-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathformats.py
65 lines (54 loc) · 2.12 KB
/
formats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from typing import Literal, Optional
from pydantic import BaseModel, Field
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
class ClassifierChoices(BaseModel):
algorithm: Literal["LogisticRegression", "SVM", "RandomForest", "DecisionTree", "KNN"]
class NormalizationChoices(BaseModel):
normalization: Literal["minmax", "standard", "robust", "quantile", "power", "maxabs"]
class LogisticRegressionParams(BaseModel):
penalty: Literal["l1", "l2", "elasticnet", None] = "l2"
C: float = 1.0
solver: Literal["newton-cg", "lbfgs", "liblinear", "sag", "saga"] = "lbfgs"
class SVMParams(BaseModel):
C: float = 1.0
kernel: Literal["linear", "poly", "rbf", "sigmoid", "precomputed"] = "rbf"
degree: int = 3
class RandomForestParams(BaseModel):
criterion: Literal["gini", "entropy"] = "gini"
max_depth: Optional[int] = None
min_samples_split: int = 2
min_samples_leaf: int = 1
max_features: Literal["sqrt", "log2", None] = None
class DecisionTreeParams(BaseModel):
criterion: Literal["gini", "entropy"] = "gini"
splitter: Literal["best", "random"] = "best"
max_depth: Optional[int] = None
min_samples_split: int = 2
min_samples_leaf: int = 1
max_features: Optional[int] = None
class KNNParams(BaseModel):
n_neighbors: int = 5
weights: Literal["uniform", "distance"] = "uniform"
algorithm: Literal["auto", "ball_tree", "kd_tree", "brute"] = "auto"
class ReviewerResponses(BaseModel):
suggestion: Literal["Troque o classificador", "Troque os parâmetros"]
elaborate: str
grade: int = Field(ge=0, le=10)
CLASSIFIERS = {
"SVM": SVC,
"LogisticRegression": LogisticRegression,
"RandomForest": RandomForestClassifier,
"DecisionTree": DecisionTreeClassifier,
"KNN": KNeighborsClassifier
}
CLASSIFIERS_PARAMS = {
"SVM": SVMParams,
"LogisticRegression": LogisticRegressionParams,
"RandomForest": RandomForestParams,
"DecisionTree": DecisionTreeParams,
"KNN": KNNParams
}