-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathbeijing_taxi_sample.py
164 lines (144 loc) · 6.4 KB
/
beijing_taxi_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# link: https://github.com/YibinShen/TTPNet
import json
import util
import numpy as np
import pandas as pd
output_dir = 'output/Beijing_Taxi_Sample'
util.ensure_dir(output_dir)
data_url = 'input/Beijing_Taxi_Sample/'
data_name = output_dir + '/Beijing_Taxi_Sample'
dataset_list = ["2013-10-08", "2013-10-09"] + [f"2013-10-{i}" for i in range(10, 14)] + \
[f"2013-10-{i}" for i in range(15, 31)]
geo = []
geo_file = np.load(data_url + 'embedding_128.npy')
for geo_id in range(geo_file.shape[0]):
geo_embedding = ','.join(str(embedding) for embedding in geo_file[geo_id])
geo.append([geo_id, 'Polygon', '[]', '[' + geo_embedding + ']'])
geo = pd.DataFrame(geo, columns=['geo_id', 'type', 'coordinates', 'embeddings'])
geo.to_csv(data_name+'.geo', index=False)
usr = []
usr_set = set()
traj_id = 0
dyna_id = 0
dist_gap_list = []
time_gap_list = []
lngs_list = []
lats_list = []
dist_list = []
time_list = []
speeds_list = []
speeds_relevant1_list = []
speeds_relevant2_list = []
speeds_long_list = []
grid_len_list = []
dyna_file = open(data_name + '.dyna', 'w')
dyna_file.write('dyna_id' + ',' + 'type' + ',' + 'time' + ',' + 'entity_id' + ',' +
'traj_id' + ',' + 'location' + ',' + 'coordinates' + ',' + 'current_dis' + ',' +
'speeds' + ',' + 'speeds_relevant1' + ',' + 'speeds_relevant2' + ',' +
'speeds_long' + ',' + 'grid_len' + ',' + 'holidays' + '\n')
for dataset in dataset_list:
content = json.load(open(data_url + dataset + ".json", 'r'))
for traj in content:
time_gaps = traj["time_gap"]
dist = traj["dist"]
lats = traj["lats"]
lngs = traj["lngs"]
usr_id = traj["driverID"]
week_id = traj["weekID"]
time_id = traj["timeID"]
holiday = traj["dateID"]
time = traj["time"]
dist_gaps = traj["dist_gap"]
locations = traj["grid_id"]
speeds = np.array(traj["speeds_0"]).reshape(-1, 4).tolist()
speeds_relevant1 = np.array(traj["speeds_1"]).reshape(-1, 4).tolist()
speeds_relevant2 = np.array(traj["speeds_2"]).reshape(-1, 4).tolist()
speeds_long = np.array(traj["speeds_long"]).reshape(-1, 7).tolist()
grids_len = traj["grid_len"]
coordinates = []
time_list.append(time)
dist_list.append(dist)
for lng, lat in zip(lngs, lats):
lats_list.append(lat)
lngs_list.append(lng)
coordinates.append('"[' + str(lng) + ',' + str(lat) + ']"')
if usr_id not in usr_set:
usr_set.add(usr_id)
usr.append([usr_id])
start_time = util.datetime_timestamp(f'{dataset}T00:00:00Z') + time_id * 900
last_time_gap = 0
last_dist_gap = 0
for time_gap, location, coordinate, dist_gap, speed, speed_relevant1, speed_relevant2, speed_long, grid_len \
in zip(time_gaps, locations, coordinates, dist_gaps, speeds, speeds_relevant1, speeds_relevant2, speeds_long, grids_len):
speed_s = '"[' + ",".join(str(s) for s in speed) + ']"'
speed_relevant1_s = '"[' + ','.join(str(s) for s in speed_relevant1) + ']"'
speed_relevant2_s = '"[' + ','.join(str(s) for s in speed_relevant2) + ']"'
speed_long_s = '"[' + ','.join(str(s) for s in speed_long) + ']"'
dyna_file.write(
str(dyna_id) + ',' + 'trajectory' + ',' + str(util.timestamp_datetime(start_time + time_gap)) + ','
+ str(usr_id) + ',' + str(traj_id) + ',' + str(location) + ',' + str(coordinate) + ',' + str(dist_gap) + ','
+ speed_s + ',' + speed_relevant1_s + ',' + speed_relevant2_s + ',' + speed_long_s + ','
+ str(grid_len) + ',' + str(holiday) + '\n'
)
dyna_id += 1
time_gap_list.append(time_gap - last_time_gap)
dist_gap_list.append(dist_gap - last_dist_gap)
last_time_gap = time_gap
last_dist_gap = dist_gap
speeds_list.extend(speed)
speeds_relevant1_list.extend(speed_relevant1)
speeds_relevant2_list.extend(speed_relevant2)
speeds_long_list.extend(speed_long)
grid_len_list.append(grid_len)
traj_id += 1
print(f"finish {dataset}")
dyna_file.close()
usr = pd.DataFrame(usr, columns=['usr_id'])
usr.to_csv(data_name + '.usr', index=False)
config = dict()
config['geo'] = dict()
config['geo']['including_types'] = ['Polygon']
config['geo']['Polygon'] = {'coordinates': 'coordinate', 'embedding': 'other'}
config['usr'] = dict()
config['usr']['properties'] = {}
config['dyna'] = dict()
config['dyna']['including_types'] = ['trajectory']
config['dyna']['trajectory'] = {
'entity_id': 'usr_id',
'traj_id': 'num',
'coordinates': 'coordinate',
'current_dis': 'num',
'speeds': 'other',
'speeds_relevant1': 'other',
'speeds_relevant2': 'other',
'speeds_long': 'other',
'grid_len': 'num',
'holiday': 'num',
}
config['info'] = dict()
config['info']['geo_file'] = 'Beijing_Taxi_Sample'
config['info']['usr_file'] = 'Beijing_Taxi_Sample'
config['info']['dyna_file'] = 'Beijing_Taxi_Sample'
json.dump(config, open(output_dir + '/config.json', 'w', encoding='utf-8'), ensure_ascii=False)
print("dist_gap_mean: {}".format(np.mean(dist_gap_list)))
print("dist_gap_std : {}".format(np.std(dist_gap_list)))
print("time_gap_mean: {}".format(np.mean(time_gap_list)))
print("time_gap_std : {}".format(np.std(time_gap_list)))
print("lngs_mean: {}".format(np.mean(lngs_list)))
print("lngs_std : {}".format(np.std(lngs_list)))
print("lats_mean: {}".format(np.mean(lats_list)))
print("lats_std : {}".format(np.std(lats_list)))
print("dist_mean: {}".format(np.mean(dist_list)))
print("dist_std : {}".format(np.std(dist_list)))
print("time_mean: {}".format(np.mean(time_list)))
print("time_std : {}".format(np.std(time_list)))
print("speeds_mean: {}".format(np.mean(speeds_list)))
print("speeds_std : {}".format(np.std(speeds_list)))
print("speeds_relevant1_mean: {}".format(np.mean(speeds_relevant1_list)))
print("speeds_relevant1_std : {}".format(np.std(speeds_relevant1_list)))
print("speeds_relevant2_mean: {}".format(np.mean(speeds_relevant2_list)))
print("speeds_relevant2_std : {}".format(np.std(speeds_relevant2_list)))
print("speeds_long_mean: {}".format(np.mean(speeds_long_list)))
print("speeds_long_std : {}".format(np.std(speeds_long_list)))
print("grid_len_mean: {}".format(np.mean(grid_len_list)))
print("grid_len_std : {}".format(np.std(grid_len_list)))