkQ0mGFi9ePK4bkCRJkiRJ0qqzOLfi2sdaDxylX40Ur6plwD7AK4BbgLlJjm31ObJ9dHa0ZKrqMoD/x96dRttVlfkaf/7SCEijYFBAJBoosECJsK/YYIsiim2JQgQVu8At7ChRY0lVUXjVqAioIFZQabyiWCooYFsqV1BKPIEgjSBEIjYoJ6IoEi0M7/2w14HFzj5NkhP2OcnzG2OPrP3OueZ81z5fMt4x51xJnjxanySvbgp9v0iyfZ8xFlRVp6o6M2bMGGs6SZIkSZIkTSKLc2vO74AH9cS2BJZCt0JXVZdW1fuAg4CXrMZc7+HeZ8/dADw8yWbNXKc1Rb7bgPVWYx5JkiRJkiRNIotza86PgCcleShA85bW+wO/SLJtkj1afWcDP1/Viarqm3QLgbs33+8APgmclGSjZv71gA1XdQ5JkqSpYMn8/VcqLkmSNNX5QojJs0+SX7a+vxR4M/DVJPej+8KHOVV1V5INgOOSbAv8BRgGDl/N+d8DfLn1/V3Au4GrkvwJWAacAfx6NeeRJEkaKAtxkiRpbZKq0Y5G07qo0+nU0NDQoNOQJEmSJElaayRZWFWdfm1ua5UkSZIkSZIGxOKcJEmSJEmSNCAW5yRJkiRJkqQBsTgnSZIkSZIkDYjFOUmSJEmSJGlALM5JkiRJkiRJA7L+oBO4LyRZDlzZCr2oqpYk2Rs4Hti8iR9fVQuae44BXg8MAxsC766qzzZtpwNPBW5r7rujqp6Y5CHAJ4HtgQ2AJcA7gE83/R7e3HMbsLSqntmT5+1VtWnr+6FAp6re0ORze1Ud18x/flV9odV3ZhPbrWfMxwMfBu7ffM6uqmMm8LNJkiRNSTPnXbBCbMn8/QeQiSRJ0upbJ4pzwLKqmt0OJHkocBbdQt1lSR4MfCPJr6pq5H98JzTFsJ2AhUm+UFV3Nm1vaxfHGscC36qqDzdzPKaqrgRmN99Pp6eodh84A3hZVV2RZD1g5/twbkmSpEnVrzA3ErdAJ0mSpqN1eVvrEcDpVXUZQFUtBd4OzOvtWFXXA3cADxpnzG2AX7bu+/GkZbvqtgZuBqiq5VV1zYDzkSRJkiRJUmNdKc5tnGRR8zmnie0KLOzpN9TE7yXJHsD1VXVLK/zB1pifaWInA59M8t0k70qy7WrkuYjuSrzVdQJwXZJzkhyWZKPeDknmJhlKMjQ8PDwJU0qSJEmSJGki1tltrUCA6tO3HTsyyeuBRwL79fRbYVtrVX0jyUjf5wCXJ9mtqiZa8bpXniNnzk3w3r6q6timeLgv8HJgDvC0nj4LgAUAnU6n328iSZIkSZKkNWBdWTnXz9WsWPjaE2hv+zyhqnYGDgTO7LfqrFdV3VpVZ1XVK4AfAU+ZrIRXVVUtrqpTgH2A3ZNsNeicJEmSJEmStG4X504GDk0y8rKGrYD3Ax/o7VhVX6K75fVVYw2Y5BlJNmmuNwNmATdNct4rJcn+SdJ83QlYDvxhgClJkiStstFe+uDLICRJ0nS1rmxrXUFV3ZzkEODUppAW4MSqOm+UW44FzkpyavP9g0mObrU/ju7Ku5OS/I1u4fMTVfWjNfQI/5HkxOb6F3S3q+6c5JetPkcCLwFOSHIH8Dfg4KpavoZykiRJWuMs6vXnJwAAIABJREFUxEmSpLVJqjxiTPfodDo1NDQ06DQkSZIkSZLWGkkWVlXf9wqsy9taJUmSJEmSpIGyOCdJkiRJkiQNiMU5SZIkSZIkaUAszkmSJEmSJEkDYnFOkiRJkiRJGpBpW5xLsjzJoiRXJTkvyQOb+MwkV7X6PS7J95Jcl+TaJJ9IskmSQ5Oc1DPmhUk6zfWSJBf1tC/qGXvvJJc2416bZG6r7ZgkdyTZuhW7vU/+Vye5Isk/JVnh79H7PK2xj2quT09yQG/+rb5PS3L+xH5VSZKkqW/mvAtW+EiSJE1X07Y4ByyrqtlVtRtwK3BEb4ckDwH+E3hHVe0MPAr4OrDZBOfYLMn2zViP6hn7ocBZwOFVtQuwN3BYkv1b3ZYCbx0n/12BZwHPBf5tgnlJkiStk0YrxFmgkyRJ09V0Ls61XQJs1yd+BHBGVV0CUF1fqKrfTnDczwMHNtdzgM/2jH16VV3WjL0UeDswr9XnU8CBSbYca5KqugWYC7whSSaYmyRJkiRJkqa5aV+cS7IesA/wlT7NuwELx7j9wGZr6aIki4BOT/sXgH9orp8PnNdq27XP2ENNfMTtdAt0bx7zIYCq+hndv8fWfZpn9eR5+HjjrYwkc5MMJRkaHh6ezKElSZIkSZI0hulcnNu4KVT9DtgS+NYqjHF2s7V0dlXNpltca7sV+H2Sg4CfAHe02gJUnzF7Yx8BXpVk8wnkM9qqucU9eX58AmNNWFUtqKpOVXVmzJgxmUNLkiRJkiRpDNO5OLesKVTtAGxInzPngKuBPVdznrOBk7n3ltaRsXtX2u0JXNMOVNUf6J5N949jTZLkkcBy4JbVSVaSJEmSJEnTx3QuzgFQVbcBbwKOSrJBT/NJdFet7TUSSHJI8zKHiToH+ADwjZ74ycChSWY3424FvL/p2+t44DBg/X4TJJlBdzXcSVXVbzWeJEmSgCXz91+puCRJ0lTXt1g03VTV5UmuAA4CLmrFf9tsST0uydbAXcD3gC+txNh/olt0o/2uhqq6OckhwKlJNqO7JfXEqjqvzxhLk5wDHNkKj2zL3QD4G/BpukW81XVBkjub60voFhH3SfLLVp+XjrwkQ5IkabqxECdJktYmcaGW2jqdTg0N9R69J0mSJEmSpFWVZGFV9R6PBqwF21olSZIkSZKk6crinCRJkiRJkjQgFuckSZIkSZKkAbE4J0mSJEmSJA2IxTlJkiRJkiRpQCzOSZIkSZIkSQNicW4CklSSD7W+H5XkmOb6mCS/SrKo9XlgksuTzG76rJ/kz0kOaY2xMMkere9bJ7kxyUNbsY8lmZdkwyQnJlmc5PokX07ysFa/5c28VyU5L8kDm/jMJFe1+r0+yWVJHrSGfipJkqQ1bua8C1b4SJIkTVcW5ybmr8A/JHnwKO0nVNXs1ucPwA+AJzbtuwPXjXxP8gDgkcAVIwNU1S3A+4Hjmj57AHsDHwLeC2wG/F1V7QScC3wpSZrblzXz7gbcChzRm2CSVwBvBPatqt+v4u8gSZI0UKMV4izQSZKk6cri3MT8DVgAHLkS93yfe4pzTwQ+Dsxuvj8OuKyqlvfcswCYleTpwEnAG4ANgFcDR470r6rT6BYMn9Fn3kuA7dqBJC8D5tEtzC1diWeQJEmSJEnSGmRxbuJOBg5OskWftiNbW1q/28TaK+eeCHwP+GuSzZrv3+8dpKruAv438EXgp1X1PWBH4Kaq+mNP9yFg13YgyXrAPsBXWuEd6Bb69q2q3/R7sCRzkwwlGRoeHh7l8SVJkiRJkjTZLM5NUFMcOxN4U5/m9rbWpzf9lwAbNmfI7UJ3W+uPgL3oFud+MMo8i4CrgI81oQDVp2s7vnGSRcDvgC2Bb7X6DQM3AS8b49kWVFWnqjozZswYrZskSZIkSZImmcW5lXMi8FrgARPsfwlwAHBzVRXw38CT6G5r/e8x7rur+QDcAOzQrLhr2wO4prleVlWz6a6S25B7nzl3B/Ac4PAkB08wb0mSJEmSJN0HLM6thKq6Ffg83QLdRHyf7jl1lzTfLwFeCfymeWnEROb8M3AGcHyzbZUkrwQ2Ab7T0/c2uiv7jkqyQSs+DOwHvDfJsyeYuyRJ0pSzZP7+KxWXJEma6tYfdALT0Ifovqih7cgkh7S+v6jZ1vp94ASa4lxV3dwU2PpuaR3DO+m+xfWnSe4CrgVe3KzGu5equjzJFcBBwEWt+I1JXgB8Nck/VNUPVzIHSZKkKcFCnCRJWpukT31H67BOp1NDQ0ODTkOSJEmSJGmtkWRhVXX6tbmtVZIkSZIkSRoQi3OSJEmSJEnSgFickyRJkiRJkgbE4pwkSZIkSZI0IBbnJEmSJEmSpAGxODeOJMuTLGp95jXxC5N0evo+LUkleW0r9tgmdlTz/fQkB/Tcd3vr/vN72u7u38x5XZIrkvwoyexWv9ckuTLJj5NcleSFSU5ucr4mybLWM9xrfkmSpOlk5rwLVvhIkiRNV+sPOoFpYFlVzR6/292uBA4EPtl8Pwi4YhLzObiqhpK8Gvgg8KwkDwPeBexRVbcl2RSYUVVfBkgyEzh/JZ9DkiRpyhmtEDdz3gUsmb//fZyNJEnS6nPl3OS7CdgoyUOSBNgP+NoamOcSYLvmemvgT8DtAFV1e1XduAbmlCRJkiRJ0iSyODe+jXu2tR44gXu+ALwUeCJwGfDXnvYPtsdcxbz2A85trq8AfgvcmOS0JM9fmYGSzE0ylGRoeHh4FdORJEmSJEnSynJb6/hWdlsrwOeBs4FdgM/SLdK1va2qvjDyZeTMOaBGGa8d/0ySBwDrAXsAVNXyJPsB/wvYBzghyZ5VdcxEkq2qBcACgE6nM1oOkiRJkiRJmmSunFsDquo3wJ3As4Bvr8StvwMe1BPbElja+n4w8AjgLODk1pxVVZdW1fvonnP3klVIXZIkSZIkSfchi3Nrzr8C76iq5Stxz/XAtkkeBZBkB2B34F5bX6vqTuBo4PFJHpVk2yR7tLrMBn6+WtlLkiRNQaO99MGXQUiSpOnKba3j27jnXLivV9W85vqCJHc215dw75VsP1jZiarqr0kOAU5LshHd1Xevq6rb+vRdluRDwFHAscBxSbYF/gIMA4ev7PySJEnTgYU4SZK0NkmVR4zpHp1Op4aGhgadhiRJkiRJ0lojycKq6vRrc1urJEmSJEmSNCAW5yRJkiRJkqQBsTgnSZIkSZIkDYjFOUmSJEmSJGlALM5JkiRJkiRJA2JxTpIkSZIkSRqQ9QedwKAkeRhwMvD3dIuU5wNvq6r/SfIeYP9W902AWcAWVXV7khcBxwIbAncC/1JV5zbjng48C3hkVf01yYOBoaqamWQm8BPgutbYx1fVmT25XQhsA/wFuB14TVVd17R9Gdi6qp7Q6n8M8HpguMnp3VX12VY+51fVF5JsCXwb+EhVnbaKP50kSdJAzZx3wQqxJfP379NTkiRp6lsnV84lCfAl4Nyq2gn4O2BT4D0AVfWuqpo98gF+BLyvKcztDhwHvLCqdgFeAByX5DGtKZYDrxll+sXtsXsLcy0HV9XuwBnAB5u8HwjsATwwySN6+p/Q5PpC4D+SbNDzzFsA3wAWWJiTJEnTVb/C3FhxSZKkqW6dLM4BzwD+MlKkqqrlwJHAa5Js0u6Y5BBgR+CYJnQU8N6qurG590bgfcDbWredCByZZDJWJn6vmR/gJcB5wOeAg/p1rqrrgTuAB7XCmwJfA86qqlMmISdJkiRJkiRNgnW1OLcrsLAdqKo/AjdxTyGMZhvqfLqr2P422r3AUBMfcRNwMfCKPnPPSrKo9XnyOLk+H7iyuZ4DfLb5zOnXOckewPVVdUsrfDxwcVWdMMo9c5MMJRkaHh4eJx1JkiRJkiRNlnX1zLkANVY8yXrA/6V7ntwN49zbL/Ze4CtA7x6Lxc320/F8JskyYAnwxiQPoVs4vLiqKsnfkuxWVVc1/Y9M8nrgkcB+PWN9B3hhkuN6inYAVNUCYAFAp9Pp97tIkiRJkiRpDVhXV85dDXTagSSbA9sDi5vQ0cDNfc5nW+FeuufAXdMONAW9RcDLVjHHg5sz6V5UVb8ADqS7VfXGJEuAmdx7a+sJVbVz0+/MJBu12j4HnAJ8Nclmq5iPJEmSJEmSJtm6Wpz7NrBJklfC3avkPgScXlV3JHk8cCgwt8+9xwHvbLa8jmx9/efm/l7voXtG3WSYA+xXVTOraiawJ33OnauqL9HdZvuqnviJdJ/7nCQbTlJOkiRJ96nR3srq21olSdJ0tU5ua222hb4Y+FiSf6FbpPwq3SIbwL8DmwDf7b7Y9W4vqapFSd4BnNe8EfVO4O1VtajPPFcnuYzuyroRs5K0+36qqj4yVr5NAfDhwH+3xr4xyR+T7NXnlmOBs5Kc2pPPO5KcBnw6yZyqumuseSVJkqYiC3GSJGltkiqPGNM9Op1ODQ0NDToNSZIkSZKktUaShVXVe0wasO5ua5UkSZIkSZIGzuKcJEmSJEmSNCAW5yRJkiRJkqQBsTgnSZIkSZIkDYjFOUmSJEmSJGlA1h90AoOSZDlwJd3f4EbgFVX1hyQzgfOrarckTwO+DPwM2AT4LfCBqjq/Nc4hwNuB9YC/AT8CjmrGuhDYBljWdL8BeB2wGHhwVVWSJwA/ALavql8m2aLJ58FAAe8CXtVc/wp4Q1Vd3cy9BfBR4EnN+N8H3lhVtzXP8RPgWmAj4E/AyVV1xmT8fpIkSYMyc94FK8SWzN9/AJlIkiStvnV55dyyqppdVbsBtwJHjNLvoqp6bFXtDLwJOCnJPgBJ9gOOBJ5TVbsCe9AttD2kdf/BzTyzq+qAqvoD8BvgUU37E4HLm38BHg/8sKruanJ6IrB7Vf0d8D7gK0k2avp+EvhZVc2qqll0i3qfaM29uMn9UcBBwJFJXr3yP5UkSdLU0K8wN1ZckiRpqluXi3NtlwDbjdepqhYBxwJvaELvortK7ldN+/Kq+lRVXTfOUN/nnmLcE4ETer7/oLl+B92VcHc043+zaTs4yY7AnsC7W+MeC3SSzOqT+8+Af6JbYJQkSZIkSdIUsM4X55KsB+wDfGWCt1wG7NJc79p8H8tnkixqPh9sYj/gnmLcI4H/BDrN9ycC30+yOfCAqlrcM95QM+/fA4uqavlIQ3O9qGkfL/e7JZmbZCjJ0PDw8DiPI0mSJEmSpMmyLhfnNk6yCPgdsCXwrQnel77B5NFNAW5xkgNbTe1trW9rYt8HnpjkEcCSqvpLd4hsSnc13KXjzF+tf0drn3DuVbWgqjpV1ZkxY8YYU0uSJEmSJGkyrcvFuWVVNRvYAdiQ0c+c6/VYui9aALia7jlzVNWVzXhfAzYea4Cquh54EPB8ultqARYCrwZurKrbq+qPwJ+TPLLn9j2Aa5q5H5vk7r9hc717K7+xcpckSZIkSdKArcvFOQCq6ja657AdlWSDsfomeQzwL8DJTeh9wHFJHtbqNmZhruUS4M3cU5y7BHgL95w3B/BB4CNJNm7mfyawN3BWVd1A90USR7f6Hw1c1rT15j4TOI7u210lSZKmpdHeyurbWiVJ0nS1/qATmAqq6vIkV9B9o+lFPc1PTnI5sAlwC/Cmqvp2c99Xk8wAvtacXfcH4CrgG637P5NkWXO9tKqe2Vx/H3gu3TPkoFuceyT3Ls59lO4KuyuTLKf7ltcXVtXIeK8FPprkBrpbVi9pYiNmNblvBPwJ+GhVnbYyv40kSdJUYyFOkiStTVI12vFkWhd1Op0aGhoav6MkSZIkSZImJMnCqur0a1vnt7VKkiRJkiRJg2JxTpIkSZIkSRoQi3OSJEmSJEnSgFickyRJkiRJkgbE4pwkSZIkSZI0IBbnJEmSJEmSpAEZtziX5F1Jrk7y4ySLkuzVxDdMcmKSxUmuT/LlJA9r2mYmuapnnGOSHJXk5Gaca5Isa64XJTkgyelJDui57/ZR8lre3HdVkvOSPLDf3Ekel+R7Sa5Lcm2STyTZJMmhSU7qGfPCJJ3mekmSi3raF/WMvXeSS5txr00yt+d570iydb9naeV/dZIrkvxTkhX+HmP9ls313b9ZO/9W36clOb/fbyhJkjQdzZx3wQofSZKk6WrM4lySJwDPA/aoqscAzwR+0TS/F9gM+Luq2gk4F/hSkow1ZlUdUVWzgecCi6tqdvP5wkrmvqy5bzfgVuCIPvk/BPhP4B1VtTPwKODrTd4TsVmS7ZuxHtUz9kOBs4DDq2oXYG/gsCT7t7otBd46Tv67As+i+3v82wTzkiRJWieNVoizQCdJkqar8VbObQMsraq/AlTV0qr6dZJNgFcDR1bV8qbtNOCvwDPWZMKjuATYrk/8COCMqroEoLq+UFW/neC4nwcObK7nAJ/tGfv0qrqsGXsp8HZgXqvPp4ADk2w51iRVdQswF3jDeMVNSZIkSZIkrT3GK859E9g+yU+TfCzJU5v4jsBNVfXHnv5DwK6rmdMHW1tdF43XOcl6wD7AV/o07wYsHOP2A3vm6vS0fwH4h+b6+cB5rbZd+4zd+/y30y3QvXnMhwCq6md0/x5b92me1ZPn4eONtzKSzE0ylGRoeHh4MoeWJEmSJEnSGMYszlXV7cCedFd1DQNnJzkUCFB9bhmJ92tjjHjb21pbXWeP0W/jplD1O2BL4FsTGLvX2T1zDfW03wr8PslBwE+AO1pto/0GvbGPAK9KsvkE8hlt1dzinjw/PoGxJqyqFlRVp6o6M2bMmMyhJUmSJEmSNIZxXwhRVcur6sKq+jfgDcBLgBuAHZL0nt22B3AN3YLZg3ratqR7BttkWdYUqnYANqTPmXPA1XSLi6vjbOBk7r2ldWTs3pV2e9J9/rtV1R/onk33j2NNkuSRwHLgltVJVpIkSZIkSdPHeC+E2DnJTq3QbODnVfVn4Azg+GZbKUleCWwCfKdZcXdzkn2ati2B/YCLJ/sBquo24E3AUUk26Gk+ie6qtb1az3RI8zKHiToH+ADwjZ74ycChSWY3424FvL/p2+t44DBg/X4TJJlBdzXcSVU1kdWFkiRJ66Ql8/dfqbgkSdJU17dY1LIp8NEkDwT+RnfF3Nym7Z3AccBPk9wFXAu8uFVceiVwcpIPNd//vaoWT2r2jaq6PMkVwEHARa34b5stqccl2Rq4C/ge8KWVGPtPdItutN/VUFU3JzkEOLVZQRjgxKo6r88YS5OcAxzZCo9sy92A7m/7abpFvNV1QZI7m+tL6BYR90nyy1afl468JEOSJGm6sRAnSZLWJnGhlto6nU4NDfUevSdJkiRJkqRVlWRhVfUejwZM4Mw5SZIkSZIkSWuGxTlJkiRJkiRpQCzOSZIkSZIkSQNicU6SJEmSJEkaEItzkiRJkiRJ0oBYnFsDktzeuv5wkl8luV8rdmiSSrJPK/biJnZAKzYjyZ1JDusZf0mSBzfXD03yuSSLk1yT5KtJ/q7V98gkf0myxZp6XkmSJEmSJK2a9QedwNqsKci9GPgF8BTgwlbzlcAc4NvN94OAK3qGeCnw302//+gzfoBzgDOq6qAmNht4CPDTptsc4EdNHqev5iNJkiQN3Mx5F6wQWzJ//wFkIkmStPpcObdmPR24CjiFbpGs7SLgcUk2SLIpsCOwqKfPHOCtwMOSbDfK+HdW1cdHAlW1qKouAkgyC9gUOLrP/JIkSdNOv8LcWHFJkqSpzuLcmjUH+Czd1W3PS7JBq62A/wKeDbwQ+Er7xiTbAw+tqkuBzwMH9hl/N2DhBOa/CNg5ydar+BySJEmSJElaAyzOrSFJNgSeC5xbVX8Efgjs29Ptc3S3sx5Et4jWdhDdotxIv1VZ+XYQ8Lmqugv4Et1tsv1ynZtkKMnQ8PDwKkwjSZIkSZKkVeGZc2vOfsAWwJXdo+HYBLgDuHvPRVVdmmQ3YFlV/bTpN2IO8JAkBzfft02yU1Vd3+pzNXAAfSR5DLAT8K1m3A2BnwEn9/atqgXAAoBOp1Mr/6iSJEmSJElaFa6cW3PmAK+rqplVNRN4BLBvkk16+r0T+Od2IMnOwAOqarvW/e+juxKu7TvA/ZO8vnXv/0ry1Gb+Y0bur6ptge2S7DCJzyhJkiRJkqTVYHFukiVZH7iT7lly7VVyfwYuBp7f7l9VX6uq7/YMM4fuOXVtX6Rna2tVFd23sD4ryeIkVwPHAL+mW8jrHeMcVizwSZIkTRujvZXVt7VKkqTpKt36jiZLkt2BU6vqcYPOZVV0Op0aGhoadBqSJEmSJElrjSQLq6rTr82Vc5MoyeF0X+xw9KBzkSRJkiRJ0tTnCyEmUVV9HPj4oPOQJEmSJEnS9ODKOUmSJEmSJGlALM5JkiRJkiRJA2JxTpIkSZIkSRoQi3OSJEmSJEnSgKy1xbkk70pydZIfJ1mUZK9W2/pJliZ5X889FybpNNdLknyx1XZAktOTvLoZb1GS/0lyZXM9f5Q8PpzkV0nu14odmuSkPn2XtMa7MskLe9pfnKSS7NKKzWxib2zFTkpyaHP9+CQ/bMb8SZJjJv4rSpIkTT0z512wwkeSJGm6WiuLc0meADwP2KOqHgM8E/hFq8u+wHXAy5JkjKE6SXZtB6rqtKqaXVWzgV8DT2++z+uTx/2AFzdzP2WC6T+9GfsA4CM9bXOAi4GDeuK3AG9OsmGf8c4A5jZj7gZ8foJ5SJIkTTmjFeIs0EmSpOlqrSzOAdsAS6vqrwBVtbSqft1qnwN8GLgJePwY4xwH/PNq5PF04CrglGbOlbE58PuRL0k2BZ4EvJYVi3PDwLeBV/UZZ2vgZoCqWl5V16xkHpIkSZIkSVpD1tbi3DeB7ZP8NMnHkjx1pCHJxsA+wPnAZxm7aPZ5YI8kO65iHnOaOc4Bnpdkgwnc890kVwH/Dzi6FX8R8PWq+ilwa5I9eu6bD7w1yXo98ROA65Kck+SwJBv1TphkbpKhJEPDw8MTfDRJkiRJkiStrrWyOFdVtwN7AnPprio7e+QMNrrbXb9bVXcAXwRe3KegNWI58EHgnSubQ7PF9LnAuVX1R+CHdLfTjufpVbUb8GjgpGbFHHQLfZ9rrj9HT1Gxqm4ELgVe3hM/FujQLVi+HPh674RVtaCqOlXVmTFjxgSfUJIkSZIkSatr/UEnsKZU1XLgQuDCJFfS3fJ5Ot2i1pOSLGm6bkV3++l/jTLUp+kW565eyRT2A7YArmyOtdsEuAOY0IEoVbU4yW+Bv0+yGHgGsFuSAtYDKsnbe257L/AF4Hu9YwGnJDkVGE6yVVX9biWfR5IkSZIkSZNsrVw5l2TnJDu1QrOBnyfZHNgbeHhVzayqmcARjLG1tarupLs19C0rmcYc4HWteR4B7Jtkkwk+w9bNPT+n+3KIM6tqh2a87YEbm2dp53otcA3d1YEj4+zfeunFTnRXA/5hJZ9FkiRpSlgyf/+VikuSJE11a+vKuU2BjyZ5IPA34Aa6W1z/AfjOyIsiGl8GPpDk/mOM90nuff7bmJoC3LOBw0ZiVfXnJBcDz29ChyZ5Ueu2kRdTfDfJcmADYF5V/TbJHLpnyrV9ke421ff3xN8DXN76/grghCR30P0tDm5WFUqSJE1LFuIkSdLaJFU16Bw0hXQ6nRoaGhp0GpIkSZIkSWuNJAurqtOvba3c1ipJkiRJkiRNBxbnJEmSJEmSpAGxOCdJkiRJkiQNiMU5SZIkSZIkaUAszkmSJEmSJEkDYnGujyTLkyxKclWS85I8sInPTLKsaRv5vLJp2zTJKUkWJ7k8ycIkr2+NuWuS7yT5aZLrk/xLkvSZ+2lJbmvG+EmSf2u1PTZJJXn2SuR7Vavf65NcluRBk/+rSZIkSZIkaWWtP+gEpqhlVTUbIMkZwBHAe5q2xSNtPT4B/AzYqaruSjIDeE0zxsbAV4D/XVXfTLIJ8EXgH4GT+4x1UVU9L8kDgEVJzq+qhcAc4OLm329MMF+a+CuANwLPqKrfr+TvIUmSNGXMnHfBCrEl8/cfQCaSJEmrz5Vz47sE2G6sDklmAY8Djq6quwCqariq3t90eTnw/ar6ZtN2B/AGYN5Y41bVn4GFwKxmld0BwKHAvkk2mmi+SV7WzLVvVS0da05JkqSprF9hbqy4JEnSVGdxbgxJ1gP2obvqbcSsnm2tTwZ2Ba4YKcz1sSvdItvdqmoxsGmSzceYfyvg8cDVwJOAG5v7LgSeO8F8dwBOoluY+81YzytJkiRJkqT7lsW5/jZOsgj4HbAl8K1W2+Kqmt36XNR7c5J3NYW7X4+EgBplrn7xJye5HPgmML+qrqa7lfVzTfvnmu8TyXcYuAl42WgPm2RukqEkQ8PDw6N1kyRJkiRJ0iSzONffyBluOwAb0j3DbSzXALsnuR9AVb2nuX9kVdzVQKd9Q5JHArdX1Z/6jHdRVT22qvasqo83K+JeAvxrkiXAR4HnJNlsAvneATwHODzJwf2Sr6oFVdWpqs6MGTPGeVRJkiRJkiRNFotzY6iq24A3AUcl2WCMfjcAQ8D/aQppNGfCjbyN9TPA3kme2bRtDHwE+MAEU3km3W2z21fVzKrage4LJV40kXyrahjYD3hv75teJUmSJEmSNDgW58ZRVZcDVwAHNaHeM+fe1MRfB2wF3JBkIfBfwDuaMZYBLwSOTnIdcCXwI7pnwU3EHOCcntgX6b5oYrx8R+I3Ai8APpVkrwnOK0mSNKWM9lZW39YqSZKmq1SNdhSa1kWdTqeGhoYGnYYkSZIkSdJaI8nCqur0a3PlnCRJkiRJkjQgFuckSZIkSZKkAbE4J0mSJEmSJA2IxTlJkiRJkiRpQCzOSZIkSZIkSQNicU6SJEmSJEkakClVnEtye+v6w0l+leR+PX1emeSqJFcnuSbJUU389CQHNNdbJrk8yauT3C/JR5p7rkzyoySPaPptkeTMJIubz5lJtmjaZiapJG9szX1SkkP75H3MSB6t2JIkD26ulydZ1PrMa+IXJuk015smOaXJ4/IkC5O8vpXLVf3mTHJyM+Y1SZay+UE+AAATHUlEQVS15jggyeOT/LD5/pMkx6zq30aSJGmqmDnvghU+kiRJ09X6g06gn6Yg92LgF8BTgAub+HOAtwD7VtWvk2wEvKLn3i2AbwALquq0JHOAbYHHVNVdSR4G/Lnp/kngqqp6ZXPvvwOfAF7atN8CvDnJf1TV/6zGIy2rqtnj9PkE8DNgpybPGcBrxhu4qo6AbgEPOL89T5LrgJdV1RVJ1gN2XsX8JUmSpoTRCnEz513Akvn738fZSJIkrb4ptXKu5enAVcApwJxW/J3AUVX1a4Cq+ktVndpq3xT4GnBWVZ3SxLYBbq6qu5p7fllVv0+yI7An8O7W/ccCnSSzmu/DwLeBV03q0/Vo5nsccHQrz+Gqev9qDr01cHMz3vKqumY1x5MkSZIkSdIkmqrFuTnAZ4FzgOcl2aCJ7wYsHOO+44GLq+qEVuzzwPObrZ0fSvLYJv73wKKqWj7SsbleBOzaun8+8NZm5dlYjmxvXaW7Wm/Exj3bWg/suXdX4IqRwtwoZvWMf/g4+QCcAFyX5JwkhzUrDVeQZG6SoSRDw8PDExhWkiRJkiRJk2HKFeeSbAg8Fzi3qv4I/BDYd4K3fwd4YZKtRwJV9Uu62znfCdwFfDvJPkCA6pdCO15VNwKXAi8fZ+4Tqmr2yAf4dattWbutqs4ea6Ak72qKcO0xFveM//Fx8qGqjgU6wDeb/L8+Sr8FVdWpqs6MGTPGG1aSJEmSJEmTZMoV54D9gC2AK5MsAfbmnq2tV9Pdijqaz9HdCvvVJJuNBKvqr1X1tap6G/Be4EXNWI9tv3Ciud4d+EnPuO8F3sGa+72uAXYfyaWq3tMU4DZf3YGranGzxXefZo6tVndMSZIkSZIkTY6pWJybA7yuqmZW1UzgEcC+STYB3gd8IMlDAZLcP8mb2jdX1Yl0z4k7J8mGSfZIsm3T/37AY4CfV9UNwOXA0a3bjwYua9raY15Lt4D2vMl/XGjmGwL+z8j22WYLalZn3CT7JxkZYydgOfCH1RlTkiRpkEZ76YMvg5AkSdPVlHlba5L1gTuBZwOHjcSr6s9JLgaeX1VnJ3kI8F9N0amAT/WOVVXvSHIa8GngDODUJPdvmi8FTmquXwt8NMkNdAthlzSxft5Dt5i3KjZuzokb8fWqmtfT53XAB4EbktwKLKO7Wm91vAI4IckdwN+Ag9tn7EmSJE1HFuIkSdLaJFX9jl277yXZHTi1qh436FzWZZ1Op4aGhgadhiRJkiRJ0lojycKq6vRrmxLbWpMcTvftrEeP11eSJEmSJElaW0yJba1V9XEm8PZRSZIkSZIkaW0yJVbOSZIkSZIkSesii3OSJEmSJEnSgFickyRJkiRJkgbE4twEJFmeZFGSK5JcluSJTXxmkmVN2zVJzkyyQeu+vZNcmuTa5jO3Z9y5rbZLk+zdarswSac1z/VJnp3kaUnOb+IbNfc+unXf25N8vLmnkryx1XZSkkPX2A8lSZIkSZKklTIlXggxDSyrqtkASZ4NvA94atO2uKpmJ1kP+BbwMuAzSR4KnAW8qKouS/Jg4BtJflVVFyR5HnAYsHdVLU2yB3BuksdV1W9GJk7yMOAbwFur6htJnjbSVlV/SfIW4GNJngJs24zZAbYAbgHenOQ/qup/1tzPI0mSdN+ZOe+CFWJL5u8/gEwkSZJWnyvnVt7mwO97g1W1HLgU2K4JHQGcXlWXNe1LgbcD85r2dwBva+I0/c5o7hvxUOCbwNFV9ZV+yVTV14GbgVcCJwDHVNVIfsPAt4FXrdKTSpIkTTH9CnNjxSVJkqY6V85NzMZJFgEbAdsAz+jtkGQjYC/gzU1oV7rFtrahJj7SvrBPe7uQdibdwtx/jpPfW+gWBq+vqk/3tM0HvpbkU+OMIUmSJEmSpPuYK+cmZllVza6qXYD9gDOTpGmb1RTufgfcVFU/buIBqs9Y/WIjeu/5L+AVSTYZK7mq+jXwHeCUPm030i3cvXzUSbtn3w0lGRoeHh5rKkmSJEmSJE0ii3MrqaouAR4MzGhCi5vz6HYEHp/kBU38arpnv7XtCVzTXF/TfG/bo9UO8AHgh8B/JhlvleNdzaef99LdRtv3711VC6qqU1WdGTNm9OsiSZIkSZKkNcDi3EpKsguwHt2Vcnerqpvpnif3ziZ0MnBokpEXSWwFvJ9uwY3m3/c3cZp+hwIf65nySOCPwCdbq/VWSlVdS7fo97xVuV+SJEmSJElrhsW5idk4yaJm++rZwKuaF0D0OhfYJMmTm2LdIcCpSa4FfgB8qqrOA2he8PAp4AdN+6nAIc19d6uqonsO3TbcU9jbJ8kvW58nTOAZ3gM8bGUfXJIkaSoZ7a2svq1VkiRNV+nWfqSuTqdTQ0NDg05DkiRJkiRprZFkYVX1Hn8GuHJOkiRJkiRJGhiLc5IkSZIkSdKAWJyTJEmSJEmSBsTinCRJkiRJkjQgFuckSZIkSZKkAbE4J0mSJEmSJA3I+oNOYF2SZDlwJRBgOfCGqvpBkpnAT4DrgA2BIeC1VXVnc9/ewPHA5s1Qx1fVgqbtGODtwMyquqWJ3V5VmybZHvgesGdV3ZrkQcBlwNOq6uf