Example 1:
Step 3: Plug the table into the Homogeneous Transformation Matrix formula.
Step 4: Multiply the matrices together
Example:
Any of the 2 processes, it will still arrive on the same answer.
Determining the position and direction using Forward Kinematics.
Simulation and visualization of Forward Kinematics using MATLAB:
If θ1=0֯ and θ2=0֯:
If θ1=90֯ and θ2=-90֯:
If θ1=45֯ and θ2=30֯:
Codes can also be found from: https://github.com/MikkoDT/Robotics-2-2022-2023 And the tutorial for installation of Robotics Toolbox by Peter Corke in Python can be found here: https://youtube.com/playlist?list=PLUgsbeZHs9qMFXTIQPW0clLoRkf_oiBoX&si=0sYu2QIJ4NWilTq7
SCARA PRR Variant 3
3-DOF
6-DOF
- Example:
5.2 Inverse Kinematics of Articulated Manipulator
Codes can also be found from: https://github.com/MikkoDT/Robotics-2-2022-2023
import numpy as np
a1 = float(input("a1 = "))
a2 = float(input("a2 = "))
a3 = float(input("a3 = "))
a4 = float(input("a4 = "))
x0_3 = float(input("x0_3 = "))
y0_3 = float(input("y0_3 = "))
z0_3 = float(input("z0_3 = "))
phi2 = np.arctan(y0_3 / x0_3)
phi2 = phi2 * 180 / np.pi
r1 = np.sqrt((y0_32) + (x0_32))
phi1 = np.arccos((a42 - r12 - a2**2)/(-2 * r1 * a2))
phi1 = phi1*180 / np.pi
theta2 = phi2 - phi1
phi3 = np.arccos((r12 - a22 - a4**2)/(-2 * a2 * a4))
phi3 = phi3 * 180 / np.pi
theta3 = 180 - phi3
d1 = z0_3 - a1 - a3
print("d1 = ", np.around(d1,3))
print("theta2 = ", np.around(theta2,3))
print("theta3 = ", np.around(theta3,3))