-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconsole output.txt
5089 lines (5089 loc) · 288 KB
/
console output.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
+ bash run_main.sh
Loading acm dataset from local
****************************************Training loop No.1****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=1870, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.9031 nmi: 0.6751 ari: 0.7351 f1: 0.9029
epoch: 002 acc: 0.4225 nmi: 0.1379 ari: 0.0174 f1: 0.3289
epoch: 003 acc: 0.8919 nmi: 0.6760 ari: 0.7083 f1: 0.8916
epoch: 004 acc: 0.8440 nmi: 0.6012 ari: 0.6130 f1: 0.8331
epoch: 005 acc: 0.8863 nmi: 0.6605 ari: 0.6983 f1: 0.8826
epoch: 006 acc: 0.9088 nmi: 0.6965 ari: 0.7504 f1: 0.9082
epoch: 007 acc: 0.9114 nmi: 0.7061 ari: 0.7568 f1: 0.9114
epoch: 008 acc: 0.9107 nmi: 0.7119 ari: 0.7563 f1: 0.9104
epoch: 009 acc: 0.9074 nmi: 0.7020 ari: 0.7480 f1: 0.9066
epoch: 010 acc: 0.9038 nmi: 0.6938 ari: 0.7391 f1: 0.9025
epoch: 011 acc: 0.9038 nmi: 0.6928 ari: 0.7391 f1: 0.9022
epoch: 012 acc: 0.9078 nmi: 0.7002 ari: 0.7482 f1: 0.9065
epoch: 013 acc: 0.9164 nmi: 0.7148 ari: 0.7690 f1: 0.9157
epoch: 014 acc: 0.9183 nmi: 0.7188 ari: 0.7738 f1: 0.9181
epoch: 015 acc: 0.9217 nmi: 0.7258 ari: 0.7819 f1: 0.9217
epoch: 016 acc: 0.9220 nmi: 0.7234 ari: 0.7822 f1: 0.9221
epoch: 017 acc: 0.9223 nmi: 0.7240 ari: 0.7828 f1: 0.9226
epoch: 018 acc: 0.9246 nmi: 0.7291 ari: 0.7890 f1: 0.9247
epoch: 019 acc: 0.9243 nmi: 0.7280 ari: 0.7881 f1: 0.9243
epoch: 020 acc: 0.9266 nmi: 0.7354 ari: 0.7941 f1: 0.9268
epoch: 021 acc: 0.9250 nmi: 0.7302 ari: 0.7898 f1: 0.9251
epoch: 022 acc: 0.9253 nmi: 0.7315 ari: 0.7907 f1: 0.9254
epoch: 023 acc: 0.9263 nmi: 0.7342 ari: 0.7932 f1: 0.9264
epoch: 024 acc: 0.9266 nmi: 0.7341 ari: 0.7940 f1: 0.9267
epoch: 025 acc: 0.9253 nmi: 0.7305 ari: 0.7905 f1: 0.9255
epoch: 026 acc: 0.9276 nmi: 0.7373 ari: 0.7966 f1: 0.9277
epoch: 027 acc: 0.9276 nmi: 0.7371 ari: 0.7966 f1: 0.9277
epoch: 028 acc: 0.9266 nmi: 0.7342 ari: 0.7938 f1: 0.9268
epoch: 029 acc: 0.9263 nmi: 0.7331 ari: 0.7931 f1: 0.9264
epoch: 030 acc: 0.9256 nmi: 0.7310 ari: 0.7913 f1: 0.9258
epoch: 031 acc: 0.9263 nmi: 0.7318 ari: 0.7930 f1: 0.9264
epoch: 032 acc: 0.9260 nmi: 0.7323 ari: 0.7922 f1: 0.9261
epoch: 033 acc: 0.9256 nmi: 0.7315 ari: 0.7914 f1: 0.9258
epoch: 034 acc: 0.9250 nmi: 0.7294 ari: 0.7897 f1: 0.9251
epoch: 035 acc: 0.9263 nmi: 0.7335 ari: 0.7931 f1: 0.9265
epoch: 036 acc: 0.9256 nmi: 0.7316 ari: 0.7913 f1: 0.9258
epoch: 037 acc: 0.9256 nmi: 0.7312 ari: 0.7913 f1: 0.9258
epoch: 038 acc: 0.9253 nmi: 0.7305 ari: 0.7905 f1: 0.9255
epoch: 039 acc: 0.9263 nmi: 0.7319 ari: 0.7930 f1: 0.9264
epoch: 040 acc: 0.9273 nmi: 0.7355 ari: 0.7955 f1: 0.9275
epoch: 041 acc: 0.9256 nmi: 0.7310 ari: 0.7913 f1: 0.9258
epoch: 042 acc: 0.9260 nmi: 0.7326 ari: 0.7922 f1: 0.9261
epoch: 043 acc: 0.9269 nmi: 0.7346 ari: 0.7947 f1: 0.9271
epoch: 044 acc: 0.9240 nmi: 0.7266 ari: 0.7869 f1: 0.9242
epoch: 045 acc: 0.9263 nmi: 0.7328 ari: 0.7931 f1: 0.9264
epoch: 046 acc: 0.9269 nmi: 0.7350 ari: 0.7948 f1: 0.9271
epoch: 047 acc: 0.9260 nmi: 0.7315 ari: 0.7921 f1: 0.9261
epoch: 048 acc: 0.9256 nmi: 0.7313 ari: 0.7913 f1: 0.9258
epoch: 049 acc: 0.9263 nmi: 0.7325 ari: 0.7930 f1: 0.9264
epoch: 050 acc: 0.9266 nmi: 0.7340 ari: 0.7939 f1: 0.9268
The total number of parameters is: 1.093168M(1e6).
The max memory allocated to model is: 628.12 MB.
Time consuming: 7.13s or 0.12m
****************************************Training loop No.2****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=1870, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.9055 nmi: 0.6813 ari: 0.7408 f1: 0.9052
epoch: 002 acc: 0.3921 nmi: 0.0997 ari: 0.0053 f1: 0.2814
epoch: 003 acc: 0.8922 nmi: 0.6693 ari: 0.7086 f1: 0.8921
epoch: 004 acc: 0.8258 nmi: 0.5794 ari: 0.5806 f1: 0.8111
epoch: 005 acc: 0.8777 nmi: 0.6473 ari: 0.6789 f1: 0.8726
epoch: 006 acc: 0.9084 nmi: 0.6955 ari: 0.7496 f1: 0.9075
epoch: 007 acc: 0.9104 nmi: 0.7035 ari: 0.7547 f1: 0.9101
epoch: 008 acc: 0.9117 nmi: 0.7126 ari: 0.7586 f1: 0.9114
epoch: 009 acc: 0.9074 nmi: 0.7044 ari: 0.7481 f1: 0.9068
epoch: 010 acc: 0.9025 nmi: 0.6904 ari: 0.7358 f1: 0.9012
epoch: 011 acc: 0.9008 nmi: 0.6856 ari: 0.7319 f1: 0.8991
epoch: 012 acc: 0.9064 nmi: 0.6958 ari: 0.7450 f1: 0.9050
epoch: 013 acc: 0.9098 nmi: 0.7009 ari: 0.7529 f1: 0.9088
epoch: 014 acc: 0.9203 nmi: 0.7230 ari: 0.7787 f1: 0.9201
epoch: 015 acc: 0.9217 nmi: 0.7255 ari: 0.7820 f1: 0.9216
epoch: 016 acc: 0.9230 nmi: 0.7254 ari: 0.7849 f1: 0.9230
epoch: 017 acc: 0.9243 nmi: 0.7286 ari: 0.7880 f1: 0.9245
epoch: 018 acc: 0.9236 nmi: 0.7265 ari: 0.7863 f1: 0.9238
epoch: 019 acc: 0.9236 nmi: 0.7262 ari: 0.7863 f1: 0.9238
epoch: 020 acc: 0.9243 nmi: 0.7276 ari: 0.7882 f1: 0.9243
epoch: 021 acc: 0.9246 nmi: 0.7282 ari: 0.7889 f1: 0.9247
epoch: 022 acc: 0.9250 nmi: 0.7292 ari: 0.7898 f1: 0.9249
epoch: 023 acc: 0.9256 nmi: 0.7320 ari: 0.7915 f1: 0.9257
epoch: 024 acc: 0.9256 nmi: 0.7322 ari: 0.7915 f1: 0.9257
epoch: 025 acc: 0.9263 nmi: 0.7341 ari: 0.7933 f1: 0.9264
epoch: 026 acc: 0.9256 nmi: 0.7336 ari: 0.7918 f1: 0.9257
epoch: 027 acc: 0.9260 nmi: 0.7340 ari: 0.7924 f1: 0.9261
epoch: 028 acc: 0.9263 nmi: 0.7347 ari: 0.7934 f1: 0.9263
epoch: 029 acc: 0.9250 nmi: 0.7291 ari: 0.7897 f1: 0.9250
epoch: 030 acc: 0.9273 nmi: 0.7376 ari: 0.7959 f1: 0.9274
epoch: 031 acc: 0.9269 nmi: 0.7363 ari: 0.7950 f1: 0.9270
epoch: 032 acc: 0.9266 nmi: 0.7353 ari: 0.7941 f1: 0.9267
epoch: 033 acc: 0.9236 nmi: 0.7284 ari: 0.7865 f1: 0.9237
epoch: 034 acc: 0.9260 nmi: 0.7328 ari: 0.7925 f1: 0.9260
epoch: 035 acc: 0.9250 nmi: 0.7319 ari: 0.7899 f1: 0.9251
epoch: 036 acc: 0.9253 nmi: 0.7312 ari: 0.7906 f1: 0.9254
epoch: 037 acc: 0.9256 nmi: 0.7329 ari: 0.7916 f1: 0.9257
epoch: 038 acc: 0.9273 nmi: 0.7368 ari: 0.7958 f1: 0.9274
epoch: 039 acc: 0.9260 nmi: 0.7335 ari: 0.7923 f1: 0.9261
epoch: 040 acc: 0.9256 nmi: 0.7332 ari: 0.7916 f1: 0.9257
epoch: 041 acc: 0.9256 nmi: 0.7328 ari: 0.7915 f1: 0.9257
epoch: 042 acc: 0.9273 nmi: 0.7368 ari: 0.7958 f1: 0.9274
epoch: 043 acc: 0.9260 nmi: 0.7329 ari: 0.7923 f1: 0.9261
epoch: 044 acc: 0.9266 nmi: 0.7351 ari: 0.7941 f1: 0.9267
epoch: 045 acc: 0.9269 nmi: 0.7360 ari: 0.7949 f1: 0.9271
epoch: 046 acc: 0.9260 nmi: 0.7329 ari: 0.7923 f1: 0.9261
epoch: 047 acc: 0.9266 nmi: 0.7347 ari: 0.7941 f1: 0.9267
epoch: 048 acc: 0.9253 nmi: 0.7305 ari: 0.7906 f1: 0.9254
epoch: 049 acc: 0.9260 nmi: 0.7325 ari: 0.7923 f1: 0.9261
epoch: 050 acc: 0.9266 nmi: 0.7351 ari: 0.7941 f1: 0.9267
The total number of parameters is: 1.093168M(1e6).