3wSNLkiRNupnzLlghtmT+/gPIRJIkafW5cu6+tayqZlfV7sA7gfe12hZX1Wzg0cDDgJcBJHkocBZweFXtAuwNHJak/T/QpcBbeyerql8ApwDzm9B8YIGFOUmSNF31K8yNFZckSZrqLM4NzubA73uDVbUcuBTYrgkdAZxeVZc17UvprpSb17rtU8CBSbbsM88JwOOTvIVuYe9Dk/YEkiRJkiRJWi1ua71vbZxkEbARsA3wjN4OSTYC9gLe3IR2Bc7o6TbUxEfcTrdA92bg39odq+rOJG8Dvg7sW1X/02fOucBcgIc//OEr/1SSJEmSJElaJa6cu2+NbGvdBdgPODNJmrZZTeHud8BNVfXjJh6g+ozVG/sI8Kokm/fp+xzgZmC3fklV1YKq6lRVZ8aMGSv5SJIkSZIkSVpVFucGpKouAR4MjFTDRs6c25HuNtQXNPGrgU7P7XsC1/SM9we6Z9P9YzueZDbwLODxwJFJtpnM55AkSZIkSdKqszg3IEl2Adaju1LublV1M93z5N7ZhE4GDm2KbCTZCng/8IE+wx4PHEazXblZlXcK8Jaqugn4IHDcpD+MJEnSfWS0t7L6tlZJkjRdeebcfWvkzDnobld9VVUtv2dn693OBY5J8uSquijJIcCpSTZr7juxqs7rvamqliY5BziyCb2e7hbZbzXfP0a30PfUqvp/k/xskiRJ9wkLcZIkaW2Sqn7HmWld1el0amhoaNBpSJIkSZIkrTWSLKyq3mPLALe1SpIkSZIkSQNjcU6SJEmSJEkaEItzkiRJkiRJ0oBYnJMkSZIkSZIGxOKcJEmSJEmSNCAW5yRJkiRJkqQBWX/QCaxtkrwY+BLwqKq6Nsn9gBOBZwAF/AV4GfA54P7AlsDGwK+aIV4E/B74KPCkJvZ94I1VdVuSmcBPgOuADYEh4LVVdWeSpwFHVdXzWvl8Gdi6qp6wpp5ZkiTpvjRz3gUrxJbM338AmUiSJK0+V85NvjnAxcBBzfcDgW2Bx1TVo4EXA3+oqr2qajbwr8DZVTW7+SwBPgn8rKpmVdUs4EbgE605Fjf3Php4GN1i3wqSPBDYA3hgkkdM9oNKkiTd1/oV5saKS5IkTXUW5yZRkk3prnZ7LfcU57YBbq6quwCq6pdV9fsxxtgR2BN4dyt8LNBJMqvdt6qWA5cC240y3EuA8+iu0jtolD6SJEmSJEkaEItzk+tFwNer6qfArUn2AD4PPD/JoiQfSvLYccb4e2BRU3gD7i7CLQJ2bXdMshGwF/D1UcaaA3y2+cwZbcIkc5MMJRkaHh4eJz1JkiRJkiRNFotzk2sO3VVqNP/OqapfAjsD7wTuAr6dZJ8xxgjds+nGis9Ksgj4HXBTVf14hc7JQ4AdgYubYuHfkuzWb8KqWlBVnarqzJgxY9yHlCRJkiRJ0uTwhRCTJMlWdF/6sFuSAtYDKsnbq+qvwNeAryX5Ld0Vdt8eZairgccmud/IVtjmpRK7030RBDRnziXZBrgwyQuq6is94xwIPAi4MQnA5nS3th49SY8sSZIkSZKk1eTKuclzAHBmVe1QVTOranu6L3J4SpJt4e4i22OAn482SFXdAFzOvYtoRwOXNW3tvjcD8+iuyus1B9ivyWUm3XPsPHdOkiRNa6O9ldW3tUqSpOnKlXOTZw4wvyf2ReB0uufP3b+JXQqcNM5YrwU+muQGuttZL2li/ZwLHJPkySOBJDOBhwP/PRKrqhuT/DHJXlX1w4k8kCRJ0lRkIU6SJK1NUtXveDOtqzqdTg0NDQ06DUmSJEmSpLVGkoVV1enX5rZWSZIkSZIkaUAszkmSJEmSJEkDYnFOkiRJkiRJGhCLc5IkSZIkSdKAWJyTJEmSJEmSBsTinCRJkiRJkjQgFuckSZIkSZKkAbE4J0mSJEmSJA2IxTlJkiRJkiRpQCzOSZIkSZIkSQNicU6SJEmSJEkaEItzkiRJkiRJ0oBYnJMkSZIkSZIGxOKcJEmSJEmSNCAW5yRJkqT/397dhVpa1WEAf55GycEPItSyyJLIhsoxyYLCBDNFu/GikMigFCIxjECToogiSIqgCNOKUplMRpLCgj6kBlFqytQZj5p6p0ZGWFoXfRjK6mK/p7an+Thq9Srz+92cvde71tr/d18+57/2CwAwE+EcAAAAAMxEOAcAAAAAMxHOAQAAAMBMhHMAAAAAMBPhHAAAAADMRDgHAAAAADMRzgEAAADATIRzAAAAADAT4RwAAAAAzEQ4BwAAAAAzEc4BAAAAwEyEcwAAAAAwE+EcAAAAAMxEOAcAAAAAMxHOAQAAAMBMhHMAAAAAMJOOMeaugWeQtg8luX/uOgAA1uHQJH+YuwgAgHV46RjjsF1dEM4BAPCs1PaWMcbxc9cBAPB0ONYKAAAAADMRzgEAAADATIRzAAA8W31t7gIAAJ4uvzkHAAAAADPROQcAAAAAMxHOAQAAAMBMhHMAAPxL28fb7mx7e9vb2r5pGn9Z2zuf4p73tT30Ka69oe3xuxm/t+1K23vaXtL2eXvY5wd7ug4AMBfhHAAAy/42xnjtGOPYJB9NcvHcBe3BWWOMzUk2J3k0yXVrJ3ThOWOMt40x/vR/rxAAYC+EcwAA7M4hSR5ZO9j2gLZXtL2j7Y62J03jG9p+fhpfaXv+mnUb2/6o7fvaHtj28ra/mvY4Y2nO1mn9NUk27q3IMcY/klyU5Mi2x05dfne3vTTJbUlestq91/azbc9bqumTbS+YXn94qmel7aemsYvafnB6/YW226bXJ7e9anp9Wdtb2t61tO7ktt9d+pxT2n5n/V89ALCv2G/uAgAAeEbZ2HZnkgOSHJHkLbuY84EkGWMc03ZTkuvbHp3k7CRHJTlujPFY2+cvrTkoydYkW8YYW9p+Jsm2McY503HTm9v+JMn7k/x1jLG57eYswrW9GmM83vb2JJuS/DLJK5OcPcY4L0nark7dmuSLSS6d3p+Z5LS2pyZ5RZI3JGmS77U9McmNSS5I8qUkxyd5btv9k5yQ5KZpj4+NMR5uuyHJT6e6tyX5ctvDxhgPTd/NFeu5FwBg36JzDgCAZavHWjclOS3Jli4lW5MTknwzScYY9yS5P8nRSd6a5CtjjMemaw8vrbkuyRVjjC3T+1OTfGQKAm/IIgw8MsmJSa6a1q8kWXkStS/Xef8Y4xdrJ4wxdiQ5vO2L2h6b5JExxgNTPacm2ZFFILgpi7Du1iSva3twFkdnt2cR0r05/w7nzmx727T21UleNcYY03f07il8fGOSHz6JewEA9hE65wAA2KUxxvbpQQ6Hrbm0NqxbHh+7ufazJKe3vXoKrprk7WOMe5+wwSIH3N0euzV1rR2T5O5p6C97mH5tknckeWEWnXSrtV88xvjqLva+L4vOt59nERaelOTlSe5ue1SSC5O8fozxSNsrswgak0Wn3PeT/D3Jt1dDSwCAZTrnAADYpenI6oYkf1xz6cYkZ01zjs6i4+3eJNcnObftftO15WOtn5j2WT1O+uMk56925bU9bhd7vyaLhz3src79s3hwxW+mbru92ZrknVkEdNcu1XNO24OmPV/c9vClmi6c/t6U5NwkO6eQ8ZAsgsA/t31BktNXP2SM8WCSB5N8PMmV66gLANgHCecAAFi2se3O6bjpNUneM8Z4fM2cS5NsaHvHNOe9Y4xHk3w9yQNJVqbff3vXmnUfSnJA288l+XSS/ae5d07vk+SyJAe1XcniIQ8376HWb03z7kxyYJIz1nODY4y7khyc5LdjjN9NY9cnuTrJ9um+rp3mJItA7ogk28cYv8+iE+6mad3tWRxnvSvJ5Vl0CD6hxixCw1+vpzYAYN/TxT/8AACA/7a2lyTZMcb4xty1AADPTMI5AAD4H2h7axZHXk+ZOgsBAP6DcA4AAAAAZuI35wAAAABgJsI5AAAAAJiJcA4AAAAAZiKcAwAAAICZCOcAAAAAYCb/BKv3d/5FbGu9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#Scatter