Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

训练时Discriminator的loss不收敛问题 #87

Closed
Jamofl opened this issue Nov 19, 2021 · 4 comments
Closed

训练时Discriminator的loss不收敛问题 #87

Jamofl opened this issue Nov 19, 2021 · 4 comments

Comments

@Jamofl
Copy link

Jamofl commented Nov 19, 2021

您好! 非常感谢您的代码!
我在使用其他雨滴数据集进行训练时遇到了这样的情况:在大约训练到第14000 epoch时,鉴别器的loss从0升到15左右,然后一直维持在这个水平,直到10w epoch训练结束,请问这是怎么回事呀?

请问改变数据集的话,还需要改变哪些参数吗?期待您的回复! 非常感谢!
Epoch_Train: 14181 D_loss: 0.00622 G_loss: 0.99063 SSIM: 0.92173 PSNR: 29.37859 Cost_time: 0.45720s
Epoch_Train: 14182 D_loss: 0.01008 G_loss: 0.70841 SSIM: 0.95254 PSNR: 28.91425 Cost_time: 0.45934s
Epoch_Train: 14183 D_loss: 0.01015 G_loss: 1.71491 SSIM: 0.89044 PSNR: 26.75873 Cost_time: 0.46000s
Epoch_Train: 14184 D_loss: 0.00459 G_loss: 0.94037 SSIM: 0.92423 PSNR: 29.48820 Cost_time: 0.45957s
Epoch_Train: 14185 D_loss: 0.00478 G_loss: 1.09866 SSIM: 0.92443 PSNR: 28.99318 Cost_time: 0.46253s
Epoch_Train: 14186 D_loss: 0.00575 G_loss: 0.72388 SSIM: 0.93164 PSNR: 30.95709 Cost_time: 0.46485s
Epoch_Train: 14187 D_loss: 0.06432 G_loss: 0.63994 SSIM: 0.93900 PSNR: 30.13286 Cost_time: 0.45792s
Epoch_Train: 14188 D_loss: 0.00735 G_loss: 0.95833 SSIM: 0.84905 PSNR: 26.23130 Cost_time: 0.46051s
Epoch_Train: 14189 D_loss: 0.00322 G_loss: 1.51706 SSIM: 0.84874 PSNR: 27.94430 Cost_time: 0.46038s
Epoch_Train: 14190 D_loss: 0.01093 G_loss: 1.13478 SSIM: 0.89547 PSNR: 27.60135 Cost_time: 0.46360s
Epoch_Train: 14191 D_loss: 0.00339 G_loss: 0.86030 SSIM: 0.90930 PSNR: 29.44472 Cost_time: 0.46059s
Epoch_Train: 14192 D_loss: 14.01000 G_loss: 1.07465 SSIM: 0.91109 PSNR: 27.46113 Cost_time: 0.46234s
Epoch_Train: 14193 D_loss: 0.00592 G_loss: 1.49669 SSIM: 0.90190 PSNR: 25.11241 Cost_time: 0.46117s
Epoch_Train: 14194 D_loss: 0.00399 G_loss: 0.96835 SSIM: 0.92080 PSNR: 27.84681 Cost_time: 0.46161s
Epoch_Train: 14195 D_loss: 0.00404 G_loss: 1.32799 SSIM: 0.87797 PSNR: 26.07203 Cost_time: 0.45559s
Epoch_Train: 14196 D_loss: 0.00305 G_loss: 0.82456 SSIM: 0.91988 PSNR: 27.09984 Cost_time: 0.46356s
Epoch_Train: 14197 D_loss: 0.00698 G_loss: 1.65623 SSIM: 0.89104 PSNR: 25.90995 Cost_time: 0.45888s
Epoch_Train: 14198 D_loss: 0.00460 G_loss: 0.77525 SSIM: 0.89918 PSNR: 32.11379 Cost_time: 0.45696s
Epoch_Train: 14199 D_loss: 0.01136 G_loss: 1.11077 SSIM: 0.88222 PSNR: 25.30873 Cost_time: 0.45991s
Epoch_Train: 14200 D_loss: 0.02190 G_loss: 1.98785 SSIM: 0.85421 PSNR: 25.41487 Cost_time: 0.45940s
Epoch_Train: 14201 D_loss: 0.00956 G_loss: 0.63746 SSIM: 0.92519 PSNR: 29.54581 Cost_time: 0.45877s
Epoch_Train: 14202 D_loss: 0.00687 G_loss: 0.65243 SSIM: 0.94071 PSNR: 24.52595 Cost_time: 0.46072s
Epoch_Train: 14203 D_loss: 0.02996 G_loss: 1.20789 SSIM: 0.89758 PSNR: 26.43548 Cost_time: 0.45810s
Epoch_Train: 14204 D_loss: 13.82231 G_loss: 0.86050 SSIM: 0.94726 PSNR: 29.35911 Cost_time: 0.46333s
Epoch_Train: 14205 D_loss: 0.02982 G_loss: 0.67258 SSIM: 0.93838 PSNR: 30.06240 Cost_time: 0.46312s
Epoch_Train: 14206 D_loss: 0.07316 G_loss: 1.28689 SSIM: 0.92189 PSNR: 27.16131 Cost_time: 0.45833s
Epoch_Train: 14207 D_loss: 16.06720 G_loss: 1.73016 SSIM: 0.86451 PSNR: 26.46809 Cost_time: 0.45676s
Epoch_Train: 14208 D_loss: 16.23168 G_loss: 0.75785 SSIM: 0.92729 PSNR: 27.10830 Cost_time: 0.45827s
Epoch_Train: 14209 D_loss: 16.16609 G_loss: 0.73237 SSIM: 0.93642 PSNR: 26.03369 Cost_time: 0.46219s
Epoch_Train: 14210 D_loss: 16.84928 G_loss: 0.84836 SSIM: 0.93906 PSNR: 27.80629 Cost_time: 0.45689s
Epoch_Train: 14211 D_loss: 16.65714 G_loss: 0.21077 SSIM: 0.95854 PSNR: 33.55317 Cost_time: 0.45587s
Epoch_Train: 14212 D_loss: 17.08031 G_loss: 0.72672 SSIM: 0.92749 PSNR: 29.69357 Cost_time: 0.46303s
Epoch_Train: 14213 D_loss: 16.75801 G_loss: 0.74262 SSIM: 0.94898 PSNR: 26.82167 Cost_time: 0.45507s
Epoch_Train: 14214 D_loss: 17.19547 G_loss: 0.77876 SSIM: 0.94408 PSNR: 28.99708 Cost_time: 0.45813s
Epoch_Train: 14215 D_loss: 16.74506 G_loss: 0.49924 SSIM: 0.92560 PSNR: 33.01609 Cost_time: 0.45798s
image

@MaybeShewill-CV
Copy link
Owner

@Jamofl 我还没有在别的数据集上测试过。可以先尝试减小学习率试试。不过看这个ssim和psnr应该还算不低了:)可以贴下效果图看下

@Jamofl
Copy link
Author

Jamofl commented Nov 25, 2021

好的,非常感谢。还有个小问题想请教下:原论文中的这种gan应该是属于监督学习范畴吧? 因为包含有雨图像和无雨图像对,是属于有标签的。

@MaybeShewill-CV
Copy link
Owner

@Jamofl

@alan0324
Copy link

@Jamofl 您好,我在訓練時在loss那一部分遇到了一點問題,想請教您是否有遇過lm_loss和mse_loss張量不合的問題呢 謝謝!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants