-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
94 lines (70 loc) · 2.97 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import argparse
from copy import deepcopy
from collections import deque
import numpy as np
import torch
import gymnasium as gym
from torch.utils.tensorboard import SummaryWriter # type: ignore
from tqdm import tqdm
from aicourse.dqn import QFunc
from aicourse.agent import LunarLanderAgent
from aicourse.train import Trainer
parser = argparse.ArgumentParser()
parser.add_argument('--dest', type=str)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--episodes', type=int, default=50)
parser.add_argument('--batch-size', type=int, default=512)
parser.add_argument('--capacity', type=int, default=500_000)
parser.add_argument('--sync-rate', type=int, default=10)
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dest = args.dest
assert os.path.exists(dest), 'invalid destination'
epochs = args.epochs
episodes = args.episodes
batch_size = args.batch_size
capacity = args.capacity
sync_rate = args.sync_rate
output_path = os.path.join(dest, f'll-cap_{capacity}_sr_{sync_rate}')
models_path = os.path.join(output_path, 'models')
os.makedirs(models_path)
env_train = gym.make('LunarLander-v2')
policy_net = QFunc(4, 8, 512, 512).to(device)
target_net = QFunc(4, 8, 512, 512).to(device)
target_net.load_state_dict(policy_net.state_dict())
agent = LunarLanderAgent(policy_net, env_train)
optimizer = torch.optim.Adam(policy_net.parameters(), lr=1e-3)
epsilon_fun = lambda e: max(1 - (e / epochs) * 2, 0.1)
replay_buffer = deque(maxlen=capacity)
trainer = Trainer(policy_net=policy_net,
target_net=target_net,
batch_size=batch_size,
optimizer=optimizer,
sync_rate=sync_rate)
writer = SummaryWriter(os.path.join(output_path, 'logs'))
current_best = None
current_best_ret = -1e10
epoch_idx = 0
for epoch_idx in tqdm(range(epochs)):
curr_eps = epsilon_fun(epoch_idx)
returns = [ agent.play_episode(replay_buffer, eps=curr_eps) for _ in range(episodes) ]
average_return = np.mean(returns)
average_loss = trainer.run(replay_buffer)
writer.add_scalar('train/reward', average_return, epoch_idx)
writer.add_scalar('train/loss', average_loss, epoch_idx)
writer.add_scalar('train/epsilon', curr_eps, epoch_idx)
if average_return > current_best_ret:
current_best_ret = average_return
current_best = deepcopy(policy_net.state_dict())
with torch.no_grad():
total_reward = agent.play_episode([], validation=True)
writer.add_scalar('valid/reward', total_reward, epoch_idx)
if epoch_idx % 5 == 0:
if current_best is None: current_best = policy_net.state_dict()
torch.save(current_best, os.path.join(models_path, f'll-ep{epoch_idx}.ckpt'))
current_best = None
current_best_ret = -1e10
last_idx = epoch_idx + 1
torch.save(current_best, os.path.join(models_path, f'll-ep{last_idx}.ckpt'))
print('training finished.')