The max memory allocated to model is: 636.85 MB.
Time consuming: 3.73s or 0.06m
****************************************Training loop No.3****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=1870, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.9031 nmi: 0.6760 ari: 0.7352 f1: 0.9029
epoch: 002 acc: 0.4291 nmi: 0.1471 ari: 0.0190 f1: 0.3407
epoch: 003 acc: 0.8899 nmi: 0.6696 ari: 0.7032 f1: 0.8896
epoch: 004 acc: 0.8397 nmi: 0.5967 ari: 0.6049 f1: 0.8277
epoch: 005 acc: 0.8869 nmi: 0.6611 ari: 0.6997 f1: 0.8834
epoch: 006 acc: 0.9081 nmi: 0.6980 ari: 0.7488 f1: 0.9075
epoch: 007 acc: 0.9117 nmi: 0.7092 ari: 0.7581 f1: 0.9116
epoch: 008 acc: 0.9101 nmi: 0.7069 ari: 0.7541 f1: 0.9097
epoch: 009 acc: 0.9061 nmi: 0.6990 ari: 0.7447 f1: 0.9050
epoch: 010 acc: 0.8998 nmi: 0.6843 ari: 0.7297 f1: 0.8981
epoch: 011 acc: 0.9025 nmi: 0.6887 ari: 0.7357 f1: 0.9008
epoch: 012 acc: 0.9074 nmi: 0.6992 ari: 0.7477 f1: 0.9061
epoch: 013 acc: 0.9147 nmi: 0.7133 ari: 0.7651 f1: 0.9140
epoch: 014 acc: 0.9213 nmi: 0.7278 ari: 0.7815 f1: 0.9211
epoch: 015 acc: 0.9220 nmi: 0.7261 ari: 0.7826 f1: 0.9220
epoch: 016 acc: 0.9236 nmi: 0.7297 ari: 0.7867 f1: 0.9238
epoch: 017 acc: 0.9233 nmi: 0.7258 ari: 0.7855 f1: 0.9235
epoch: 018 acc: 0.9223 nmi: 0.7233 ari: 0.7830 f1: 0.9224
epoch: 019 acc: 0.9260 nmi: 0.7346 ari: 0.7926 f1: 0.9260
epoch: 020 acc: 0.9246 nmi: 0.7303 ari: 0.7891 f1: 0.9247
epoch: 021 acc: 0.9243 nmi: 0.7291 ari: 0.7882 f1: 0.9244
epoch: 022 acc: 0.9240 nmi: 0.7297 ari: 0.7876 f1: 0.9240
epoch: 023 acc: 0.9250 nmi: 0.7318 ari: 0.7900 f1: 0.9250
epoch: 024 acc: 0.9240 nmi: 0.7284 ari: 0.7873 f1: 0.9241
epoch: 025 acc: 0.9240 nmi: 0.7293 ari: 0.7875 f1: 0.9240
epoch: 026 acc: 0.9256 nmi: 0.7327 ari: 0.7916 f1: 0.9257
epoch: 027 acc: 0.9276 nmi: 0.7394 ari: 0.7969 f1: 0.9276
epoch: 028 acc: 0.9256 nmi: 0.7337 ari: 0.7918 f1: 0.9257
epoch: 029 acc: 0.9250 nmi: 0.7314 ari: 0.7899 f1: 0.9251
epoch: 030 acc: 0.9269 nmi: 0.7369 ari: 0.7951 f1: 0.9271
epoch: 031 acc: 0.9260 nmi: 0.7331 ari: 0.7925 f1: 0.9260
epoch: 032 acc: 0.9260 nmi: 0.7346 ari: 0.7926 f1: 0.9260
epoch: 033 acc: 0.9246 nmi: 0.7311 ari: 0.7891 f1: 0.9248
epoch: 034 acc: 0.9263 nmi: 0.7349 ari: 0.7933 f1: 0.9264
epoch: 035 acc: 0.9226 nmi: 0.7247 ari: 0.7840 f1: 0.9226
epoch: 036 acc: 0.9240 nmi: 0.7284 ari: 0.7874 f1: 0.9240
epoch: 037 acc: 0.9253 nmi: 0.7324 ari: 0.7908 f1: 0.9254
epoch: 038 acc: 0.9236 nmi: 0.7269 ari: 0.7865 f1: 0.9237
epoch: 039 acc: 0.9226 nmi: 0.7245 ari: 0.7840 f1: 0.9227
epoch: 040 acc: 0.9250 nmi: 0.7313 ari: 0.7899 f1: 0.9251
epoch: 041 acc: 0.9256 nmi: 0.7331 ari: 0.7917 f1: 0.9257
epoch: 042 acc: 0.9250 nmi: 0.7305 ari: 0.7898 f1: 0.9251
epoch: 043 acc: 0.9246 nmi: 0.7300 ari: 0.7890 f1: 0.9247
epoch: 044 acc: 0.9253 nmi: 0.7319 ari: 0.7908 f1: 0.9254
epoch: 045 acc: 0.9240 nmi: 0.7274 ari: 0.7873 f1: 0.9241
epoch: 046 acc: 0.9253 nmi: 0.7316 ari: 0.7908 f1: 0.9254
epoch: 047 acc: 0.9256 nmi: 0.7327 ari: 0.7916 f1: 0.9258
epoch: 048 acc: 0.9260 nmi: 0.7334 ari: 0.7925 f1: 0.9260
epoch: 049 acc: 0.9240 nmi: 0.7277 ari: 0.7872 f1: 0.9241
epoch: 050 acc: 0.9253 nmi: 0.7317 ari: 0.7907 f1: 0.9254
The total number of parameters is: 1.093168M(1e6).
The max memory allocated to model is: 636.85 MB.
Time consuming: 3.66s or 0.06m
****************************************Training loop No.4****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=1870, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.9031 nmi: 0.6751 ari: 0.7352 f1: 0.9028
epoch: 002 acc: 0.4235 nmi: 0.1382 ari: 0.0162 f1: 0.3327
epoch: 003 acc: 0.8909 nmi: 0.6732 ari: 0.7062 f1: 0.8905
epoch: 004 acc: 0.8393 nmi: 0.5910 ari: 0.6028 f1: 0.8276
epoch: 005 acc: 0.8866 nmi: 0.6574 ari: 0.6983 f1: 0.8833
epoch: 006 acc: 0.9084 nmi: 0.6961 ari: 0.7495 f1: 0.9079
epoch: 007 acc: 0.9094 nmi: 0.6988 ari: 0.7518 f1: 0.9092
epoch: 008 acc: 0.9098 nmi: 0.7056 ari: 0.7534 f1: 0.9093
epoch: 009 acc: 0.9041 nmi: 0.6932 ari: 0.7402 f1: 0.9030
epoch: 010 acc: 0.9035 nmi: 0.6911 ari: 0.7380 f1: 0.9020
epoch: 011 acc: 0.9045 nmi: 0.6926 ari: 0.7405 f1: 0.9029
epoch: 012 acc: 0.9064 nmi: 0.6938 ari: 0.7449 f1: 0.9053
epoch: 013 acc: 0.9164 nmi: 0.7128 ari: 0.7687 f1: 0.9159
epoch: 014 acc: 0.9200 nmi: 0.7195 ari: 0.7777 f1: 0.9197
epoch: 015 acc: 0.9210 nmi: 0.7196 ari: 0.7797 f1: 0.9210
epoch: 016 acc: 0.9230 nmi: 0.7237 ari: 0.7846 f1: 0.9231
epoch: 017 acc: 0.9256 nmi: 0.7304 ari: 0.7913 f1: 0.9257
epoch: 018 acc: 0.9246 nmi: 0.7271 ari: 0.7888 f1: 0.9246
epoch: 019 acc: 0.9236 nmi: 0.7242 ari: 0.7863 f1: 0.9236
epoch: 020 acc: 0.9223 nmi: 0.7228 ari: 0.7831 f1: 0.9223
epoch: 021 acc: 0.9233 nmi: 0.7244 ari: 0.7855 f1: 0.9233
epoch: 022 acc: 0.9253 nmi: 0.7295 ari: 0.7904 f1: 0.9254
epoch: 023 acc: 0.9256 nmi: 0.7316 ari: 0.7914 f1: 0.9257
epoch: 024 acc: 0.9273 nmi: 0.7361 ari: 0.7957 f1: 0.9274
epoch: 025 acc: 0.9246 nmi: 0.7281 ari: 0.7888 f1: 0.9247
epoch: 026 acc: 0.9250 nmi: 0.7287 ari: 0.7897 f1: 0.9250
epoch: 027 acc: 0.9266 nmi: 0.7328 ari: 0.7939 f1: 0.9267
epoch: 028 acc: 0.9266 nmi: 0.7330 ari: 0.7938 f1: 0.9267
epoch: 029 acc: 0.9243 nmi: 0.7269 ari: 0.7878 f1: 0.9244
epoch: 030 acc: 0.9269 nmi: 0.7339 ari: 0.7947 f1: 0.9271
epoch: 031 acc: 0.9260 nmi: 0.7309 ari: 0.7921 f1: 0.9261
epoch: 032 acc: 0.9243 nmi: 0.7264 ari: 0.7879 f1: 0.9244
epoch: 033 acc: 0.9256 nmi: 0.7300 ari: 0.7912 f1: 0.9257
epoch: 034 acc: 0.9250 nmi: 0.7286 ari: 0.7896 f1: 0.9251
epoch: 035 acc: 0.9260 nmi: 0.7314 ari: 0.7921 f1: 0.9261
epoch: 036 acc: 0.9263 nmi: 0.7315 ari: 0.7929 f1: 0.9264
epoch: 037 acc: 0.9260 nmi: 0.7311 ari: 0.7922 f1: 0.9261
epoch: 038 acc: 0.9240 nmi: 0.7250 ari: 0.7868 f1: 0.9241
epoch: 039 acc: 0.9253 nmi: 0.7292 ari: 0.7903 f1: 0.9254
epoch: 040 acc: 0.9250 nmi: 0.7277 ari: 0.7895 f1: 0.9250
epoch: 041 acc: 0.9256 nmi: 0.7301 ari: 0.7912 f1: 0.9257
epoch: 042 acc: 0.9263 nmi: 0.7316 ari: 0.7929 f1: 0.9264
epoch: 043 acc: 0.9253 nmi: 0.7292 ari: 0.7903 f1: 0.9255
epoch: 044 acc: 0.9253 nmi: 0.7286 ari: 0.7903 f1: 0.9254
epoch: 045 acc: 0.9263 nmi: 0.7315 ari: 0.7929 f1: 0.9264
epoch: 046 acc: 0.9253 nmi: 0.7290 ari: 0.7903 f1: 0.9255
epoch: 047 acc: 0.9273 nmi: 0.7344 ari: 0.7955 f1: 0.9274
epoch: 048 acc: 0.9250 nmi: 0.7276 ari: 0.7894 f1: 0.9251
epoch: 049 acc: 0.9253 nmi: 0.7280 ari: 0.7902 f1: 0.9254
epoch: 050 acc: 0.9266 nmi: 0.7324 ari: 0.7938 f1: 0.9267
The total number of parameters is: 1.093168M(1e6).
