-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_stgnn.py
735 lines (590 loc) · 31.2 KB
/
main_stgnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
from __future__ import print_function
import sys
import os
import os.path as osp
import shutil
import time
import argparse
import logging
import hashlib
import copy
import csv
import numpy as np
import random
import torch
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch_geometric.transforms as T
from torch_geometric.datasets import Planetoid, Reddit, WebKB, Actor, WikipediaNetwork, Coauthor, Amazon, Flickr, WikiCS, Yelp
from torch_geometric.loader import NeighborLoader, RandomNodeSampler
from torch_geometric.transforms import RandomNodeSplit
from torch_geometric.nn.conv.gcn_conv import gcn_norm
from ogb.nodeproppred import Evaluator
from ogb.nodeproppred import PygNodePropPredDataset
from torch_scatter import scatter
from torch_geometric.utils import to_undirected, add_self_loops
import sparselearning
from models import initializers
from sparselearning.core import Masking, CosineDecay, LinearDecay
from models.model import GCNNet, SGCNet, APPNPNet, GCNIINet, GATNet, MLP, FAGCN, HGCN, LINK, GPRGNN, MixHop, FAGCNNet, HGCNNet
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
cudnn.benchmark = True
cudnn.deterministic = True
if not os.path.exists('./models'): os.mkdir('./models')
if not os.path.exists('./logs'): os.mkdir('./logs')
if not os.path.exists('./results'): os.mkdir('./results')
logger = None
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
models = {}
models['gcn'] = (GCNNet)
models['gat'] = (GATNet)
models['sgc'] = (SGCNet)
models['appnp'] = (APPNPNet)
models['gcnii'] = (GCNIINet)
models['mlp'] = (MLP)
models['fagcn'] = (FAGCN)
models['h2gcn'] = (HGCN)
models['link'] = (LINK)
models['gprgnn'] = (GPRGNN)
models['mixhop'] = (MixHop)
models['fagcnnet'] = (FAGCNNet)
models['h2gcnnet'] = (HGCNNet)
def save_checkpoint(state, filename='checkpoint.pth.tar'):
print("SAVING")
torch.save(state, filename)
def setup_logger(args):
global logger
if logger == None:
logger = logging.getLogger()
else: # wish there was a logger.close()
for handler in logger.handlers[:]: # make a copy of the list
logger.removeHandler(handler)
args_copy = copy.deepcopy(args)
# copy to get a clean hash
# use the same log file hash if iterations or verbose are different
# these flags do not change the results
args_copy.iters = 1
args_copy.verbose = False
args_copy.log_interval = 1
args_copy.seed = 0
if args.weight_sparse and not args.adj_sparse and not args.feature_sparse :
sparse_way = 'w'
log_path = './logs/{0}/{1}_{2}_{3}_{4}.log'.format(
sparse_way,args.model,args.data, args.final_density, hashlib.md5(str(args_copy).encode('utf-8')).hexdigest()[:8])
elif args.adj_sparse and not args.weight_sparse and not args.feature_sparse :
sparse_way = 'a'
log_path = './logs/{0}/{1}_{2}_{3}_{4}.log'.format(
sparse_way,args.model,args.data, args.final_density_adj, hashlib.md5(str(args_copy).encode('utf-8')).hexdigest()[:8])
elif args.feature_sparse and not args.weight_sparse and not args.adj_sparse :
sparse_way = 'f'
log_path = './logs/{0}/{1}_{2}_{3}_{4}.log'.format(
sparse_way,args.model,args.data, args.final_density_feature, hashlib.md5(str(args_copy).encode('utf-8')).hexdigest()[:8])
elif args.weight_sparse and args.adj_sparse and not args.feature_sparse :
sparse_way = 'wa'