plot displaying all the cities that raised complaint of type 'Blocked Driveway'\n", + "plt.figure(figsize=(20, 15))\n", + "plt.scatter(grp_data['Complaint Type'],grp_data['City'])\n", + "plt.title('Plot showing list of cities that raised complaint of type Blocked Driveway')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 6f6565d8af35f73857d8cb5af34ff5c0d827264a Mon Sep 17 00:00:00 2001 From: Shashnk <70314463+Sam09DS@users.noreply.github.com> Date: Fri, 4 Dec 2020 20:52:52 +0530 Subject: [PATCH 3/8] Add files via upload From 5e0a0f98801010ef62b61c44c1d686b1ae88e5f4 Mon Sep 17 00:00:00 2001 From: Shashnk <70314463+Sam09DS@users.noreply.github.com> Date: Fri, 4 Dec 2020 20:56:20 +0530 Subject: [PATCH 4/8] Add files via upload From 113091019b788047e6c84953b6904655fe55b974 Mon Sep 17 00:00:00 2001 From: Shashnk <70314463+Sam09DS@users.noreply.github.com> Date: Fri, 4 Dec 2020 21:04:27 +0530 Subject: [PATCH 5/8] Create Customer Service Requests Analysis.md --- .../Customer Service Requests Analysis.md | 26 +++++++++++++++++++ 1 file changed, 26 insertions(+) create mode 100644 inter-basics/Customer Service Requests Analysis.md diff --git a/inter-basics/Customer Service Requests Analysis.md b/inter-basics/Customer Service Requests Analysis.md new file mode 100644 index 0000000..5d210b7 --- /dev/null +++ b/inter-basics/Customer Service Requests Analysis.md @@ -0,0 +1,26 @@ +# Cutomer Service Request Analusis + +DESCRIPTION + +Background of Problem Statement : + +NYC 311's mission is to provide the public with quick and easy access to all New York City government services and information while offering the best customer service. Each day, NYC311 receives thousands of requests related to several hundred types of non-emergency services, including noise complaints, plumbing issues, and illegally parked cars. These requests are received by NYC311 and forwarded to the relevant agencies such as the police, buildings, or transportation. The agency responds to the request, addresses it, and then closes it. + +Problem Objective : + +Perform a service request data analysis of New York City 311 calls. You will focus on the data wrangling techniques to understand the pattern in the data and also visualize the major complaint types. +Domain: Customer Service + +Analysis Tasks to be performed: + +(Perform a service request data analysis of New York City 311 calls) + +Import a 311 NYC service request. +Read or convert the columns ‘Created Date’ and Closed Date’ to datetime datatype and create a new column ‘Request_Closing_Time’ as the time elapsed between request creation and request closing. (Hint: Explore the package/module datetime) +Provide major insights/patterns that you can offer in a visual format (graphs or tables); at least 4 major conclusions that you can come up with after generic data mining. +Order the complaint types based on the average ‘Request_Closing_Time’, grouping them for different locations. +Perform a statistical test for the following: +Please note: For the below statements you need to state the Null and Alternate and then provide a statistical test to accept or reject the Null Hypothesis along with the corresponding ‘p-value’. + +Whether the average response time across complaint types is similar or not (overall) +Are the type of complaint or service requested and location related? From 44d70f6b519a0fa9d3712ac2c1bdd15d2957f20b Mon Sep 17 00:00:00 2001 From: Shashnk <70314463+Sam09DS@users.noreply.github.com> Date: Fri, 4 Dec 2020 21:06:08 +0530 Subject: [PATCH 6/8] Create Customer Service Requests .md --- Intern-basics/Customer Service Requests .md | 26 +++++++++++++++++++++ 1 file changed, 26 insertions(+) create mode 100644 Intern-basics/Customer Service Requests .md diff --git a/Intern-basics/Customer Service Requests .md b/Intern-basics/Customer Service Requests .md new file mode 100644 index 0000000..0ba7817 --- /dev/null +++ b/Intern-basics/Customer Service Requests .md @@ -0,0 +1,26 @@ +# Customer Service Requests Analysis + +DESCRIPTION + +Background of Problem Statement : + +NYC 311's mission is to provide the public with quick and easy access to all New York City government services and information while offering the best customer service. Each day, NYC311 receives thousands of requests related to several hundred types of non-emergency services, including noise complaints, plumbing issues, and illegally parked cars. These requests are received by NYC311 and forwarded to the relevant agencies such as the police, buildings, or transportation. The agency responds to the request, addresses it, and then closes it. + +Problem Objective : + +Perform a service request data analysis of New York City 311 calls. You will focus on the data wrangling techniques to understand the pattern in the data and also visualize the major complaint types. +Domain: Customer Service + +Analysis Tasks to be performed: + +(Perform a service request data analysis of New York City 311 calls) + +Import a 311 NYC service request. +Read or convert the columns ‘Created Date’ and Closed Date’ to datetime datatype and create a new column ‘Request_Closing_Time’ as the time elapsed between request creation and request closing. (Hint: Explore the package/module datetime) +Provide major insights/patterns that you can offer in a visual format (graphs or tables); at least 4 major conclusions that you can come up with after generic data mining. +Order the complaint types based on the average ‘Request_Closing_Time’, grouping them for different locations. +Perform a statistical test for the following: +Please note: For the below statements you need to state the Null and Alternate and then provide a statistical test to accept or reject the Null Hypothesis along with the corresponding ‘p-value’. + +Whether the average response time across complaint types is similar or not (overall) +Are the type of complaint or service requested and location related? From 37648ff8ce325d247332462dcff77d23b4938ceb Mon Sep 17 00:00:00 2001 From: Shashnk <70314463+Sam09DS@users.noreply.github.com> Date: Fri, 4 Dec 2020 21:07:44 +0530 Subject: [PATCH 7/8] Delete Customer Service Requests .md --- Intern-basics/Customer Service Requests .md | 26 --------------------- 1 file changed, 26 deletions(-) delete mode 100644 Intern-basics/Customer Service Requests .md diff --git a/Intern-basics/Customer Service Requests .md b/Intern-basics/Customer Service Requests .md deleted file mode 100644 index 0ba7817..0000000 --- a/Intern-basics/Customer Service Requests .md +++ /dev/null @@ -1,26 +0,0 @@ -# Customer Service Requests Analysis - -DESCRIPTION - -Background of Problem Statement : - -NYC 311's mission is to provide the public with quick and easy access to all New York City government services and information while offering the best customer service. Each day, NYC311 receives thousands of requests related to several hundred types of non-emergency services, including noise complaints, plumbing issues, and illegally parked cars. These requests are received by NYC311 and forwarded to the relevant agencies such as the police, buildings, or transportation. The agency responds to the request, addresses it, and then closes it. - -Problem Objective : - -Perform a service request data analysis of New York City 311 calls. You will focus on the data wrangling techniques to