The max memory allocated to model is: 636.85 MB.
Time consuming: 3.67s or 0.06m
****************************************Training loop No.5****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=1870, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.9048 nmi: 0.6802 ari: 0.7392 f1: 0.9047
epoch: 002 acc: 0.3993 nmi: 0.1101 ari: 0.0075 f1: 0.2930
epoch: 003 acc: 0.8893 nmi: 0.6643 ari: 0.7012 f1: 0.8890
epoch: 004 acc: 0.8298 nmi: 0.5826 ari: 0.5871 f1: 0.8161
epoch: 005 acc: 0.8770 nmi: 0.6444 ari: 0.6777 f1: 0.8719
epoch: 006 acc: 0.9094 nmi: 0.6990 ari: 0.7521 f1: 0.9086
epoch: 007 acc: 0.9101 nmi: 0.7014 ari: 0.7536 f1: 0.9098
epoch: 008 acc: 0.9094 nmi: 0.7077 ari: 0.7528 f1: 0.9093
epoch: 009 acc: 0.9098 nmi: 0.7084 ari: 0.7537 f1: 0.9092
epoch: 010 acc: 0.9055 nmi: 0.6963 ari: 0.7432 f1: 0.9043
epoch: 011 acc: 0.9025 nmi: 0.6898 ari: 0.7360 f1: 0.9008
epoch: 012 acc: 0.9058 nmi: 0.6937 ari: 0.7434 f1: 0.9045
epoch: 013 acc: 0.9144 nmi: 0.7098 ari: 0.7641 f1: 0.9137
epoch: 014 acc: 0.9190 nmi: 0.7185 ari: 0.7754 f1: 0.9187
epoch: 015 acc: 0.9217 nmi: 0.7236 ari: 0.7818 f1: 0.9215
epoch: 016 acc: 0.9230 nmi: 0.7252 ari: 0.7848 f1: 0.9230
epoch: 017 acc: 0.9230 nmi: 0.7243 ari: 0.7845 f1: 0.9231
epoch: 018 acc: 0.9243 nmi: 0.7272 ari: 0.7878 f1: 0.9245
epoch: 019 acc: 0.9250 nmi: 0.7279 ari: 0.7895 f1: 0.9251
epoch: 020 acc: 0.9246 nmi: 0.7274 ari: 0.7887 f1: 0.9248
epoch: 021 acc: 0.9269 nmi: 0.7335 ari: 0.7948 f1: 0.9270
epoch: 022 acc: 0.9250 nmi: 0.7293 ari: 0.7898 f1: 0.9250
epoch: 023 acc: 0.9246 nmi: 0.7273 ari: 0.7888 f1: 0.9247
epoch: 024 acc: 0.9279 nmi: 0.7370 ari: 0.7974 f1: 0.9280
epoch: 025 acc: 0.9253 nmi: 0.7295 ari: 0.7905 f1: 0.9254
epoch: 026 acc: 0.9243 nmi: 0.7266 ari: 0.7879 f1: 0.9244
epoch: 027 acc: 0.9246 nmi: 0.7276 ari: 0.7887 f1: 0.9248
epoch: 028 acc: 0.9260 nmi: 0.7311 ari: 0.7921 f1: 0.9261
epoch: 029 acc: 0.9263 nmi: 0.7316 ari: 0.7929 f1: 0.9264
epoch: 030 acc: 0.9273 nmi: 0.7345 ari: 0.7955 f1: 0.9275
epoch: 031 acc: 0.9253 nmi: 0.7294 ari: 0.7903 f1: 0.9255
epoch: 032 acc: 0.9266 nmi: 0.7317 ari: 0.7937 f1: 0.9267
epoch: 033 acc: 0.9253 nmi: 0.7284 ari: 0.7902 f1: 0.9255
epoch: 034 acc: 0.9256 nmi: 0.7289 ari: 0.7910 f1: 0.9258
epoch: 035 acc: 0.9253 nmi: 0.7284 ari: 0.7902 f1: 0.9255
epoch: 036 acc: 0.9260 nmi: 0.7304 ari: 0.7920 f1: 0.9261
epoch: 037 acc: 0.9266 nmi: 0.7320 ari: 0.7936 f1: 0.9268
epoch: 038 acc: 0.9256 nmi: 0.7287 ari: 0.7910 f1: 0.9258
epoch: 039 acc: 0.9250 nmi: 0.7271 ari: 0.7893 f1: 0.9251
epoch: 040 acc: 0.9260 nmi: 0.7302 ari: 0.7919 f1: 0.9261
epoch: 041 acc: 0.9263 nmi: 0.7305 ari: 0.7928 f1: 0.9264
epoch: 042 acc: 0.9260 nmi: 0.7302 ari: 0.7919 f1: 0.9261
epoch: 043 acc: 0.9243 nmi: 0.7257 ari: 0.7875 f1: 0.9245
epoch: 044 acc: 0.9266 nmi: 0.7320 ari: 0.7937 f1: 0.9268
epoch: 045 acc: 0.9246 nmi: 0.7265 ari: 0.7884 f1: 0.9248
epoch: 046 acc: 0.9269 nmi: 0.7326 ari: 0.7945 f1: 0.9271
epoch: 047 acc: 0.9253 nmi: 0.7282 ari: 0.7901 f1: 0.9255
epoch: 048 acc: 0.9263 nmi: 0.7309 ari: 0.7927 f1: 0.9265
epoch: 049 acc: 0.9253 nmi: 0.7276 ari: 0.7901 f1: 0.9254
epoch: 050 acc: 0.9250 nmi: 0.7271 ari: 0.7893 f1: 0.9252
The total number of parameters is: 1.093168M(1e6).
The max memory allocated to model is: 636.85 MB.
Time consuming: 3.75s or 0.06m
****************************************Training loop No.6****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=1870, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.9061 nmi: 0.6845 ari: 0.7425 f1: 0.9059
epoch: 002 acc: 0.3914 nmi: 0.0986 ari: 0.0049 f1: 0.2809
epoch: 003 acc: 0.8936 nmi: 0.6725 ari: 0.7117 f1: 0.8933
epoch: 004 acc: 0.8221 nmi: 0.5728 ari: 0.5737 f1: 0.8067
epoch: 005 acc: 0.8797 nmi: 0.6480 ari: 0.6827 f1: 0.8751
epoch: 006 acc: 0.9058 nmi: 0.6862 ari: 0.7426 f1: 0.9050
epoch: 007 acc: 0.9104 nmi: 0.7000 ari: 0.7540 f1: 0.9103
epoch: 008 acc: 0.9121 nmi: 0.7102 ari: 0.7589 f1: 0.9118
epoch: 009 acc: 0.9081 nmi: 0.7033 ari: 0.7497 f1: 0.9072
epoch: 010 acc: 0.9055 nmi: 0.6969 ari: 0.7431 f1: 0.9043
epoch: 011 acc: 0.9045 nmi: 0.6944 ari: 0.7407 f1: 0.9029
epoch: 012 acc: 0.9061 nmi: 0.6973 ari: 0.7447 f1: 0.9046
epoch: 013 acc: 0.9134 nmi: 0.7073 ari: 0.7617 f1: 0.9124
epoch: 014 acc: 0.9170 nmi: 0.7142 ari: 0.7705 f1: 0.9165
epoch: 015 acc: 0.9220 nmi: 0.7238 ari: 0.7826 f1: 0.9218
epoch: 016 acc: 0.9243 nmi: 0.7289 ari: 0.7882 f1: 0.9244
epoch: 017 acc: 0.9243 nmi: 0.7280 ari: 0.7881 f1: 0.9244
epoch: 018 acc: 0.9253 nmi: 0.7294 ari: 0.7902 f1: 0.9255
epoch: 019 acc: 0.9230 nmi: 0.7217 ari: 0.7843 f1: 0.9231
epoch: 020 acc: 0.9240 nmi: 0.7233 ari: 0.7867 f1: 0.9240
epoch: 021 acc: 0.9240 nmi: 0.7247 ari: 0.7868 f1: 0.9241
epoch: 022 acc: 0.9253 nmi: 0.7270 ari: 0.7902 f1: 0.9253
epoch: 023 acc: 0.9250 nmi: 0.7265 ari: 0.7895 f1: 0.9250
epoch: 024 acc: 0.9250 nmi: 0.7275 ari: 0.7895 f1: 0.9250
epoch: 025 acc: 0.9260 nmi: 0.7300 ari: 0.7919 f1: 0.9261
epoch: 026 acc: 0.9256 nmi: 0.7300 ari: 0.7911 f1: 0.9258
epoch: 027 acc: 0.9253 nmi: 0.7289 ari: 0.7902 f1: 0.9255
epoch: 028 acc: 0.9253 nmi: 0.7278 ari: 0.7902 f1: 0.9254
epoch: 029 acc: 0.9250 nmi: 0.7269 ari: 0.7892 f1: 0.9251
epoch: 030 acc: 0.9256 nmi: 0.7284 ari: 0.7909 f1: 0.9258
epoch: 031 acc: 0.9250 nmi: 0.7267 ari: 0.7893 f1: 0.9251
epoch: 032 acc: 0.9253 nmi: 0.7271 ari: 0.7900 f1: 0.9255
epoch: 033 acc: 0.9250 nmi: 0.7262 ari: 0.7892 f1: 0.9251
epoch: 034 acc: 0.9250 nmi: 0.7267 ari: 0.7893 f1: 0.9251
epoch: 035 acc: 0.9263 nmi: 0.7301 ari: 0.7927 f1: 0.9264
epoch: 036 acc: 0.9246 nmi: 0.7252 ari: 0.7883 f1: 0.9248
epoch: 037 acc: 0.9246 nmi: 0.7254 ari: 0.7884 f1: 0.9248
epoch: 038 acc: 0.9253 nmi: 0.7271 ari: 0.7901 f1: 0.9254
epoch: 039 acc: 0.9253 nmi: 0.7280 ari: 0.7902 f1: 0.9254
epoch: 040 acc: 0.9263 nmi: 0.7304 ari: 0.7927 f1: 0.9264
epoch: 041 acc: 0.9250 nmi: 0.7265 ari: 0.7893 f1: 0.9251
epoch: 042 acc: 0.9250 nmi: 0.7263 ari: 0.7893 f1: 0.9251
epoch: 043 acc: 0.9260 nmi: 0.7298 ari: 0.7920 f1: 0.9261
epoch: 044 acc: 0.9266 nmi: 0.7313 ari: 0.7937 f1: 0.9267
epoch: 045 acc: 0.9260 nmi: 0.7293 ari: 0.7919 f1: 0.9261
epoch: 046 acc: 0.9250 nmi: 0.7271 ari: 0.7893 f1: 0.9251
epoch: 047 acc: 0.9256 nmi: 0.7280 ari: 0.7909 f1: 0.9258
epoch: 048 acc: 0.9256 nmi: 0.7288 ari: 0.7911 f1: 0.9257
epoch: 049 acc: 0.9260 nmi: 0.7296 ari: 0.7919 f1: 0.9261
epoch: 050 acc: 0.9256 nmi: 0.7288 ari: 0.7911 f1: 0.9257
The total number of parameters is: 1.093168M(1e6).