log_path = './logs/{0}/{1}_{2}_{3}_{4}_{5}.log'.format(
sparse_way,args.model,args.data, args.final_density, args.final_density_adj, hashlib.md5(str(args_copy).encode('utf-8')).hexdigest()[:8])
elif args.weight_sparse and args.feature_sparse and not args.adj_sparse :
sparse_way = 'wf'
log_path = './logs/{0}/{1}_{2}_{3}_{4}_{5}.log'.format(
sparse_way,args.model,args.data, args.final_density, args.final_density_feature, hashlib.md5(str(args_copy).encode('utf-8')).hexdigest()[:8])
elif args.adj_sparse and args.feature_sparse and not args.weight_sparse :
sparse_way = 'af'
log_path = './logs/{0}/{1}_{2}_{3}_{4}_{5}.log'.format(
sparse_way,args.model,args.data, args.final_density_adj, args.final_density_feature, hashlib.md5(str(args_copy).encode('utf-8')).hexdigest()[:8])
elif args.weight_sparse and args.adj_sparse and args.feature_sparse:
sparse_way = 'waf'
log_path = './logs/{0}/{1}_{2}_{3}_{4}_{5}_{6}.log'.format(
sparse_way,args.model,args.data, args.final_density, args.final_density_adj, args.final_density_feature, hashlib.md5(str(args_copy).encode('utf-8')).hexdigest()[:8])
else:
sparse_way = 'base'
log_path = './logs/{0}/{1}_{2}_{3}.log'.format(
sparse_way,args.model,args.data, hashlib.md5(str(args_copy).encode('utf-8')).hexdigest()[:8])
if not os.path.exists('./logs/{}'.format(sparse_way)): os.mkdir('./logs/{}'.format(sparse_way))
#log_path = './logs/{0}/{1}_{2}_{3}_{4}_{5}.log'.format(sparse_way, args.model, args.data, args.final_density, args.final_density_adj, hashlib.md5(str(args_copy).encode('utf-8')).hexdigest()[:8])
logger.setLevel(logging.INFO)
formatter = logging.Formatter(fmt='%(asctime)s: %(message)s', datefmt='%H:%M:%S')
fh = logging.FileHandler(log_path)
fh.setFormatter(formatter)
logger.addHandler(fh)
def print_and_log(msg):
global logger
print(msg)
logger.info(msg)
def results_to_file(args, train_acc, val_acc, test_acc, train_time, test_time):
if args.weight_sparse and not args.adj_sparse and not args.feature_sparse :
sparse_way = 'w'
filename = "./results/{}/{}_{}_{}_{}_result.csv".format(
sparse_way, args.model, args.data, args.init_density, args.final_density)
elif args.adj_sparse and not args.weight_sparse and not args.feature_sparse :
sparse_way = 'a'
filename = "./results/{}/{}_{}_{}_{}_result.csv".format(
sparse_way, args.model, args.data, args.final_density_adj)
elif args.feature_sparse and not args.weight_sparse and not args.adj_sparse :
sparse_way = 'f'
filename = "./results/{}/{}_{}_{}_{}_result.csv".format(
sparse_way, args.model, args.data, args.final_density_feature)
elif args.weight_sparse and args.adj_sparse and not args.feature_sparse :
sparse_way = 'wa'
filename = "./results/{}/{}_{}_{}_{}_result.csv".format(
sparse_way, args.model, args.data, args.final_density, args.final_density_adj)
elif args.weight_sparse and args.feature_sparse and not args.adj_sparse :
sparse_way = 'wf'
filename = "./results/{}/{}_{}_{}_{}_result.csv".format(
sparse_way, args.model, args.data, args.final_density, args.final_density_feature)
elif args.adj_sparse and args.feature_sparse and not args.weight_sparse :
sparse_way = 'af'
filename = "./results/{}/{}_{}_{}_{}_result.csv".format(
sparse_way, args.model, args.data, args.final_density_adj, args.final_density_feature)
elif args.weight_sparse and args.adj_sparse and args.feature_sparse:
sparse_way = 'waf'
