-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
201 lines (163 loc) · 7.51 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import numpy as np
import torch
import torch.nn as nn
class MemoryLayer(nn.Module):
def __init__(self, input_dim, memory_dim, model_dim, mlp_dim, dropout_p):
super(MemoryLayer, self).__init__()
# Hyperparameters
self.input_dim = input_dim
self.memory_dim = memory_dim
self.model_dim = model_dim
self.mlp_dim = mlp_dim
# Parameters
self.W_q = nn.Linear(input_dim, model_dim)
self.W_k = nn.Linear(memory_dim, model_dim)
self.W_v = nn.Linear(memory_dim, model_dim)
self.lin1 = nn.Linear(model_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, input_dim)
self.dropout = nn.Dropout(dropout_p)
self.softmax = nn.Softmax(dim=2)
self.relu = nn.ReLU()
def forward(self, x, m):
# Generate queries, keys, values
Q = self.W_q(x) # [batch, n_test, model_dim]
K = self.W_k(m) # [batch, n_memories, model_dim]
V = self.W_v(m) # [batch, n_memories, model_dim]
# Get attention distributions over memories for each sample
attn = torch.matmul(Q, K.permute(0,2,1)) # [batch, n_test, n_memories]
attn = attn/np.sqrt(self.model_dim)
attn = self.softmax(attn) # [batch, n_test, n_memories]
# Get weighted average of values
V_bar = torch.matmul(attn, V) # [batch, n_test, model_dim]
# Feedforward
out = self.lin1(V_bar) # [batch, n_test, mlp_dim]
out = self.dropout(out)
out = self.relu(out) # [batch, n_test, mlp_dim]
out = self.lin2(out) # [batch, n_test, input_dim]
return out, attn
class EpisodicSystem(nn.Module):
def __init__(self):
super(EpisodicSystem, self).__init__()
# Hyperparameters
self.n_states = 16 # number of faces in 4x4 grid
self.axis_dim = 2 # dimension of axis (2d one-hot vectors)
self.y_dim = 1 # dimension of y (binary)
self.model_dim = 32 # dimension of Q, K, V
self.mlp_dim = 64 # dimension of mlp hidden layer
self.n_layers = 1 # number of layers
self.dropout_p = 0.0 # dropout probability
self.input_dim = 2*self.n_states + self.axis_dim # y not given in input
self.memory_dim = self.input_dim + self.y_dim # y given in memories
self.output_dim = 2 # number of choices (binary)
# Memory system
memory_layers = []
for l_i in range(self.n_layers):
layer = MemoryLayer(self.input_dim, self.memory_dim, self.model_dim,
self.mlp_dim, self.dropout_p)
memory_layers.append(layer)
self.memory_layers = nn.ModuleList(memory_layers)
# Output
self.lin1 = nn.Linear(2*self.input_dim, self.mlp_dim)
self.lin2 = nn.Linear(self.mlp_dim, self.output_dim)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(self.dropout_p)
def forward(self, x, m):
out = x
# Memory system
attention = []
for l_i in range(self.n_layers):
out, attn = self.memory_layers[l_i](out, m)
# out = [batch, n_test, model_dim]
# attn = [batch, n_test, n_memories]
attention.append(attn.detach().cpu().numpy())
# MLP
out = torch.cat([x, out], dim=2) # [batch, n_test, 2*input_dim]
out = self.lin1(out) # [batch, n_test, mlp_dim]
out = self.dropout(out) # [batch, n_test, mlp_dim]
out = self.relu(out) # [batch, n_test, mlp_dim]
out = self.lin2(out) # [batch, n_test, out_dim]
return out, attention
class CNN(nn.Module):
def __init__(self, state_dim):
super(CNN, self).__init__()
# Hyperparameters
self.state_dim = state_dim # size of final embeddings
self.image_size = 64 # height and width of images
self.in_channels = 1 # channels in inputs (grey-scaled)
self.kernel_size = 3 # kernel size of convolutions
self.padding = 0 # padding in conv layers
self.stride = 2 # stride of conv layers
self.pool_kernel = 2 # kernel size of max pooling
self.pool_stride = 2 # stride of max pooling
self.out_channels1 = 4 # number of channels in conv1
self.out_channels2 = 8 # number of channels in conv2
self.num_layers = 2 # number of conv layers
# Conv layers
self.conv1 = nn.Conv2d(self.in_channels, self.out_channels1,
self.kernel_size, self.stride, self.padding)
self.maxpool1 = nn.MaxPool2d(self.pool_kernel, self.pool_stride)
self.conv2 = nn.Conv2d(self.out_channels1, self.out_channels2,
self.kernel_size, self.stride, self.padding)
self.maxpool2 = nn.MaxPool2d(self.pool_kernel, self.pool_stride)
# Linear layer
self.cnn_out_dim = self.calc_cnn_out_dim()
self.linear = nn.Linear(self.cnn_out_dim, self.state_dim)
self.relu = nn.ReLU()
def forward(self, x):
# Conv 1
x = self.conv1(x) # [batch, 4, 31, 31]
x = self.relu(x) # [batch, 4, 31, 31]
x = self.maxpool1(x) # [batch, 4, 15, 15]
# Conv 2
x = self.conv2(x) # [batch, 8, 7, 7]
x = self.relu(x) # [batch, 8, 7, 7]
x = self.maxpool2(x) # [batch, 8, 3, 3]
# Linear
x = x.view(x.shape[0], -1) # [batch, 72]
x = self.linear(x) # [batch, 32]
return x
def calc_cnn_out_dim(self):
w = self.image_size
h = self.image_size
for l in range(self.num_layers):
new_w = np.floor(((w - self.kernel_size)/self.stride) + 1)
new_h = np.floor(((h - self.kernel_size)/self.stride) + 1)
new_w = np.floor(new_w / self.pool_kernel)
new_h = np.floor(new_h / self.pool_kernel)
w = new_w
h = new_h
return int(w*h*8)
class CorticalSystem(nn.Module):
def __init__(self, use_images):
super(CorticalSystem, self).__init__()
self.use_images = use_images
# Hyperparameters
self.n_states = 16
self.state_dim = 32
self.mlp_in_dim = 3*self.state_dim # (f1 + f2 + axis)
self.hidden_dim = 128
self.output_dim = 2
# Input embedding (images or one-hot)
if self.use_images:
self.face_embedding = CNN(self.state_dim)
else:
self.face_embedding = nn.Embedding(self.n_states, self.state_dim)
nn.init.xavier_normal_(self.face_embedding.weight)
self.axis_embedding = nn.Embedding(2, self.state_dim)
nn.init.xavier_normal_(self.axis_embedding.weight)
# MLP
self.linear1 = nn.Linear(self.mlp_in_dim, self.hidden_dim)
self.linear2 = nn.Linear(self.hidden_dim, self.output_dim)
self.relu = nn.ReLU()
def forward(self, f1, f2, ax):
# Embed inputs
f1_embed = self.face_embedding(f1) # [batch, state_dim]
f2_embed = self.face_embedding(f2) # [batch, state_dim]
ax_embed = self.axis_embedding(ax) # [batch, state_dim]
# MLP
x = torch.cat([f1_embed, f2_embed, ax_embed], dim=1)
# x: [batch, 3*state_dim]
x = self.linear1(x) # [batch, hidden_dim]
x = self.relu(x) # [batch, hidden_dim]
x = self.linear2(x) # [batch, output_dim]
return x