The max memory allocated to model is: 636.85 MB.
Time consuming: 3.69s or 0.06m
****************************************Training loop No.7****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=1870, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.9028 nmi: 0.6753 ari: 0.7343 f1: 0.9026
epoch: 002 acc: 0.4301 nmi: 0.1501 ari: 0.0222 f1: 0.3389
epoch: 003 acc: 0.8860 nmi: 0.6632 ari: 0.6941 f1: 0.8855
epoch: 004 acc: 0.8476 nmi: 0.6043 ari: 0.6182 f1: 0.8380
epoch: 005 acc: 0.8853 nmi: 0.6574 ari: 0.6960 f1: 0.8815
epoch: 006 acc: 0.9094 nmi: 0.7008 ari: 0.7521 f1: 0.9088
epoch: 007 acc: 0.9091 nmi: 0.7001 ari: 0.7511 f1: 0.9089
epoch: 008 acc: 0.9071 nmi: 0.7012 ari: 0.7471 f1: 0.9066
epoch: 009 acc: 0.9081 nmi: 0.7051 ari: 0.7498 f1: 0.9074
epoch: 010 acc: 0.9041 nmi: 0.6948 ari: 0.7400 f1: 0.9029
epoch: 011 acc: 0.9055 nmi: 0.6961 ari: 0.7430 f1: 0.9040
epoch: 012 acc: 0.9091 nmi: 0.7005 ari: 0.7513 f1: 0.9081
epoch: 013 acc: 0.9160 nmi: 0.7136 ari: 0.7680 f1: 0.9156
epoch: 014 acc: 0.9226 nmi: 0.7275 ari: 0.7844 f1: 0.9225
epoch: 015 acc: 0.9236 nmi: 0.7274 ari: 0.7865 f1: 0.9236
epoch: 016 acc: 0.9233 nmi: 0.7260 ari: 0.7856 f1: 0.9234
epoch: 017 acc: 0.9226 nmi: 0.7237 ari: 0.7839 f1: 0.9227
epoch: 018 acc: 0.9246 nmi: 0.7280 ari: 0.7888 f1: 0.9247
epoch: 019 acc: 0.9250 nmi: 0.7294 ari: 0.7897 f1: 0.9250
epoch: 020 acc: 0.9253 nmi: 0.7299 ari: 0.7905 f1: 0.9254
epoch: 021 acc: 0.9236 nmi: 0.7257 ari: 0.7862 f1: 0.9238
epoch: 022 acc: 0.9253 nmi: 0.7303 ari: 0.7906 f1: 0.9254
epoch: 023 acc: 0.9256 nmi: 0.7314 ari: 0.7914 f1: 0.9258
epoch: 024 acc: 0.9263 nmi: 0.7329 ari: 0.7931 f1: 0.9264
epoch: 025 acc: 0.9263 nmi: 0.7333 ari: 0.7930 f1: 0.9264
epoch: 026 acc: 0.9246 nmi: 0.7287 ari: 0.7889 f1: 0.9247
epoch: 027 acc: 0.9263 nmi: 0.7336 ari: 0.7932 f1: 0.9264
epoch: 028 acc: 0.9240 nmi: 0.7262 ari: 0.7872 f1: 0.9240
epoch: 029 acc: 0.9253 nmi: 0.7291 ari: 0.7905 f1: 0.9253
epoch: 030 acc: 0.9250 nmi: 0.7284 ari: 0.7896 f1: 0.9250
epoch: 031 acc: 0.9266 nmi: 0.7337 ari: 0.7940 f1: 0.9267
epoch: 032 acc: 0.9253 nmi: 0.7295 ari: 0.7905 f1: 0.9253
epoch: 033 acc: 0.9256 nmi: 0.7307 ari: 0.7913 f1: 0.9257
epoch: 034 acc: 0.9246 nmi: 0.7278 ari: 0.7887 f1: 0.9248
epoch: 035 acc: 0.9260 nmi: 0.7321 ari: 0.7922 f1: 0.9261
epoch: 036 acc: 0.9253 nmi: 0.7294 ari: 0.7904 f1: 0.9254
epoch: 037 acc: 0.9250 nmi: 0.7290 ari: 0.7896 f1: 0.9251
epoch: 038 acc: 0.9263 nmi: 0.7319 ari: 0.7931 f1: 0.9263
epoch: 039 acc: 0.9250 nmi: 0.7287 ari: 0.7896 f1: 0.9251
epoch: 040 acc: 0.9253 nmi: 0.7297 ari: 0.7905 f1: 0.9254
epoch: 041 acc: 0.9243 nmi: 0.7264 ari: 0.7878 f1: 0.9244
epoch: 042 acc: 0.9260 nmi: 0.7311 ari: 0.7922 f1: 0.9260
epoch: 043 acc: 0.9246 nmi: 0.7277 ari: 0.7888 f1: 0.9247
epoch: 044 acc: 0.9253 nmi: 0.7295 ari: 0.7904 f1: 0.9254
epoch: 045 acc: 0.9253 nmi: 0.7294 ari: 0.7905 f1: 0.9254
epoch: 046 acc: 0.9253 nmi: 0.7299 ari: 0.7904 f1: 0.9254
epoch: 047 acc: 0.9240 nmi: 0.7254 ari: 0.7869 f1: 0.9241
epoch: 048 acc: 0.9263 nmi: 0.7319 ari: 0.7930 f1: 0.9264
epoch: 049 acc: 0.9260 nmi: 0.7314 ari: 0.7921 f1: 0.9261
epoch: 050 acc: 0.9243 nmi: 0.7265 ari: 0.7878 f1: 0.9244
The total number of parameters is: 1.093168M(1e6).
The max memory allocated to model is: 636.85 MB.
Time consuming: 3.67s or 0.06m
****************************************Training loop No.8****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=1870, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.9061 nmi: 0.6829 ari: 0.7424 f1: 0.9059
epoch: 002 acc: 0.4000 nmi: 0.1084 ari: 0.0074 f1: 0.2945
epoch: 003 acc: 0.8945 nmi: 0.6782 ari: 0.7143 f1: 0.8943
epoch: 004 acc: 0.8357 nmi: 0.5919 ari: 0.5978 f1: 0.8232
epoch: 005 acc: 0.8807 nmi: 0.6500 ari: 0.6853 f1: 0.8763
epoch: 006 acc: 0.9084 nmi: 0.6969 ari: 0.7494 f1: 0.9078
epoch: 007 acc: 0.9107 nmi: 0.7035 ari: 0.7552 f1: 0.9107
epoch: 008 acc: 0.9104 nmi: 0.7082 ari: 0.7551 f1: 0.9101
epoch: 009 acc: 0.9081 nmi: 0.7041 ari: 0.7496 f1: 0.9074
epoch: 010 acc: 0.9028 nmi: 0.6901 ari: 0.7365 f1: 0.9014
epoch: 011 acc: 0.9045 nmi: 0.6924 ari: 0.7403 f1: 0.9029
epoch: 012 acc: 0.9074 nmi: 0.6959 ari: 0.7472 f1: 0.9062
epoch: 013 acc: 0.9131 nmi: 0.7065 ari: 0.7609 f1: 0.9123
epoch: 014 acc: 0.9200 nmi: 0.7217 ari: 0.7779 f1: 0.9197
epoch: 015 acc: 0.9203 nmi: 0.7189 ari: 0.7781 f1: 0.9203
epoch: 016 acc: 0.9230 nmi: 0.7255 ari: 0.7848 f1: 0.9231
epoch: 017 acc: 0.9223 nmi: 0.7229 ari: 0.7830 f1: 0.9224
epoch: 018 acc: 0.9250 nmi: 0.7296 ari: 0.7897 f1: 0.9251
epoch: 019 acc: 0.9233 nmi: 0.7227 ari: 0.7853 f1: 0.9233
epoch: 020 acc: 0.9260 nmi: 0.7308 ari: 0.7922 f1: 0.9260
epoch: 021 acc: 0.9240 nmi: 0.7258 ari: 0.7871 f1: 0.9240
epoch: 022 acc: 0.9256 nmi: 0.7289 ari: 0.7911 f1: 0.9258
epoch: 023 acc: 0.9246 nmi: 0.7280 ari: 0.7888 f1: 0.9248
epoch: 024 acc: 0.9243 nmi: 0.7279 ari: 0.7880 f1: 0.9244
epoch: 025 acc: 0.9263 nmi: 0.7333 ari: 0.7930 f1: 0.9265
epoch: 026 acc: 0.9256 nmi: 0.7307 ari: 0.7914 f1: 0.9257
epoch: 027 acc: 0.9250 nmi: 0.7294 ari: 0.7896 f1: 0.9251
epoch: 028 acc: 0.9256 nmi: 0.7312 ari: 0.7913 f1: 0.9258
epoch: 029 acc: 0.9263 nmi: 0.7324 ari: 0.7930 f1: 0.9264
epoch: 030 acc: 0.9263 nmi: 0.7328 ari: 0.7930 f1: 0.9265
epoch: 031 acc: 0.9256 nmi: 0.7308 ari: 0.7913 f1: 0.9258
epoch: 032 acc: 0.9250 nmi: 0.7277 ari: 0.7895 f1: 0.9251
epoch: 033 acc: 0.9246 nmi: 0.7273 ari: 0.7887 f1: 0.9247
epoch: 034 acc: 0.9256 nmi: 0.7297 ari: 0.7912 f1: 0.9257
epoch: 035 acc: 0.9263 nmi: 0.7333 ari: 0.7930 f1: 0.9265
epoch: 036 acc: 0.9260 nmi: 0.7311 ari: 0.7921 f1: 0.9261
epoch: 037 acc: 0.9269 nmi: 0.7346 ari: 0.7947 f1: 0.9271
epoch: 038 acc: 0.9250 nmi: 0.7280 ari: 0.7895 f1: 0.9251
epoch: 039 acc: 0.9250 nmi: 0.7287 ari: 0.7895 f1: 0.9251
epoch: 040 acc: 0.9250 nmi: 0.7281 ari: 0.7894 f1: 0.9251
epoch: 041 acc: 0.9240 nmi: 0.7252 ari: 0.7869 f1: 0.9241
epoch: 042 acc: 0.9256 nmi: 0.7302 ari: 0.7912 f1: 0.9258
epoch: 043 acc: 0.9260 nmi: 0.7312 ari: 0.7921 f1: 0.9261
epoch: 044 acc: 0.9256 nmi: 0.7302 ari: 0.7912 f1: 0.9258
epoch: 045 acc: 0.9256 nmi: 0.7303 ari: 0.7912 f1: 0.9258
epoch: 046 acc: 0.9253 nmi: 0.7288 ari: 0.7903 f1: 0.9254
epoch: 047 acc: 0.9236 nmi: 0.7247 ari: 0.7860 f1: 0.9238
epoch: 048 acc: 0.9253 nmi: 0.7290 ari: 0.7903 f1: 0.9254
epoch: 049 acc: 0.9246 nmi: 0.7276 ari: 0.7886 f1: 0.9248
epoch: 050 acc: 0.9246 nmi: 0.7271 ari: 0.7885 f1: 0.9248
The total number of parameters is: 1.093168M(1e6).