filename = "./results/{}/{}_{}_{}_{}_{}_result.csv".format(
sparse_way, args.model, args.data, args.final_density, args.final_density_adj, args.final_density_feature)
else:
sparse_way = 'base'
filename = "./results/{}/{}_{}_result.csv".format(
sparse_way, args.model, args.data)
if not os.path.exists('./results/{}'.format(sparse_way)): os.mkdir('./results/{}'.format(sparse_way))
headerList = ["Method","Growth","Prune Rate", "Update Frequency", "Final Prune Epoch", "::", "train_acc", "val_acc", "test_acc", "train_time", "test_time"]
#filename = "./results/{}/{}_{}_{}_{}_result.csv".format(sparse_way, args.model, args.data, args.final_density, args.final_density_adj)
with open(filename, "a+") as f:
# reader = csv.reader(f)
# row1 = next(reader)
f.seek(0)
header = f.read(6)
if header != "Method":
dw = csv.DictWriter(f, delimiter=',',
fieldnames=headerList)
dw.writeheader()
line = "{}, {}, {}, {}, {}, :::, {:.4f}, {:.4f}, {:.4f},{:.4f}, {:.4f}\n".format(
args.method, args.growth_schedule, args.prune_rate, args.update_frequency, args.final_prune_epoch, train_acc, val_acc, test_acc, train_time, test_time
)
f.write(line)
def train(args, model, device, data, optimizer, epoch, mask=None):
model.train()
train_loss = 0
correct = 0
n = 0
criterion = torch.nn.BCEWithLogitsLoss()
data = data.to(device)
target = data.y[data.train_mask].to(device)
if args.fp16: data = data.half()
optimizer.zero_grad()
output = model(data)[data.train_mask]
if args.data in ['ogbn-proteins']:
loss = criterion(output, target)
acc = 0.0
else:
loss = F.nll_loss(output, target)
pred = output.max(1)[1]
acc = pred.eq(data.y[data.train_mask]).sum().item() / data.train_mask.sum().item()
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
if mask is not None:
#print("Mask!!!!")
mask.step()
else:
optimizer.step()
# print_and_log('\n{}: Average loss: {:.4f}, Accuracy: {} \n'.format(
# 'Training summary', loss, acc,))
def evaluate(args, model, device, data, is_test_set=False):
model.eval()
test_loss = 0
correct = 0
n = 0
with torch.no_grad():
#target = data.y[data.train_mask].to(device)
data = data.to(device)
if args.fp16: data = data.half()
logits, accs = model(data), []
for _, mask in data('train_mask', 'val_mask', 'test_mask'):
pred = logits[mask].max(1)[1]
acc = pred.eq(data.y[mask]).sum().item() / mask.sum().item()
accs.append(acc)
train_acc, val_acc, tmp_test_acc = accs
# print_and_log('\n{}: Train Accuracy: {:.4f}, Val Accuracy: {} Test Accuracy: {}\n'.format(
# 'Test evaluation' if is_test_set else 'Evaluation',
# train_acc, val_acc, tmp_test_acc))
return train_acc, val_acc, tmp_test_acc
def evaluate_ogb(args, model, device, data, evaluator, is_test_set=False):
model.eval()
test_loss = 0
correct = 0
n = 0
with torch.no_grad():
#target = data.y[data.train_mask].to(device)
data = data.to(device)
if args.fp16: data = data.half()
out = model(data)
if args.data in ['ogbn-arxiv','ogbn-products' ]:
y_pred = out.argmax(dim=-1, keepdim=True)
train_acc = evaluator.eval({
'y_true': data.y.unsqueeze(-1)[data.train_mask],
'y_pred': y_pred[data.train_mask],
})['acc']
val_acc = evaluator.eval({
'y_true': data.y.unsqueeze(-1)[data.valid_mask],
'y_pred': y_pred[data.valid_mask],
})['acc']
tmp_test_acc = evaluator.eval({
'y_true': data.y.unsqueeze(-1)[data.test_mask],
'y_pred': y_pred[data.test_mask],
})['acc']
print_and_log('\n{}: Train Accuracy: {:.4f}, Val Accuracy: {} Test Accuracy: {}\n'.format(