understand the pattern in the data and also visualize the major complaint types. -Domain: Customer Service - -Analysis Tasks to be performed: - -(Perform a service request data analysis of New York City 311 calls) - -Import a 311 NYC service request. -Read or convert the columns ‘Created Date’ and Closed Date’ to datetime datatype and create a new column ‘Request_Closing_Time’ as the time elapsed between request creation and request closing. (Hint: Explore the package/module datetime) -Provide major insights/patterns that you can offer in a visual format (graphs or tables); at least 4 major conclusions that you can come up with after generic data mining. -Order the complaint types based on the average ‘Request_Closing_Time’, grouping them for different locations. -Perform a statistical test for the following: -Please note: For the below statements you need to state the Null and Alternate and then provide a statistical test to accept or reject the Null Hypothesis along with the corresponding ‘p-value’. - -Whether the average response time across complaint types is similar or not (overall) -Are the type of complaint or service requested and location related? From 5b65afe75a52bc05bee7166891139a4e19c3864e Mon Sep 17 00:00:00 2001 From: Shashnk <70314463+Sam09DS@users.noreply.github.com> Date: Fri, 4 Dec 2020 21:09:27 +0530 Subject: [PATCH 8/8] Delete Customer Service Requests Analysis.md --- .../Customer Service Requests Analysis.md | 26 ------------------- 1 file changed, 26 deletions(-) delete mode 100644 inter-basics/Customer Service Requests Analysis.md diff --git a/inter-basics/Customer Service Requests Analysis.md b/inter-basics/Customer Service Requests Analysis.md deleted file mode 100644 index 5d210b7..0000000 --- a/inter-basics/Customer Service Requests Analysis.md +++ /dev/null @@ -1,26 +0,0 @@ -# Cutomer Service Request Analusis - -DESCRIPTION - -Background of Problem Statement : - -NYC 311's mission is to provide the public with quick and easy access to all New York City government services and information while offering the best customer service. Each day, NYC311 receives thousands of requests related to several hundred types of non-emergency services, including noise complaints, plumbing issues, and illegally parked cars. These requests are received by NYC311 and forwarded to the relevant agencies such as the police, buildings, or transportation. The agency responds to the request, addresses it, and then closes it. - -Problem Objective : - -Perform a service request data analysis of New York City 311 calls. You will focus on the data wrangling techniques to understand the pattern in the data and also visualize the major complaint types. -Domain: Customer Service - -Analysis Tasks to be performed: - -(Perform a service request data analysis of New York City 311 calls) - -Import a 311 NYC service request. -Read or convert the columns ‘Created Date’ and Closed Date’ to datetime datatype and create a new column ‘Request_Closing_Time’ as the time elapsed between request creation and request closing. (Hint: Explore the package/module datetime) -Provide major insights/patterns that you can offer in a visual format (graphs or tables); at least 4 major conclusions that you can come up with after generic data mining. -Order the complaint types based on the average ‘Request_Closing_Time’, grouping them for different locations. -Perform a statistical test for the following: -Please note: For the below statements you need to state the Null and Alternate and then provide a statistical test to accept or reject the Null Hypothesis along with the corresponding ‘p-value’. - -Whether the average response time across complaint types is similar or not (overall) -Are the type of complaint or service requested and location related?