The max memory allocated to model is: 636.85 MB.
Time consuming: 3.72s or 0.06m
****************************************Training loop No.9****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=1870, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.9031 nmi: 0.6746 ari: 0.7350 f1: 0.9028
epoch: 002 acc: 0.3871 nmi: 0.0923 ari: 0.0037 f1: 0.2748
epoch: 003 acc: 0.8949 nmi: 0.6772 ari: 0.7152 f1: 0.8948
epoch: 004 acc: 0.8208 nmi: 0.5724 ari: 0.5722 f1: 0.8052
epoch: 005 acc: 0.8770 nmi: 0.6440 ari: 0.6774 f1: 0.8721
epoch: 006 acc: 0.9078 nmi: 0.6931 ari: 0.7479 f1: 0.9069
epoch: 007 acc: 0.9117 nmi: 0.7035 ari: 0.7574 f1: 0.9117
epoch: 008 acc: 0.9107 nmi: 0.7060 ari: 0.7557 f1: 0.9104
epoch: 009 acc: 0.9074 nmi: 0.7009 ari: 0.7478 f1: 0.9065
epoch: 010 acc: 0.9008 nmi: 0.6883 ari: 0.7325 f1: 0.8991
epoch: 011 acc: 0.9015 nmi: 0.6891 ari: 0.7338 f1: 0.8996
epoch: 012 acc: 0.9055 nmi: 0.6965 ari: 0.7433 f1: 0.9038
epoch: 013 acc: 0.9114 nmi: 0.7075 ari: 0.7573 f1: 0.9104
epoch: 014 acc: 0.9160 nmi: 0.7138 ari: 0.7681 f1: 0.9155
epoch: 015 acc: 0.9203 nmi: 0.7217 ari: 0.7786 f1: 0.9201
epoch: 016 acc: 0.9200 nmi: 0.7187 ari: 0.7774 f1: 0.9199
epoch: 017 acc: 0.9236 nmi: 0.7265 ari: 0.7863 f1: 0.9238
epoch: 018 acc: 0.9230 nmi: 0.7237 ari: 0.7846 f1: 0.9231
epoch: 019 acc: 0.9223 nmi: 0.7218 ari: 0.7829 f1: 0.9224
epoch: 020 acc: 0.9250 nmi: 0.7290 ari: 0.7898 f1: 0.9250
epoch: 021 acc: 0.9260 nmi: 0.7308 ari: 0.7924 f1: 0.9259
epoch: 022 acc: 0.9223 nmi: 0.7231 ari: 0.7830 f1: 0.9224
epoch: 023 acc: 0.9240 nmi: 0.7273 ari: 0.7874 f1: 0.9240
epoch: 024 acc: 0.9273 nmi: 0.7347 ari: 0.7958 f1: 0.9272
epoch: 025 acc: 0.9250 nmi: 0.7295 ari: 0.7898 f1: 0.9250
epoch: 026 acc: 0.9269 nmi: 0.7340 ari: 0.7949 f1: 0.9269
epoch: 027 acc: 0.9253 nmi: 0.7297 ari: 0.7906 f1: 0.9253
epoch: 028 acc: 0.9256 nmi: 0.7315 ari: 0.7915 f1: 0.9257
epoch: 029 acc: 0.9256 nmi: 0.7304 ari: 0.7915 f1: 0.9256
epoch: 030 acc: 0.9269 nmi: 0.7336 ari: 0.7949 f1: 0.9270
epoch: 031 acc: 0.9253 nmi: 0.7294 ari: 0.7905 f1: 0.9254
epoch: 032 acc: 0.9253 nmi: 0.7290 ari: 0.7905 f1: 0.9253
epoch: 033 acc: 0.9260 nmi: 0.7308 ari: 0.7922 f1: 0.9260
epoch: 034 acc: 0.9263 nmi: 0.7325 ari: 0.7931 f1: 0.9264
epoch: 035 acc: 0.9266 nmi: 0.7318 ari: 0.7938 f1: 0.9267
epoch: 036 acc: 0.9263 nmi: 0.7311 ari: 0.7929 f1: 0.9264
epoch: 037 acc: 0.9256 nmi: 0.7301 ari: 0.7913 f1: 0.9257
epoch: 038 acc: 0.9276 nmi: 0.7349 ari: 0.7964 f1: 0.9277
epoch: 039 acc: 0.9263 nmi: 0.7314 ari: 0.7929 f1: 0.9264
epoch: 040 acc: 0.9263 nmi: 0.7314 ari: 0.7929 f1: 0.9264
epoch: 041 acc: 0.9260 nmi: 0.7310 ari: 0.7922 f1: 0.9260
epoch: 042 acc: 0.9260 nmi: 0.7303 ari: 0.7922 f1: 0.9260
epoch: 043 acc: 0.9250 nmi: 0.7279 ari: 0.7895 f1: 0.9251
epoch: 044 acc: 0.9269 nmi: 0.7341 ari: 0.7948 f1: 0.9270
epoch: 045 acc: 0.9256 nmi: 0.7295 ari: 0.7912 f1: 0.9258
epoch: 046 acc: 0.9253 nmi: 0.7284 ari: 0.7904 f1: 0.9254
epoch: 047 acc: 0.9266 nmi: 0.7323 ari: 0.7938 f1: 0.9267
epoch: 048 acc: 0.9250 nmi: 0.7279 ari: 0.7895 f1: 0.9251
epoch: 049 acc: 0.9256 nmi: 0.7300 ari: 0.7912 f1: 0.9258
epoch: 050 acc: 0.9266 nmi: 0.7319 ari: 0.7938 f1: 0.9267
The total number of parameters is: 1.093168M(1e6).
The max memory allocated to model is: 636.85 MB.
Time consuming: 3.7s or 0.06m
****************************************Training loop No.10****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=1870, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.9041 nmi: 0.6776 ari: 0.7376 f1: 0.9038
epoch: 002 acc: 0.4099 nmi: 0.1221 ari: 0.0123 f1: 0.3087
epoch: 003 acc: 0.8866 nmi: 0.6579 ari: 0.6944 f1: 0.8864
epoch: 004 acc: 0.8324 nmi: 0.5841 ari: 0.5909 f1: 0.8191
epoch: 005 acc: 0.8774 nmi: 0.6431 ari: 0.6777 f1: 0.8727
epoch: 006 acc: 0.9081 nmi: 0.6972 ari: 0.7490 f1: 0.9072
epoch: 007 acc: 0.9048 nmi: 0.6929 ari: 0.7412 f1: 0.9045
epoch: 008 acc: 0.9088 nmi: 0.7051 ari: 0.7509 f1: 0.9085
epoch: 009 acc: 0.9058 nmi: 0.7013 ari: 0.7442 f1: 0.9052
epoch: 010 acc: 0.9051 nmi: 0.6957 ari: 0.7421 f1: 0.9039
epoch: 011 acc: 0.9061 nmi: 0.6964 ari: 0.7446 f1: 0.9050
epoch: 012 acc: 0.9071 nmi: 0.6967 ari: 0.7466 f1: 0.9060
epoch: 013 acc: 0.9154 nmi: 0.7138 ari: 0.7667 f1: 0.9148
epoch: 014 acc: 0.9190 nmi: 0.7192 ari: 0.7754 f1: 0.9188
epoch: 015 acc: 0.9203 nmi: 0.7201 ari: 0.7782 f1: 0.9204
epoch: 016 acc: 0.9217 nmi: 0.7220 ari: 0.7812 f1: 0.9218
epoch: 017 acc: 0.9250 nmi: 0.7308 ari: 0.7896 f1: 0.9252
epoch: 018 acc: 0.9250 nmi: 0.7297 ari: 0.7896 f1: 0.9252
epoch: 019 acc: 0.9243 nmi: 0.7282 ari: 0.7879 f1: 0.9245
epoch: 020 acc: 0.9269 nmi: 0.7351 ari: 0.7948 f1: 0.9271
epoch: 021 acc: 0.9243 nmi: 0.7279 ari: 0.7880 f1: 0.9244
epoch: 022 acc: 0.9250 nmi: 0.7298 ari: 0.7896 f1: 0.9251
epoch: 023 acc: 0.9250 nmi: 0.7283 ari: 0.7895 f1: 0.9251
epoch: 024 acc: 0.9250 nmi: 0.7296 ari: 0.7896 f1: 0.9251
epoch: 025 acc: 0.9243 nmi: 0.7278 ari: 0.7879 f1: 0.9245
epoch: 026 acc: 0.9243 nmi: 0.7273 ari: 0.7878 f1: 0.9245
epoch: 027 acc: 0.9263 nmi: 0.7324 ari: 0.7930 f1: 0.9264
epoch: 028 acc: 0.9243 nmi: 0.7270 ari: 0.7876 f1: 0.9246
epoch: 029 acc: 0.9253 nmi: 0.7302 ari: 0.7903 f1: 0.9255
epoch: 030 acc: 0.9253 nmi: 0.7295 ari: 0.7904 f1: 0.9254
epoch: 031 acc: 0.9263 nmi: 0.7317 ari: 0.7928 f1: 0.9265
epoch: 032 acc: 0.9246 nmi: 0.7275 ari: 0.7885 f1: 0.9248
epoch: 033 acc: 0.9266 nmi: 0.7324 ari: 0.7937 f1: 0.9268
epoch: 034 acc: 0.9243 nmi: 0.7256 ari: 0.7876 f1: 0.9245
epoch: 035 acc: 0.9260 nmi: 0.7316 ari: 0.7921 f1: 0.9261
epoch: 036 acc: 0.9243 nmi: 0.7257 ari: 0.7876 f1: 0.9245
epoch: 037 acc: 0.9263 nmi: 0.7313 ari: 0.7929 f1: 0.9264
epoch: 038 acc: 0.9260 nmi: 0.7314 ari: 0.7920 f1: 0.9262
epoch: 039 acc: 0.9260 nmi: 0.7310 ari: 0.7920 f1: 0.9261
epoch: 040 acc: 0.9253 nmi: 0.7293 ari: 0.7902 f1: 0.9255
epoch: 041 acc: 0.9260 nmi: 0.7314 ari: 0.7920 f1: 0.9262
epoch: 042 acc: 0.9243 nmi: 0.7261 ari: 0.7877 f1: 0.9244
epoch: 043 acc: 0.9263 nmi: 0.7313 ari: 0.7927 f1: 0.9265
epoch: 044 acc: 0.9273 nmi: 0.7347 ari: 0.7954 f1: 0.9275
epoch: 045 acc: 0.9276 nmi: 0.7359 ari: 0.7963 f1: 0.9278
epoch: 046 acc: 0.9263 nmi: 0.7315 ari: 0.7928 f1: 0.9265
epoch: 047 acc: 0.9246 nmi: 0.7269 ari: 0.7884 f1: 0.9248
epoch: 048 acc: 0.9269 nmi: 0.7340 ari: 0.7946 f1: 0.9271
epoch: 049 acc: 0.9263 nmi: 0.7321 ari: 0.7929 f1: 0.9265
epoch: 050 acc: 0.9263 nmi: 0.7323 ari: 0.7928 f1: 0.9265
The total number of parameters is: 1.093168M(1e6).