'Test evaluation' if is_test_set else 'Evaluation',
train_acc, val_acc, tmp_test_acc))
elif args.data in ['ogbn-proteins']:
train_acc = evaluator.eval({
'y_true': data.y[data.train_mask],
'y_pred': out[data.train_mask],
})['rocauc'] # Acutually roc-auc, only name it train_acc
val_acc = evaluator.eval({
'y_true': data.y[data.valid_mask],
'y_pred': out[data.valid_mask],
})['rocauc']
tmp_test_acc = evaluator.eval({
'y_true': data.y[data.test_mask],
'y_pred': out[data.test_mask],
})['rocauc']
print_and_log('\n{}: Train ROC-AUC: {:.4f}, Val ROC-AUC: {} Test ROC-AUC: {}\n'.format(
'Test evaluation' if is_test_set else 'Evaluation',
train_acc, val_acc, tmp_test_acc))
return train_acc, val_acc, tmp_test_acc
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch GraNet for sparse training')
parser.add_argument('--batch-size', type=int, default=100, metavar='N',
help='input batch size for training (default: 100)')
parser.add_argument('--batch-size-jac', type=int, default=200, metavar='N',
help='batch size for jac (default: 1000)')
parser.add_argument('--test-batch-size', type=int, default=100, metavar='N',
help='input batch size for testing (default: 100)')
parser.add_argument('--multiplier', type=int, default=1, metavar='N',
help='extend training time by multiplier times')
parser.add_argument('--epochs', type=int, default=250, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=17, metavar='S', help='random seed (default: 17)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--optimizer', type=str, default='adam', help='The optimizer to use. Default: sgd. Options: sgd, adam.')
randomhash = ''.join(str(time.time()).split('.'))
parser.add_argument('--save', type=str, default=randomhash + '.pt',
help='path to save the final model')
parser.add_argument('--data', type=str, default='mnist')
parser.add_argument('--decay_frequency', type=int, default=25000)
parser.add_argument('--l1', type=float, default=0.0)
parser.add_argument('--fp16', action='store_true', help='Run in fp16 mode.')
parser.add_argument('--valid_split', type=float, default=0.1)
parser.add_argument('--resume', type=str)
parser.add_argument('--start-epoch', type=int, default=1)
parser.add_argument('--model', type=str, default='')
parser.add_argument('--l2', type=float, default=1.0e-4)
parser.add_argument('--iters', type=int, default=1, help='How many times the model should be run after each other. Default=1')
parser.add_argument('--save-features', action='store_true', help='Resumes a saved model and saves its feature data to disk for plotting.')
parser.add_argument('--bench', action='store_true', help='Enables the benchmarking of layers and estimates sparse speedups')
parser.add_argument('--max-threads', type=int, default=10, help='How many threads to use for data loading.')
parser.add_argument('--decay-schedule', type=str, default='cosine', help='The decay schedule for the pruning rate. Default: cosine. Choose from: cosine, linear.')
parser.add_argument('--growth_schedule', type=str, default='gradient', help='The growth schedule. Default: gradient. Choose from: gradient, momentum, random.')
parser.add_argument('--lr_scheduler', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--adj_sparse', action='store_true', help='If Sparse Adj.')
parser.add_argument('--feature_sparse', action='store_true', help='If Sparse Weight.')
