-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_scratch_classifier.py
291 lines (240 loc) · 12.9 KB
/
train_scratch_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import argparse
import torch
import torch.nn as nn
from tqdm import tqdm # For displaying progress bars
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from torchvision import datasets, transforms
from torchvision.transforms import AutoAugment, AutoAugmentPolicy
from models import ResNet34, ResNet50, ResNet101, ResNet200
import os
import datetime
from torch.utils.tensorboard import SummaryWriter # For TensorBoard logging
import re
import subprocess # For calling external scripts, can be used to run tests every x epochs
import time # Import time module
import numpy as np
from data_augmentation import cutmix_data, cutmix_criterion, mixup_data, mixup_criterion
def ensure_dir_exists(path):
if not os.path.exists(path):
os.makedirs(path)
print(f"Created directory: {path}")
def save_best_model(model, save_path, last_save_path):
if save_path == last_save_path:
print(f"Saving new model to {save_path}, skipping deletion of identical path.")
else:
if last_save_path and os.path.exists(last_save_path):
os.remove(last_save_path)
print(f"Deleted previous model: {last_save_path}")
torch.save(model.state_dict(), save_path)
print(f"New best model saved to {save_path}")
return save_path
def train_from_scratch(train_loader, val_loader, model, optimizer, scheduler, criterion, device, dataset_name, epochs=10,
save_dir="./saved_models", model_type="ResNet50", batch_size=64, test_script_path="test_scratch_classifier.py"):
model.train()
best_accuracy = 0.0
last_save_path = None
ensure_dir_exists(save_dir)
# Initialize TensorBoard
log_dir = os.path.join(save_dir, "tensorboard_logs")
writer = SummaryWriter(log_dir=log_dir)
try:
for epoch in range(epochs):
print(f"Epoch [{epoch + 1}/{epochs}]")
# Record the start time of the epoch
start_time = time.time()
# Training loop
running_loss = 0.0
correct = 0
total = 0
batch_losses = [] # Save the loss for each batch
batch_accuracies = [] # Save the accuracy for each batch
model.train()
train_bar = tqdm(train_loader, desc="Training", leave=False)
for inputs, labels in train_bar:
inputs, labels = inputs.to(device), labels.to(device)
# Randomly decide whether to apply MixUp or CutMix
if np.random.rand() < 0.0: # 50% probability of applying CutMix
inputs, labels_a, labels_b, lam = cutmix_data(inputs, labels, alpha=1.0)
outputs = model(inputs)
loss = cutmix_criterion(criterion, outputs, labels_a, labels_b, lam)
elif np.random.rand() < 0.0: # 50% probability of applying MixUp
inputs, labels_a, labels_b, lam = mixup_data(inputs, labels, alpha=0.2)
outputs = model(inputs)
loss = mixup_criterion(criterion, outputs, labels_a, labels_b, lam)
else: # No augmentation applied
outputs = model(inputs)
loss = criterion(outputs, labels)
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
_, predicted = outputs.max(1)
correct += (predicted == labels).sum().item()
total += labels.size(0)
running_loss += loss.item()
# Record the loss and accuracy for the batch
batch_losses.append(loss.item())
batch_accuracies.append((predicted == labels).float().mean().item())
# Update progress bar
train_bar.set_postfix(loss=loss.item(), acc=batch_accuracies[-1] * 100)
epoch_loss = running_loss / len(train_loader)
epoch_accuracy = correct / total
print(f"Epoch [{epoch + 1}/{epochs}], Loss: {epoch_loss:.4f}, Train Accuracy: {epoch_accuracy * 100:.2f}%")
print(f" Batch Loss: min={min(batch_losses):.4f}, max={max(batch_losses):.4f}, mean={epoch_loss:.4f}")
print(
f" Batch Accuracy: min={min(batch_accuracies) * 100:.2f}%, max={max(batch_accuracies) * 100:.2f}%, mean={epoch_accuracy * 100:.2f}%")
# Record training loss and accuracy to TensorBoard
writer.add_scalar("Train/Loss", epoch_loss, epoch)
writer.add_scalar("Train/Accuracy", epoch_accuracy * 100, epoch)
# Record the end time of the epoch and calculate duration
end_time = time.time()
epoch_time = end_time - start_time
print(f"Epoch [{epoch + 1}/{epochs}] completed in {epoch_time:.2f} seconds.")
# Validation loop
model.eval()
val_correct = 0
val_total = 0
val_running_loss = 0.0
val_bar = tqdm(val_loader, desc="Validating", leave=False)
with torch.no_grad():
for val_inputs, val_labels in val_bar:
val_inputs, val_labels = val_inputs.to(device), val_labels.to(device)
val_outputs = model(val_inputs)
val_loss = criterion(val_outputs, val_labels)
_, val_predicted = val_outputs.max(1)
val_correct += (val_predicted == val_labels).sum().item()
val_total += val_labels.size(0)
val_running_loss += val_loss.item()
val_loss = val_running_loss / len(val_loader)
val_accuracy = val_correct / val_total
print(f"Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy * 100:.2f}%")
# Record validation loss and accuracy to TensorBoard
writer.add_scalar("Validation/Loss", val_loss, epoch)
writer.add_scalar("Validation/Accuracy", val_accuracy * 100, epoch)
# Save the best model
if val_accuracy > best_accuracy:
best_accuracy = val_accuracy
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
save_path = os.path.join(save_dir,
f"{model_type}_{dataset_name}_batch{batch_size}_valAcc{val_accuracy * 100:.2f}_{timestamp}.pth")
last_save_path = save_best_model(model, save_path, last_save_path)
# Update learning rate
scheduler.step()
# Run test script every 3 epochs
if (epoch + 1) % 1 == 0:
print("\nCalling test script...")
