-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconfig.py
122 lines (111 loc) · 5.59 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import configargparse
def set_config(args):
if "hiv" in args.dataset:
args.criterion = 'ogbg'
args.task = 'binary_class'
args.node_method = 'ogb'
args.edge_method = 'ogb'
args.mpnn = 'GCN'
args.pool = 'mean'
args.projection = 'mlp'
elif args.dataset == 'ZINC':
args.criterion = 'mae'
args.task = 'regression'
args.node_method = 'embedding'
args.edge_method = 'embedding'
args.mpnn = 'GINE'
args.pool = 'add'
args.projection = 'mlp'
elif args.dataset == 'CLUSTER':
args.criterion = 'accuracy'
args.task = 'multi_class'
args.node_method = 'linear'
args.edge_method = 'embedding'
args.mpnn = 'GCN'
args.pool = 'None'
args.projection = 'mlp'
elif args.dataset == 'PATTERN':
args.criterion = 'accuracy_sbm'
args.task = 'multi_weight_class'
args.node_method = 'no_pe'
args.edge_method = 'embedding'
args.mpnn = 'GCN'
args.pool = 'None'
args.projection = 'mlp'
else:
args.criterion = 'accuracy'
args.task = 'multi_class'
args.node_method = 'add'
args.edge_method = 'None'
args.mpnn = 'GIN'
args.pool = 'add'
args.projection = 'lin'
def gene_arg():
parser = configargparse.ArgumentParser(allow_abbrev=False,
description='GNN baselines on ogbg-code data with Pytorch Geometrics')
parser.add_argument('--configs', required=False, is_config_file=True)
parser.add_argument('--wandb_run_idx', type=str, default=None)
parser.add_argument('--data_root', type=str, default='../data')
parser.add_argument('--dataset', type=str, default="NCI1",
help='dataset name (default: ogbg-code)')
parser.add_argument('--aug', type=str, default='baseline',
help='augment method to use [baseline|flag|augment]')
parser.add_argument('--max_seq_len', type=int, default=None,
help='maximum sequence length to predict (default: None)')
group = parser.add_argument_group('model')
group.add_argument('--model_type', type=str, default='gnn', help='gnn|pna|gnn-transformer')
group.add_argument('--gamma', type=float, default=0.5)
group.add_argument('--learnable', type=bool, default=True)
group.add_argument('--pool', type=str, default='mean')
group.add_argument('--task', type=str, default='multi_class')
group.add_argument('--criterion', type=str, default='accuracy')
group = parser.add_argument_group('gnn')
group.add_argument('--node_method', type=str, default='linear')
group.add_argument('--edge_method', type=str, default='None')
group.add_argument('--mpnn', type=str, default='gcn')
group.add_argument('--projection', type=str, default='mlp')
group.add_argument('--gnn_virtual_node', action='store_true')
group.add_argument('--dropout', type=float, default=0)
group.add_argument('--drop_prob', type=float, default=0.0)
group.add_argument('--attn_dropout', type=float, default=0.5)
group.add_argument('--gnn_num_layer', type=int, default=5,
help='number of GNN message passing layers (default: 5)')
group.add_argument('--channels', type=int, default=64,
help='dimensionality of hidden units in GNNs (default: 64)')
group.add_argument('--gnn_JK', type=str, default='last')
group.add_argument('--gnn_residual', action='store_true', default=False)
group.add_argument('--num_layers', type=int, default=10,
help='number of GNN message passing layers (default: 5)')
group.add_argument('--nhead', type=int, default=4,
help='number of GNN message passing layers (default: 5)')
group = parser.add_argument_group('training')
group.add_argument('--devices', type=int, default=0,
help='which gpu to use if any (default: 0)')
group.add_argument('--batch_size', type=int, default=32,
help='input batch size for training (default: 128)')
group.add_argument('--eval_batch_size', type=int, default=32,
help='input batch size for training (default: train batch size)')
group.add_argument('--epochs', type=int, default=100,
help='number of epochs to train (default: 100)')
group.add_argument('--warmup_epoch', type=int, default=5)
group.add_argument('--num_workers', type=int, default=0,
help='number of workers (default: 0)')
group.add_argument('--scheduler', type=str, default=None)
group.add_argument('--pct_start', type=float, default=0.3)
group.add_argument('--weight_decay', type=float, default=1e-5)
group.add_argument('--grad_clip', type=float, default=None)
group.add_argument('--lr', type=float, default=0.001)
group.add_argument('--max_lr', type=float, default=0.001)
group.add_argument('--runs', type=int, default=10)
group.add_argument('--test-freq', type=int, default=1)
group.add_argument('--start-eval', type=int, default=15)
group.add_argument('--resume', type=str, default=None)
group.add_argument('--seed', type=int, default=12344)
group.add_argument('--run', type=int, default=10)
group.add_argument('--n_hop', type=int, default=5)
group.add_argument('--slope', type=float, default=0.0)
group.add_argument('--pe_norm', type=bool, default=False)
group.add_argument('--pe_origin_dim', type=int, default=20)
group.add_argument('--pe_dim', type=int, default=20)
args, _ = parser.parse_known_args()
return args