parser.add_argument('--weight_sparse', action='store_true', help='If Sparse Feature.',)
parser.add_argument('--dim', type=int, default=512)
parser.add_argument('--cuda', type=int, default=0)
# FAGCN
parser.add_argument('--fagcn_layer_num', type=int, default=1)
parser.add_argument('--fagcn_dropout', type=float, default=0)
parser.add_argument('--fagcn_eps', type=float, default=0.1)
# MixHop
parser.add_argument('--mixhop_layer_num', type=int, default=1)
parser.add_argument('--mixhop_dropout', type=float, default=0)
parser.add_argument('--mixhop_hop', type=int, default=2)
# GPRGNN
parser.add_argument('--gprgnn_alpha', type=float, default=0.1)
parser.add_argument('--gprgnn_k', type=int, default=10)
# H2GCN
parser.add_argument('--h2gcn_dropout', type=float, default=0.1)
sparselearning.core.add_sparse_args(parser)
args = parser.parse_args()
setup_logger(args)
print_and_log(args)
if args.fp16:
try:
from apex.fp16_utils import FP16_Optimizer
except:
print('WARNING: apex not installed, ignoring --fp16 option')
args.fp16 = False
use_cuda = not args.no_cuda and torch.cuda.is_available()
args.device = torch.device('cuda:{}'.format(args.cuda) if use_cuda else "cpu")
print_and_log('\n\n')
print_and_log('='*80)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
for i in range(args.iters):
#######################################################################################
############################# Datasets ################################################
#######################################################################################
print_and_log("\nIteration start: {0}/{1}\n".format(i+1, args.iters))
if args.data in ['cora','citeseer','pubmed']:
path = osp.join(osp.dirname(osp.realpath(__file__)), '../data', args.data)
dataset = Planetoid(path, args.data, transform=T.NormalizeFeatures())
data = dataset[0]
data.num_classes = dataset.num_classes
data.num_edges_orig = data.num_edges
#print_and_log(data)
#raise Exception('pause!! ')
elif args.data in ["Cornell", "Texas", "Wisconsin"] :
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data', args.data)
dataset = WebKB(path,args.data, transform=T.NormalizeFeatures())
data = dataset[0]
data.num_classes = dataset.num_classes
print_and_log(data)
data.train_mask = data.train_mask[:, args.seed % 10]
data.val_mask = data.val_mask[:, args.seed % 10]
data.test_mask = data.test_mask[:, args.seed % 10]
#print_and_log(data)
#raise Exception('pause!! ')
elif args.data in ["Actor"] :
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data', args.data)
dataset = Actor(path, transform=T.NormalizeFeatures())
data = dataset[0]
data.num_classes = dataset.num_classes
#print_and_log(data)
data.train_mask = data.train_mask[:, args.seed % 10]
data.val_mask = data.val_mask[:, args.seed % 10]
data.test_mask = data.test_mask[:, args.seed % 10]
#print_and_log(data)
#raise Exception('pause!! ')
elif args.data in ["chameleon", "crocodile", "squirrel"] :
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data', args.data)
dataset = WikipediaNetwork(path, args.data, transform=T.NormalizeFeatures())
data = dataset[0]
data.num_classes = dataset.num_classes
data.train_mask = data.train_mask[:, args.seed % 10]
data.val_mask = data.val_mask[:, args.seed % 10]
data.test_mask = data.test_mask[:, args.seed % 10]
#print_and_log(data)
# Multi Spilt
raise Exception('pause!! ')
elif args.data in ["CS", "Physics"] :
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data', args.data)
dataset = Coauthor(path, args.data, transform=T.NormalizeFeatures())
data = dataset[0]
data.num_classes = dataset.num_classes
transform = RandomNodeSplit(split= "test_rest",
num_train_per_class = 20,
num_val = 30* data.num_classes,)
transform(data)
#print_and_log(data)
#raise Exception('pause!! ')
elif args.data in ["Computers", "Photo"] :
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data', args.data)
dataset = Amazon(path, args.data, transform=T.NormalizeFeatures())
data = dataset[0]
data.num_classes = dataset.num_classes
transform = RandomNodeSplit(split= "test_rest",
num_train_per_class = 20,
num_val = 30* data.num_classes,)
transform(data)
#print_and_log(data)
#raise Exception('pause!! ')
elif args.data in ["Flickr"] :
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data', args.data)
dataset = Flickr(path)
data = dataset[0]
data.num_classes = dataset.num_classes
print_and_log(data)
# Cannot load file containing pickled data when allow_pickle=False
raise Exception('pause!! ')
elif args.data in ["Yelp"] :
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data', args.data)
dataset = Yelp(path)
data = dataset[0]
data.num_classes = dataset.num_classes
print_and_log(data)
# Cannot load file containing pickled data when allow_pickle=False
# Fix: allow_pickle=True)
raise Exception('pause!! ')
elif args.data in ["WikiCS"] :
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data', args.data)
dataset = WikiCS(path, transform=T.NormalizeFeatures())
data = dataset[0]
data.num_classes = dataset.num_classes
data.stopping_mask = None
data.train_mask = data.train_mask[:, args.seed % 20]
data.val_mask = data.val_mask[:, args.seed % 20]
print_and_log(data)
elif args.data == 'reddit':
print("Loading Reddit .....")
