-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
92 lines (76 loc) · 3.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from __future__ import print_function
import os
import random
import time
import numpy as np
import torch
import wandb
from tqdm import tqdm
import model
import options
import wsad_dataset
from test import test
from train import train
torch.set_default_tensor_type('torch.cuda.FloatTensor')
def setup_seed(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
import torch.optim as optim
if __name__ == '__main__':
args = options.parser.parse_args()
if not args.without_wandb:
wandb.init(
name=time.asctime()[:-4] + args.model_name,
config=args,
project=f"DELU_{args.dataset}",
sync_tensorboard=True)
seed = args.seed
print('=============seed: {}, pid: {}============='.format(seed, os.getpid()))
setup_seed(seed)
device = torch.device("cuda")
dataset = getattr(wsad_dataset, args.dataset)(args)
if 'Thumos' in args.dataset_name:
max_map = [0] * 9
else:
max_map = [0] * 10
log_model_path = os.path.join(args.path_dataset, 'logs', args.model_name)
ckpt_path = os.path.join(args.path_dataset, 'ckpt')
if not os.path.exists(ckpt_path):
os.makedirs(ckpt_path)
print(args)
model = getattr(model, args.use_model)(dataset.feature_size, dataset.num_class, opt=args).to(device)
if args.pretrained_ckpt is not None:
model.load_state_dict(torch.load(args.pretrained_ckpt))
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
total_loss = 0
lrs = [args.lr, args.lr / 5, args.lr / 5 / 5]
print(model)
for itr in tqdm(range(args.max_iter)):
loss = train(itr, dataset, args, model, optimizer, device)
total_loss += loss
if itr % args.interval == 0 and not itr == 0:
print('Iteration: %d, Loss: %.5f' % (itr, total_loss / args.interval))
total_loss = 0
torch.save(model.state_dict(), ckpt_path + '/last_' + args.model_name + '.pkl')
iou, dmap = test(itr, dataset, args, model, device)
if 'Thumos' in args.dataset_name:
cond = sum(dmap[:7]) > sum(max_map[:7])
else:
cond = np.mean(dmap) > np.mean(max_map)
if cond:
torch.save(model.state_dict(), ckpt_path + '/best_' + args.model_name + '.pkl')
max_map = dmap
if not args.without_wandb:
wandb.log({'MAX mAP Avg 0.1-0.7': np.mean(max_map[:7]) * 100})
print('||'.join(['MAX map @ {} = {:.3f} '.format(iou[i], max_map[i] * 100) for i in range(len(iou))]))
max_map = np.array(max_map)
print('mAP Avg 0.1-0.5: {}, mAP Avg 0.1-0.7: {}, mAP Avg ALL: {}'.format(np.mean(max_map[:5]) * 100,
np.mean(max_map[:7]) * 100,
np.mean(max_map) * 100))
print("------------------pid: {}--------------------".format(os.getpid()))