The max memory allocated to model is: 636.85 MB.
Time consuming: 3.73s or 0.06m
Namespace(is_pretrain=False, plot_clustering_tsne=False, plot_embedding_heatmap=False, adj_norm=False, adj_loop=True, adj_symmetric=True, desc='default', model_name='SYNC', dataset_name='acm', root=None, k=None, t=None, loops=10, feature_type='tensor', label_type='npy', adj_type='tensor', seed=325, epsilon=0.0, device='cuda', clusters=3, nodes=3025, lr=0.002, max_epoch=50, pretrain_lr=0.001, pretrain_epoch=30, input_dim=1870, log_save_path='./logs/SYNC/acm/', dataset_path='../data/', clustering_tsne_save_path='./img/clustering/SYNC/acm/', embedding_heatmap_save_path='./img/heatmap/SYNC/acm/', pretrain_save_path='./pretrain/pretrain_tigae/SYNC/acm/', hidden_dim=256, embedding_dim=16, linear_dim=512, beta=1)
Total loops: 10
****************************************Mean value:****************************************
acc: 0.9273±0.0004 nmi: 0.7358±0.0022 ari: 0.7958±0.0012 f1: 0.9274±0.0004
Training over! Punch out!
Loading dblp dataset from local
****************************************Training loop No.1****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=334, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.7754 nmi: 0.4461 ari: 0.4991 f1: 0.7709
epoch: 002 acc: 0.3071 nmi: 0.0493 ari: 0.0018 f1: 0.1581
epoch: 003 acc: 0.8001 nmi: 0.4856 ari: 0.5461 f1: 0.7917
epoch: 004 acc: 0.6160 nmi: 0.3590 ari: 0.2745 f1: 0.5774
epoch: 005 acc: 0.8117 nmi: 0.5090 ari: 0.5723 f1: 0.8035
epoch: 006 acc: 0.8035 nmi: 0.5031 ari: 0.5586 f1: 0.7964
epoch: 007 acc: 0.8193 nmi: 0.5215 ari: 0.5871 f1: 0.8117
epoch: 008 acc: 0.8208 nmi: 0.5293 ari: 0.5915 f1: 0.8101
epoch: 009 acc: 0.8129 nmi: 0.5227 ari: 0.5806 f1: 0.7967
epoch: 010 acc: 0.8122 nmi: 0.5177 ari: 0.5784 f1: 0.7968
epoch: 011 acc: 0.8230 nmi: 0.5340 ari: 0.5977 f1: 0.8109
epoch: 012 acc: 0.8312 nmi: 0.5458 ari: 0.6121 f1: 0.8220
epoch: 013 acc: 0.8314 nmi: 0.5438 ari: 0.6104 f1: 0.8246
epoch: 014 acc: 0.8361 nmi: 0.5523 ari: 0.6193 f1: 0.8304
epoch: 015 acc: 0.8312 nmi: 0.5438 ari: 0.6094 f1: 0.8257
epoch: 016 acc: 0.8326 nmi: 0.5485 ari: 0.6128 f1: 0.8274
epoch: 017 acc: 0.8312 nmi: 0.5467 ari: 0.6098 f1: 0.8260
epoch: 018 acc: 0.8326 nmi: 0.5474 ari: 0.6128 f1: 0.8272
epoch: 019 acc: 0.8292 nmi: 0.5406 ari: 0.6054 f1: 0.8236
epoch: 020 acc: 0.8287 nmi: 0.5402 ari: 0.6053 f1: 0.8225
epoch: 021 acc: 0.8294 nmi: 0.5407 ari: 0.6067 f1: 0.8232
epoch: 022 acc: 0.8299 nmi: 0.5421 ari: 0.6075 f1: 0.8239
epoch: 023 acc: 0.8309 nmi: 0.5439 ari: 0.6091 f1: 0.8251
epoch: 024 acc: 0.8280 nmi: 0.5376 ari: 0.6035 f1: 0.8219
epoch: 025 acc: 0.8284 nmi: 0.5384 ari: 0.6035 f1: 0.8230
epoch: 026 acc: 0.8297 nmi: 0.5418 ari: 0.6064 f1: 0.8244
epoch: 027 acc: 0.8284 nmi: 0.5398 ari: 0.6039 f1: 0.8230
epoch: 028 acc: 0.8309 nmi: 0.5445 ari: 0.6086 f1: 0.8258
epoch: 029 acc: 0.8284 nmi: 0.5407 ari: 0.6046 f1: 0.8229
epoch: 030 acc: 0.8294 nmi: 0.5411 ari: 0.6055 f1: 0.8243
epoch: 031 acc: 0.8280 nmi: 0.5377 ari: 0.6026 f1: 0.8227
epoch: 032 acc: 0.8282 nmi: 0.5396 ari: 0.6041 f1: 0.8227
epoch: 033 acc: 0.8302 nmi: 0.5423 ari: 0.6066 f1: 0.8252
epoch: 034 acc: 0.8284 nmi: 0.5401 ari: 0.6047 f1: 0.8228
epoch: 035 acc: 0.8275 nmi: 0.5382 ari: 0.6012 f1: 0.8224
epoch: 036 acc: 0.8272 nmi: 0.5379 ari: 0.6009 f1: 0.8222
epoch: 037 acc: 0.8265 nmi: 0.5367 ari: 0.5996 f1: 0.8213
epoch: 038 acc: 0.8275 nmi: 0.5382 ari: 0.6009 f1: 0.8227
epoch: 039 acc: 0.8275 nmi: 0.5378 ari: 0.6008 f1: 0.8226
epoch: 040 acc: 0.8270 nmi: 0.5387 ari: 0.6003 f1: 0.8220
epoch: 041 acc: 0.8255 nmi: 0.5356 ari: 0.5968 f1: 0.8208
epoch: 042 acc: 0.8245 nmi: 0.5338 ari: 0.5953 f1: 0.8196
epoch: 043 acc: 0.8225 nmi: 0.5316 ari: 0.5907 f1: 0.8180
epoch: 044 acc: 0.8208 nmi: 0.5286 ari: 0.5877 f1: 0.8161
epoch: 045 acc: 0.8233 nmi: 0.5328 ari: 0.5927 f1: 0.8185
epoch: 046 acc: 0.8245 nmi: 0.5359 ari: 0.5951 f1: 0.8199
epoch: 047 acc: 0.8215 nmi: 0.5303 ari: 0.5893 f1: 0.8168
epoch: 048 acc: 0.8198 nmi: 0.5271 ari: 0.5855 f1: 0.8152
epoch: 049 acc: 0.8186 nmi: 0.5263 ari: 0.5830 f1: 0.8141
epoch: 050 acc: 0.8196 nmi: 0.5275 ari: 0.5847 f1: 0.8151
The total number of parameters is: 0.306752M(1e6).
The max memory allocated to model is: 1048.10 MB.
Time consuming: 10.34s or 0.17m
****************************************Training loop No.2****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=334, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.7695 nmi: 0.4365 ari: 0.4869 f1: 0.7655
epoch: 002 acc: 0.3071 nmi: 0.0535 ari: 0.0018 f1: 0.1601
epoch: 003 acc: 0.7927 nmi: 0.4743 ari: 0.5315 f1: 0.7844
epoch: 004 acc: 0.6172 nmi: 0.3611 ari: 0.2715 f1: 0.5868
epoch: 005 acc: 0.8149 nmi: 0.5145 ari: 0.5779 f1: 0.8091
epoch: 006 acc: 0.8031 nmi: 0.5042 ari: 0.5568 f1: 0.7965
epoch: 007 acc: 0.8156 nmi: 0.5159 ari: 0.5811 f1: 0.8077
epoch: 008 acc: 0.8220 nmi: 0.5292 ari: 0.5927 f1: 0.8125
epoch: 009 acc: 0.8186 nmi: 0.5265 ari: 0.5885 f1: 0.8059
epoch: 010 acc: 0.8233 nmi: 0.5338 ari: 0.5983 f1: 0.8115
epoch: 011 acc: 0.8247 nmi: 0.5343 ari: 0.5983 f1: 0.8155
epoch: 012 acc: 0.8319 nmi: 0.5447 ari: 0.6116 f1: 0.8249
epoch: 013 acc: 0.8341 nmi: 0.5488 ari: 0.6160 f1: 0.8282
epoch: 014 acc: 0.8349 nmi: 0.5517 ari: 0.6171 f1: 0.8297
epoch: 015 acc: 0.8297 nmi: 0.5418 ari: 0.6069 f1: 0.8244
epoch: 016 acc: 0.8324 nmi: 0.5492 ari: 0.6129 f1: 0.8272
epoch: 017 acc: 0.8321 nmi: 0.5478 ari: 0.6118 f1: 0.8271
epoch: 018 acc: 0.8299 nmi: 0.5448 ari: 0.6082 f1: 0.8246
epoch: 019 acc: 0.8297 nmi: 0.5435 ari: 0.6079 f1: 0.8239
epoch: 020 acc: 0.8289 nmi: 0.5419 ari: 0.6062 f1: 0.8233
epoch: 021 acc: 0.8289 nmi: 0.5395 ari: 0.6048 f1: 0.8234
epoch: 022 acc: 0.8284 nmi: 0.5397 ari: 0.6049 f1: 0.8225
epoch: 023 acc: 0.8297 nmi: 0.5420 ari: 0.6066 f1: 0.8242
epoch: 024 acc: 0.8299 nmi: 0.5425 ari: 0.6076 f1: 0.8241
epoch: 025 acc: 0.8275 nmi: 0.5385 ari: 0.6018 f1: 0.8222
epoch: 026 acc: 0.8277 nmi: 0.5391 ari: 0.6034 f1: 0.8222
epoch: 027 acc: 0.8275 nmi: 0.5387 ari: 0.6020 f1: 0.8224
epoch: 028 acc: 0.8289 nmi: 0.5430 ari: 0.6056 f1: 0.8237
epoch: 029 acc: 0.8287 nmi: 0.5407 ari: 0.6052 f1: 0.8232
epoch: 030 acc: 0.8262 nmi: 0.5366 ari: 0.5992 f1: 0.8213
epoch: 031 acc: 0.8280 nmi: 0.5405 ari: 0.6031 f1: 0.8229
epoch: 032 acc: 0.8280 nmi: 0.5407 ari: 0.6035 f1: 0.8228
epoch: 033 acc: 0.8245 nmi: 0.5339 ari: 0.5962 f1: 0.8194
epoch: 034 acc: 0.8247 nmi: 0.5346 ari: 0.5963 f1: 0.8198
epoch: 035 acc: 0.8247 nmi: 0.5346 ari: 0.5963 f1: 0.8198
epoch: 036 acc: 0.8247 nmi: 0.5351 ari: 0.5966 f1: 0.8198
epoch: 037 acc: 0.8243 nmi: 0.5356 ari: 0.5959 f1: 0.8193
epoch: 038 acc: 0.8243 nmi: 0.5332 ari: 0.5955 f1: 0.8192
epoch: 039 acc: 0.8245 nmi: 0.5349 ari: 0.5970 f1: 0.8191
epoch: 040 acc: 0.8235 nmi: 0.5334 ari: 0.5939 f1: 0.8187
epoch: 041 acc: 0.8225 nmi: 0.5305 ari: 0.5918 f1: 0.8176
epoch: 042 acc: 0.8206 nmi: 0.5266 ari: 0.5881 f1: 0.8156
epoch: 043 acc: 0.8233 nmi: 0.5333 ari: 0.5945 f1: 0.8181
epoch: 044 acc: 0.8235 nmi: 0.5333 ari: 0.5951 f1: 0.8182
epoch: 045 acc: 0.8228 nmi: 0.5318 ari: 0.5930 f1: 0.8177
epoch: 046 acc: 0.8215 nmi: 0.5294 ari: 0.5898 f1: 0.8168
epoch: 047 acc: 0.8206 nmi: 0.5270 ari: 0.5875 f1: 0.8158
epoch: 048 acc: 0.8186 nmi: 0.5230 ari: 0.5847 f1: 0.8133
epoch: 049 acc: 0.8208 nmi: 0.5281 ari: 0.5889 f1: 0.8157
epoch: 050 acc: 0.8215 nmi: 0.5293 ari: 0.5899 f1: 0.8167
The total number of parameters is: 0.306752M(1e6).