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data', 'Reddit')
dataset = Reddit(path, transform=T.NormalizeFeatures())
data = dataset[0]
data.num_classes = dataset.num_classes
#kwargs = {'batch_size': 1024, 'num_workers': 6, 'persistent_workers': True}
print_and_log(data)
print("Load Reddit Done!")
elif args.data in['ogbn-arxiv', 'ogbn-products', 'ogbn-proteins', 'ogbn-papers100M']:
print("Loading Dataset: {}".format(args.data))
dataset = PygNodePropPredDataset(name=args.data, root='../data')
data = dataset[0]
split_idx = dataset.get_idx_split()
evaluator = Evaluator(args.data)
edge_index = to_undirected(data.edge_index, data.num_nodes)
#edge_index = add_self_loops(edge_index, num_nodes=data.num_nodes)[0]
data.edge_index = edge_index
for split in ['train', 'valid', 'test']:
mask = torch.zeros(data.num_nodes, dtype=torch.bool)
mask[split_idx[split]] = True
data[f'{split}_mask'] = mask
if args.data in ['ogbn-proteins']:
data.y = data.y.to(torch.float)
data.num_classes = dataset.num_tasks
data.node_species = None
row, col = data.edge_index
data.x = scatter(data.edge_attr, col, 0, dim_size=data.num_nodes, reduce='add')
else:
data.num_classes = dataset.num_classes
if args.data in ['ogbn-arxiv']:
data.y = data.y.squeeze(1)
print("Load Done !")
print_and_log(data)
#######################################################################################
############################# Models ################################################
#######################################################################################
if args.model not in models:
print('You need to select an existing model via the --model argument. Available models include: ')
for key in models:
print('\t{0}'.format(key))
raise Exception('You need to select a model')
else:
if args.model == 'gcn':
model = GCNNet(data, args).to(args.device)
elif args.model == 'sgc':
model = SGCNet(data, args).to(args.device)
elif args.model == 'appnp':
model = APPNPNet(data, args).to(args.device)
elif args.model == 'gat':
model = GATNet(data, args).to(args.device)
elif args.model == 'gcnii':
model = GCNIINet(data, args).to(args.device)
elif args.model == 'mlp':
model = MLP(data, args).to(args.device)
elif args.model == 'fagcn':
model = FAGCN(data, args).to(args.device)
elif args.model == 'h2gcn':
model = HGCN(data, args).to(args.device)
elif args.model == 'link':
model = LINK(data, args).to(args.device)
elif args.model == 'gprgnn':
model = GPRGNN(data, args).to(args.device)
elif args.model == 'mixhop':
model = MixHop(data, args).to(args.device)
elif args.model == 'fagcnnet':
model = FAGCNNet(data, args).to(args.device)
elif args.model == 'h2gcnnet':
model = HGCNNet(data, args).to(args.device)
else:
cls, cls_args = models[args.model]
if args.data == 'cifar100':
cls_args[2] = 100
model = cls(*(cls_args + [args.save_features, args.bench])).to(args.device)
print_and_log(model)
print_and_log('='*60)
print_and_log(args.model)
print_and_log('='*60)
print_and_log('='*60)
print_and_log('Prune mode: {0}'.format(args.prune))
print_and_log('Growth mode: {0}'.format(args.growth))
print_and_log('Redistribution mode: {0}'.format(args.redistribution))
print_and_log('='*60)
optimizer = None
if args.optimizer == 'sgd':
optimizer = optim.SGD(model.parameters(),lr=args.lr,momentum=args.momentum,weight_decay=args.l2, nesterov=True)
elif args.optimizer == 'adam':
optimizer = optim.Adam(model.parameters(),lr=args.lr,weight_decay=args.l2)
else:
print('Unknown optimizer: {0}'.format(args.optimizer))
raise Exception('Unknown optimizer.')