try:
result = subprocess.run(
["python", test_script_path, "--modir", last_save_path, "--model", model_type],
check=True, capture_output=True, text=True
)
# Extract Top-1 and Top-5 accuracy from test script output
output = result.stdout
top1_match = re.search(r"Top-1 Accuracy: (\d+\.\d+)%", output)
top5_match = re.search(r"Top-5 Accuracy: (\d+\.\d+)%", output)
if top1_match and top5_match:
top1_accuracy = float(top1_match.group(1))
top5_accuracy = float(top5_match.group(1))
# Record to TensorBoard
writer.add_scalar("Test/Top-1 Accuracy", top1_accuracy, epoch)
writer.add_scalar("Test/Top-5 Accuracy", top5_accuracy, epoch)
print(f"Test results added to TensorBoard: Top-1: {top1_accuracy}%, Top-5: {top5_accuracy}%")
else:
print("Failed to extract accuracies from test script output.")
except subprocess.CalledProcessError as e:
print(f"Error occurred while running the test script: {e}")
print(f"Training complete. Best model saved with validation accuracy: {best_accuracy * 100:.2f}%")
except Exception as e:
print(f"Error during training: {e}")
raise
finally:
writer.close()
def main():
parser = argparse.ArgumentParser(description="Train a ResNet model from scratch for classification")
parser.add_argument("--model_type", type=str, default="ResNet50", help="Model type (ResNet50, ResNet34, ResNet101, ResNet200)")
parser.add_argument("--batch_size", type=int, default=64, help="Batch size")
parser.add_argument("--epochs", type=int, default=10, help="Number of epochs")
parser.add_argument("--learning_rate", type=float, default=0.1, help="Learning rate")
parser.add_argument("--dataset_name", type=str, default="cifar10", help="Dataset name (cifar10, cifar100, imagenet)")
parser.add_argument("--dataset", type=str, default="./data", help="Path to dataset")
parser.add_argument("--save_dir", type=str, default="./saved_models/classification/scratch", help="Directory to save the best model")
parser.add_argument("--gpu", type=int, default=0, help="GPU id to use (default: 0)")
args = parser.parse_args()
device = torch.device(f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu")
# Disable TensorFlow oneDNN optimizations to reduce potential conflicts
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
# Dataset loading
if args.dataset_name == "cifar10":
transform = transforms.Compose([
# transforms.RandomResizedCrop(32),
# transforms.RandomHorizontalFlip(),
AutoAugment(AutoAugmentPolicy.CIFAR10),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
dataset = datasets.CIFAR10(root=args.dataset, train=True, download=True, transform=transform)
num_classes = 10
elif args.dataset_name == "cifar100":
transform = transforms.Compose([
transforms.RandomResizedCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
dataset = datasets.CIFAR100(root=args.dataset, train=True, download=True, transform=transform)
num_classes = 100
elif args.dataset_name == "imagenet":
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
dataset = datasets.ImageFolder(root=os.path.join(args.dataset, "train"), transform=transform)
num_classes = 1000
else:
raise ValueError(f"Unsupported dataset: {args.dataset_name}")
# Split dataset
torch.manual_seed(42)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True)
# Load model
model_dict = {
"ResNet34": lambda: ResNet34(num_classes=num_classes),
"ResNet50": lambda: ResNet50(num_classes=num_classes),
"ResNet101": lambda: ResNet101(num_classes=num_classes),
"ResNet200": lambda: ResNet200(num_classes=num_classes),
}
base_model_func = model_dict.get(args.model_type)
if base_model_func is None:
raise ValueError(f"Unsupported model type: {args.model_type}")
model = base_model_func().to(device)
# Optimizer and scheduler
# optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=0.9, weight_decay=5e-4)
# scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
optimizer = optim.AdamW(
model.parameters(),
lr=args.learning_rate, # Learning rate, might differ from SGD's default, consider reducing
betas=(0.9, 0.999), # Default AdamW parameters
eps=1e-8, # To prevent numerical instability
weight_decay=5e-4 # Weight decay
)
scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=args.epochs # Cosine annealing period corresponding to total training epochs
)
# Loss function
criterion = nn.CrossEntropyLoss()
# Train from scratch
print("Training started...")
train_from_scratch(train_loader, val_loader, model, optimizer, scheduler, criterion, device, dataset_name=args.dataset_name,
epochs=args.epochs, save_dir=args.save_dir, model_type=args.model_type, batch_size=args.batch_size)
if __name__ == "__main__":
main()
# python train_scratch_classifier.py --model_type ResNet34 --batch_size 32 --epochs 20 --learning_rate 0.005 --dataset_name cifar10