The max memory allocated to model is: 1051.31 MB.
Time consuming: 7.46s or 0.12m
****************************************Training loop No.3****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=334, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.7740 nmi: 0.4440 ari: 0.4963 f1: 0.7696
epoch: 002 acc: 0.3091 nmi: 0.0481 ari: 0.0021 f1: 0.1592
epoch: 003 acc: 0.7966 nmi: 0.4810 ari: 0.5398 f1: 0.7878
epoch: 004 acc: 0.6256 nmi: 0.3623 ari: 0.2842 f1: 0.5915
epoch: 005 acc: 0.8154 nmi: 0.5146 ari: 0.5800 f1: 0.8081
epoch: 006 acc: 0.8080 nmi: 0.5110 ari: 0.5675 f1: 0.8011
epoch: 007 acc: 0.8215 nmi: 0.5256 ari: 0.5915 f1: 0.8139
epoch: 008 acc: 0.8250 nmi: 0.5368 ari: 0.5992 f1: 0.8143
epoch: 009 acc: 0.8107 nmi: 0.5175 ari: 0.5752 f1: 0.7947
epoch: 010 acc: 0.8181 nmi: 0.5285 ari: 0.5882 f1: 0.8043
epoch: 011 acc: 0.8235 nmi: 0.5338 ari: 0.5975 f1: 0.8124
epoch: 012 acc: 0.8277 nmi: 0.5398 ari: 0.6051 f1: 0.8188
epoch: 013 acc: 0.8307 nmi: 0.5433 ari: 0.6083 f1: 0.8243
epoch: 014 acc: 0.8309 nmi: 0.5440 ari: 0.6089 f1: 0.8254
epoch: 015 acc: 0.8331 nmi: 0.5487 ari: 0.6140 f1: 0.8277
epoch: 016 acc: 0.8275 nmi: 0.5393 ari: 0.6018 f1: 0.8224
epoch: 017 acc: 0.8275 nmi: 0.5389 ari: 0.6014 f1: 0.8225
epoch: 018 acc: 0.8262 nmi: 0.5365 ari: 0.6009 f1: 0.8202
epoch: 019 acc: 0.8272 nmi: 0.5389 ari: 0.6027 f1: 0.8211
epoch: 020 acc: 0.8297 nmi: 0.5427 ari: 0.6078 f1: 0.8235
epoch: 021 acc: 0.8289 nmi: 0.5416 ari: 0.6055 f1: 0.8229
epoch: 022 acc: 0.8257 nmi: 0.5344 ari: 0.5989 f1: 0.8196
epoch: 023 acc: 0.8282 nmi: 0.5388 ari: 0.6038 f1: 0.8223
epoch: 024 acc: 0.8297 nmi: 0.5431 ari: 0.6078 f1: 0.8234
epoch: 025 acc: 0.8289 nmi: 0.5398 ari: 0.6049 f1: 0.8233
epoch: 026 acc: 0.8270 nmi: 0.5364 ari: 0.6014 f1: 0.8210
epoch: 027 acc: 0.8287 nmi: 0.5391 ari: 0.6036 f1: 0.8235
epoch: 028 acc: 0.8287 nmi: 0.5393 ari: 0.6045 f1: 0.8231
epoch: 029 acc: 0.8329 nmi: 0.5479 ari: 0.6130 f1: 0.8275
epoch: 030 acc: 0.8302 nmi: 0.5425 ari: 0.6072 f1: 0.8249
epoch: 031 acc: 0.8307 nmi: 0.5441 ari: 0.6089 f1: 0.8250
epoch: 032 acc: 0.8297 nmi: 0.5414 ari: 0.6068 f1: 0.8239
epoch: 033 acc: 0.8309 nmi: 0.5429 ari: 0.6083 f1: 0.8257
epoch: 034 acc: 0.8299 nmi: 0.5429 ari: 0.6074 f1: 0.8245
epoch: 035 acc: 0.8282 nmi: 0.5383 ari: 0.6027 f1: 0.8231
epoch: 036 acc: 0.8275 nmi: 0.5375 ari: 0.6016 f1: 0.8223
epoch: 037 acc: 0.8292 nmi: 0.5412 ari: 0.6059 f1: 0.8236
epoch: 038 acc: 0.8272 nmi: 0.5371 ari: 0.6019 f1: 0.8216
epoch: 039 acc: 0.8250 nmi: 0.5328 ari: 0.5968 f1: 0.8197
epoch: 040 acc: 0.8260 nmi: 0.5352 ari: 0.5993 f1: 0.8205
epoch: 041 acc: 0.8257 nmi: 0.5345 ari: 0.5984 f1: 0.8204
epoch: 042 acc: 0.8247 nmi: 0.5331 ari: 0.5967 f1: 0.8193
epoch: 043 acc: 0.8280 nmi: 0.5387 ari: 0.6033 f1: 0.8224
epoch: 044 acc: 0.8260 nmi: 0.5349 ari: 0.5995 f1: 0.8204
epoch: 045 acc: 0.8255 nmi: 0.5335 ari: 0.5984 f1: 0.8199
epoch: 046 acc: 0.8260 nmi: 0.5357 ari: 0.5991 f1: 0.8207
epoch: 047 acc: 0.8260 nmi: 0.5348 ari: 0.5993 f1: 0.8204
epoch: 048 acc: 0.8238 nmi: 0.5297 ari: 0.5940 f1: 0.8184
epoch: 049 acc: 0.8255 nmi: 0.5339 ari: 0.5975 f1: 0.8203
epoch: 050 acc: 0.8250 nmi: 0.5331 ari: 0.5970 f1: 0.8196
The total number of parameters is: 0.306752M(1e6).
The max memory allocated to model is: 1051.31 MB.
Time consuming: 7.57s or 0.13m
****************************************Training loop No.4****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=334, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.7725 nmi: 0.4405 ari: 0.4934 f1: 0.7679
epoch: 002 acc: 0.3071 nmi: 0.0450 ari: 0.0015 f1: 0.1544
epoch: 003 acc: 0.7957 nmi: 0.4811 ari: 0.5386 f1: 0.7853
epoch: 004 acc: 0.6133 nmi: 0.3595 ari: 0.2734 f1: 0.5795
epoch: 005 acc: 0.8139 nmi: 0.5152 ari: 0.5775 f1: 0.8074
epoch: 006 acc: 0.8026 nmi: 0.5024 ari: 0.5569 f1: 0.7956
epoch: 007 acc: 0.8220 nmi: 0.5284 ari: 0.5944 f1: 0.8134
epoch: 008 acc: 0.8223 nmi: 0.5325 ari: 0.5946 f1: 0.8110
epoch: 009 acc: 0.8174 nmi: 0.5286 ari: 0.5889 f1: 0.8021
epoch: 010 acc: 0.8211 nmi: 0.5315 ari: 0.5945 f1: 0.8078
epoch: 011 acc: 0.8247 nmi: 0.5353 ari: 0.6016 f1: 0.8132
epoch: 012 acc: 0.8326 nmi: 0.5472 ari: 0.6139 f1: 0.8249
epoch: 013 acc: 0.8319 nmi: 0.5448 ari: 0.6120 f1: 0.8254
epoch: 014 acc: 0.8353 nmi: 0.5528 ari: 0.6189 f1: 0.8298
epoch: 015 acc: 0.8314 nmi: 0.5461 ari: 0.6110 f1: 0.8258
epoch: 016 acc: 0.8312 nmi: 0.5461 ari: 0.6104 f1: 0.8258
epoch: 017 acc: 0.8292 nmi: 0.5423 ari: 0.6064 f1: 0.8238
epoch: 018 acc: 0.8267 nmi: 0.5380 ari: 0.6022 f1: 0.8208
epoch: 019 acc: 0.8304 nmi: 0.5438 ari: 0.6090 f1: 0.8246
epoch: 020 acc: 0.8297 nmi: 0.5424 ari: 0.6076 f1: 0.8235
epoch: 021 acc: 0.8282 nmi: 0.5399 ari: 0.6051 f1: 0.8219
epoch: 022 acc: 0.8243 nmi: 0.5335 ari: 0.5981 f1: 0.8174
epoch: 023 acc: 0.8272 nmi: 0.5385 ari: 0.6037 f1: 0.8207
epoch: 024 acc: 0.8270 nmi: 0.5375 ari: 0.6023 f1: 0.8209
epoch: 025 acc: 0.8275 nmi: 0.5386 ari: 0.6033 f1: 0.8216
epoch: 026 acc: 0.8260 nmi: 0.5355 ari: 0.5997 f1: 0.8203
epoch: 027 acc: 0.8260 nmi: 0.5358 ari: 0.5994 f1: 0.8206
epoch: 028 acc: 0.8267 nmi: 0.5372 ari: 0.6016 f1: 0.8211
epoch: 029 acc: 0.8265 nmi: 0.5374 ari: 0.6010 f1: 0.8209
epoch: 030 acc: 0.8262 nmi: 0.5369 ari: 0.6004 f1: 0.8208
epoch: 031 acc: 0.8257 nmi: 0.5355 ari: 0.5994 f1: 0.8202
epoch: 032 acc: 0.8265 nmi: 0.5380 ari: 0.6006 f1: 0.8213
epoch: 033 acc: 0.8257 nmi: 0.5372 ari: 0.5989 f1: 0.8207
epoch: 034 acc: 0.8250 nmi: 0.5352 ari: 0.5973 f1: 0.8199
epoch: 035 acc: 0.8267 nmi: 0.5390 ari: 0.6018 f1: 0.8213
epoch: 036 acc: 0.8238 nmi: 0.5343 ari: 0.5949 f1: 0.8188
epoch: 037 acc: 0.8223 nmi: 0.5310 ari: 0.5919 f1: 0.8172
epoch: 038 acc: 0.8250 nmi: 0.5371 ari: 0.5973 f1: 0.8201
epoch: 039 acc: 0.8260 nmi: 0.5389 ari: 0.5997 f1: 0.8210
epoch: 040 acc: 0.8228 nmi: 0.5330 ari: 0.5930 f1: 0.8178
epoch: 041 acc: 0.8223 nmi: 0.5327 ari: 0.5924 f1: 0.8172
epoch: 042 acc: 0.8198 nmi: 0.5288 ari: 0.5870 f1: 0.8150
epoch: 043 acc: 0.8176 nmi: 0.5249 ari: 0.5827 f1: 0.8127
epoch: 044 acc: 0.8198 nmi: 0.5296 ari: 0.5870 f1: 0.8150
epoch: 045 acc: 0.8198 nmi: 0.5287 ari: 0.5867 f1: 0.8150
epoch: 046 acc: 0.8159 nmi: 0.5242 ari: 0.5789 f1: 0.8113
epoch: 047 acc: 0.8188 nmi: 0.5288 ari: 0.5850 f1: 0.8141
epoch: 048 acc: 0.8178 nmi: 0.5268 ari: 0.5826 f1: 0.8132
epoch: 049 acc: 0.8164 nmi: 0.5257 ari: 0.5807 f1: 0.8114
epoch: 050 acc: 0.8181 nmi: 0.5293 ari: 0.5836 f1: 0.8134
The total number of parameters is: 0.306752M(1e6).
