-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathencode_text.py
50 lines (37 loc) · 1.41 KB
/
encode_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
from omegaconf import DictConfig
import logging
import hydra
logger = logging.getLogger(__name__)
@hydra.main(version_base=None, config_path="configs", config_name="encode_text")
def encode_text(cfg: DictConfig) -> None:
device = cfg.device
run_dir = cfg.run_dir
ckpt_name = cfg.ckpt_name
text = cfg.text
import src.prepare # noqa
import torch
import numpy as np
from src.config import read_config
from src.load import load_model_from_cfg
from hydra.utils import instantiate
from pytorch_lightning import seed_everything
from src.data.collate import collate_x_dict
cfg = read_config(run_dir)
logger.info("Loading the text model")
text_model = instantiate(cfg.data.text_to_token_emb, device=device)
logger.info("Loading the model")
model = load_model_from_cfg(cfg, ckpt_name, eval_mode=True, device=device)
seed_everything(cfg.seed)
with torch.inference_mode():
text_x_dict = collate_x_dict(text_model([text]))
latent = model.encode(text_x_dict, sample_mean=True)[0]
latent = latent.cpu().numpy()
fname = text.lower().replace(" ", "_") + ".npy"
output_folder = os.path.join(run_dir, "encoded")
os.makedirs(output_folder, exist_ok=True)
path = os.path.join(output_folder, fname)
np.save(path, latent)
logger.info(f"Encoding done, latent saved in:\n{path}")
if __name__ == "__main__":
encode_text()