if args.lr_scheduler:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[int(args.epochs / 2) * args.multiplier, int(args.epochs * 3 / 4) * args.multiplier], last_epoch=-1)
else:
lr_scheduler = None
if args.resume:
if os.path.isfile(args.resume):
print_and_log("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint)
original_acc = evaluate(args, model, args.device, test_loader)
if args.fp16:
print('FP16')
optimizer = FP16_Optimizer(optimizer,
static_loss_scale = None,
dynamic_loss_scale = True,
dynamic_loss_args = {'init_scale': 2 ** 16})
model = model.half()
mask = None
if args.sparse:
decay = CosineDecay(args.prune_rate, (args.epochs*args.multiplier))
mask = Masking(optimizer, prune_rate=args.prune_rate, death_mode=args.prune, prune_rate_decay=decay, growth_mode=args.growth,
redistribution_mode=args.redistribution, args=args, train_loader=None, device =args.device)
mask.add_module(model, sparse_init=args.sparse_init)
best_acc = 0.0
t_start = time.time()
for epoch in range(1, args.epochs*args.multiplier + 1):
#print_and_log("Epoch:{}".format(epoch))
#print("="*50)
# save models
save_path = './save/' + str(args.model) + '/' + str(args.data) + '/' + str(args.method) + '/' + str(args.seed)
save_subfolder = os.path.join(save_path, 'Multiplier=' + str(args.multiplier) + '_sparsity' + str(1-args.final_density))
if not os.path.exists(save_subfolder): os.makedirs(save_subfolder)
t0 = time.time()
#print(mask)
train(args, model, args.device, data, optimizer, epoch, mask)
if lr_scheduler is not None:
lr_scheduler.step()
if args.valid_split > 0.0:
if args.data in['ogbn-arxiv', 'ogbn-products', 'ogbn-proteins', 'ogbn-ogbn-papers100M']:
_, val_acc, _ = evaluate_ogb(args, model, args.device, data, evaluator)
else:
_, val_acc, _ = evaluate(args, model, args.device, data)
# target sparsity is reached
if args.sparse:
if epoch == args.multiplier * args.final_prune_epoch+1:
best_acc = 0.0
if val_acc > best_acc:
print('Saving model')
best_acc = val_acc
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, filename=os.path.join(save_subfolder, 'model_final.pth'))
#print_and_log(' Time taken for epoch: {:.2f} seconds.\n'.format(time.time() - t0))
train_time_total = time.time() - t_start
print('Testing model')
model.load_state_dict(torch.load(os.path.join(save_subfolder, 'model_final.pth'))['state_dict'])
t_test_0 = time.time()
if args.data in['ogbn-arxiv', 'ogbn-products', 'ogbn-proteins', 'ogbn-ogbn-papers100M']:
train_acc, val_acc, test_acc = evaluate_ogb(args, model, args.device, data, evaluator, is_test_set=True)
else:
train_acc, val_acc, test_acc = evaluate(args, model, args.device, data, is_test_set=True)
print('Test accuracy is:', test_acc)
results_to_file(args, train_acc, val_acc, test_acc, train_time_total, time.time()- t_test_0)
if __name__ == '__main__':
print("Start Runing!")
main()