The max memory allocated to model is: 1051.31 MB.
Time consuming: 7.53s or 0.13m
****************************************Training loop No.5****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=334, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.7747 nmi: 0.4447 ari: 0.4974 f1: 0.7703
epoch: 002 acc: 0.3113 nmi: 0.0540 ari: 0.0024 f1: 0.1633
epoch: 003 acc: 0.7897 nmi: 0.4723 ari: 0.5253 f1: 0.7808
epoch: 004 acc: 0.6345 nmi: 0.3677 ari: 0.2904 f1: 0.6041
epoch: 005 acc: 0.8149 nmi: 0.5140 ari: 0.5790 f1: 0.8085
epoch: 006 acc: 0.8035 nmi: 0.5043 ari: 0.5599 f1: 0.7965
epoch: 007 acc: 0.8146 nmi: 0.5137 ari: 0.5803 f1: 0.8058
epoch: 008 acc: 0.8211 nmi: 0.5294 ari: 0.5926 f1: 0.8098
epoch: 009 acc: 0.8178 nmi: 0.5263 ari: 0.5866 f1: 0.8046
epoch: 010 acc: 0.8213 nmi: 0.5309 ari: 0.5931 f1: 0.8091
epoch: 011 acc: 0.8228 nmi: 0.5319 ari: 0.5961 f1: 0.8121
epoch: 012 acc: 0.8324 nmi: 0.5461 ari: 0.6118 f1: 0.8255
epoch: 013 acc: 0.8314 nmi: 0.5446 ari: 0.6105 f1: 0.8251
epoch: 014 acc: 0.8336 nmi: 0.5487 ari: 0.6136 f1: 0.8287
epoch: 015 acc: 0.8304 nmi: 0.5434 ari: 0.6079 f1: 0.8252
epoch: 016 acc: 0.8275 nmi: 0.5399 ari: 0.6020 f1: 0.8225
epoch: 017 acc: 0.8302 nmi: 0.5444 ari: 0.6072 f1: 0.8254
epoch: 018 acc: 0.8282 nmi: 0.5410 ari: 0.6042 f1: 0.8227
epoch: 019 acc: 0.8302 nmi: 0.5447 ari: 0.6079 f1: 0.8247
epoch: 020 acc: 0.8267 nmi: 0.5370 ari: 0.6020 f1: 0.8204
epoch: 021 acc: 0.8277 nmi: 0.5396 ari: 0.6036 f1: 0.8217
epoch: 022 acc: 0.8257 nmi: 0.5357 ari: 0.5998 f1: 0.8197
epoch: 023 acc: 0.8275 nmi: 0.5399 ari: 0.6039 f1: 0.8212
epoch: 024 acc: 0.8275 nmi: 0.5397 ari: 0.6036 f1: 0.8215
epoch: 025 acc: 0.8326 nmi: 0.5487 ari: 0.6132 f1: 0.8271
epoch: 026 acc: 0.8260 nmi: 0.5365 ari: 0.5998 f1: 0.8204
epoch: 027 acc: 0.8304 nmi: 0.5442 ari: 0.6087 f1: 0.8249
epoch: 028 acc: 0.8287 nmi: 0.5416 ari: 0.6048 f1: 0.8234
epoch: 029 acc: 0.8280 nmi: 0.5395 ari: 0.6024 f1: 0.8232
epoch: 030 acc: 0.8289 nmi: 0.5424 ari: 0.6050 f1: 0.8240
epoch: 031 acc: 0.8280 nmi: 0.5402 ari: 0.6029 f1: 0.8230
epoch: 032 acc: 0.8304 nmi: 0.5442 ari: 0.6077 f1: 0.8255
epoch: 033 acc: 0.8280 nmi: 0.5414 ari: 0.6030 f1: 0.8230
epoch: 034 acc: 0.8245 nmi: 0.5339 ari: 0.5958 f1: 0.8194
epoch: 035 acc: 0.8265 nmi: 0.5375 ari: 0.6001 f1: 0.8213
epoch: 036 acc: 0.8252 nmi: 0.5344 ari: 0.5974 f1: 0.8201
epoch: 037 acc: 0.8247 nmi: 0.5345 ari: 0.5963 f1: 0.8198
epoch: 038 acc: 0.8243 nmi: 0.5352 ari: 0.5955 f1: 0.8194
epoch: 039 acc: 0.8260 nmi: 0.5374 ari: 0.5985 f1: 0.8211
epoch: 040 acc: 0.8235 nmi: 0.5330 ari: 0.5942 f1: 0.8185
epoch: 041 acc: 0.8233 nmi: 0.5342 ari: 0.5930 f1: 0.8186
epoch: 042 acc: 0.8230 nmi: 0.5334 ari: 0.5923 f1: 0.8184
epoch: 043 acc: 0.8213 nmi: 0.5314 ari: 0.5891 f1: 0.8166
epoch: 044 acc: 0.8203 nmi: 0.5306 ari: 0.5872 f1: 0.8157
epoch: 045 acc: 0.8203 nmi: 0.5299 ari: 0.5875 f1: 0.8155
epoch: 046 acc: 0.8206 nmi: 0.5315 ari: 0.5874 f1: 0.8161
epoch: 047 acc: 0.8174 nmi: 0.5261 ari: 0.5813 f1: 0.8128
epoch: 048 acc: 0.8220 nmi: 0.5344 ari: 0.5909 f1: 0.8174
epoch: 049 acc: 0.8166 nmi: 0.5249 ari: 0.5793 f1: 0.8122
epoch: 050 acc: 0.8176 nmi: 0.5260 ari: 0.5811 f1: 0.8133
The total number of parameters is: 0.306752M(1e6).
The max memory allocated to model is: 1051.31 MB.
Time consuming: 7.5s or 0.12m
****************************************Training loop No.6****************************************
SYNC(
(tigae): TIGAE(
(linear1): Linear(in_features=334, out_features=512, bias=True)
(gcn1): GCN(
(activate): ReLU()
)
(gcn2): GCN()
)
)
epoch: 001 acc: 0.7777 nmi: 0.4494 ari: 0.5028 f1: 0.7733
epoch: 002 acc: 0.3052 nmi: 0.0434 ari: 0.0013 f1: 0.1529
epoch: 003 acc: 0.8082 nmi: 0.5002 ari: 0.5623 f1: 0.8011
epoch: 004 acc: 0.6300 nmi: 0.3671 ari: 0.2919 f1: 0.5952
epoch: 005 acc: 0.8132 nmi: 0.5117 ari: 0.5749 f1: 0.8056
epoch: 006 acc: 0.8053 nmi: 0.5069 ari: 0.5614 f1: 0.7984
epoch: 007 acc: 0.8188 nmi: 0.5197 ari: 0.5859 f1: 0.8117
epoch: 008 acc: 0.8208 nmi: 0.5277 ari: 0.5914 f1: 0.8100
epoch: 009 acc: 0.8114 nmi: 0.5175 ari: 0.5759 f1: 0.7967
epoch: 010 acc: 0.8109 nmi: 0.5172 ari: 0.5754 f1: 0.7955
epoch: 011 acc: 0.8198 nmi: 0.5273 ari: 0.5884 f1: 0.8093
epoch: 012 acc: 0.8275 nmi: 0.5398 ari: 0.6040 f1: 0.8182
epoch: 013 acc: 0.8351 nmi: 0.5526 ari: 0.6174 f1: 0.8286
epoch: 014 acc: 0.8312 nmi: 0.5447 ari: 0.6097 f1: 0.8251
epoch: 015 acc: 0.8326 nmi: 0.5493 ari: 0.6126 f1: 0.8273
epoch: 016 acc: 0.8329 nmi: 0.5502 ari: 0.6126 f1: 0.8280
epoch: 017 acc: 0.8277 nmi: 0.5403 ari: 0.6028 f1: 0.8223
epoch: 018 acc: 0.8287 nmi: 0.5432 ari: 0.6044 f1: 0.8235
epoch: 019 acc: 0.8292 nmi: 0.5433 ari: 0.6061 f1: 0.8236
epoch: 020 acc: 0.8284 nmi: 0.5405 ari: 0.6038 f1: 0.8229
epoch: 021 acc: 0.8280 nmi: 0.5403 ari: 0.6032 f1: 0.8221
epoch: 022 acc: 0.8243 nmi: 0.5329 ari: 0.5953 f1: 0.8188
epoch: 023 acc: 0.8265 nmi: 0.5372 ari: 0.6004 f1: 0.8208
epoch: 024 acc: 0.8282 nmi: 0.5399 ari: 0.6034 f1: 0.8226
epoch: 025 acc: 0.8255 nmi: 0.5348 ari: 0.5982 f1: 0.8198
epoch: 026 acc: 0.8280 nmi: 0.5395 ari: 0.6029 f1: 0.8225
epoch: 027 acc: 0.8275 nmi: 0.5394 ari: 0.6020 f1: 0.8221
epoch: 028 acc: 0.8287 nmi: 0.5420 ari: 0.6048 f1: 0.8233
epoch: 029 acc: 0.8247 nmi: 0.5344 ari: 0.5978 f1: 0.8188
epoch: 030 acc: 0.8270 nmi: 0.5384 ari: 0.6014 f1: 0.8214
epoch: 031 acc: 0.8292 nmi: 0.5433 ari: 0.6058 f1: 0.8238
epoch: 032 acc: 0.8257 nmi: 0.5377 ari: 0.5992 f1: 0.8203
epoch: 033 acc: 0.8250 nmi: 0.5364 ari: 0.5972 f1: 0.8197
epoch: 034 acc: 0.8252 nmi: 0.5368 ari: 0.5975 f1: 0.8200
epoch: 035 acc: 0.8255 nmi: 0.5372 ari: 0.5984 f1: 0.8200
epoch: 036 acc: 0.8220 nmi: 0.5307 ari: 0.5913 f1: 0.8166
epoch: 037 acc: 0.8225 nmi: 0.5338 ari: 0.5926 f1: 0.8172