Skip to content

Commit cffae57

Browse files
committed
set variable to run markdown chunks
1 parent c952504 commit cffae57

File tree

5 files changed

+29
-28
lines changed

5 files changed

+29
-28
lines changed

docs/articles/cli.html

Lines changed: 1 addition & 1 deletion
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

docs/pkgdown.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ articles:
1010
SCWorkflow-SubsetReclust: SCWorkflow-SubsetReclust.html
1111
SCWorkflow-Usage: SCWorkflow-Usage.html
1212
SCWorkflow-Visualizations: SCWorkflow-Visualizations.html
13-
last_built: 2025-10-28T17:51Z
13+
last_built: 2025-10-28T20:10Z
1414
urls:
1515
reference: https://nidap-community.github.io/SCWorkflow/reference
1616
article: https://nidap-community.github.io/SCWorkflow/articles

docs/search.json

Lines changed: 1 addition & 1 deletion
Large diffs are not rendered by default.

vignettes/SCWorkflow-Annotations.Rmd

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ vignette: >
77
%\VignetteEncoding{UTF-8}
88
---
99

10-
```{r, include = FALSE}
10+
```{r, include = FALSE,eval=run_Chunks}
1111
options(rmarkdown.html_vignette.check_title = FALSE)
1212
1313
knitr::opts_chunk$set(
@@ -32,7 +32,7 @@ This function automates cell type annotation in single-cell RNA sequencing data
3232
SingleR is an automatic annotation method for single-cell RNA sequencing data that uses a given reference dataset of samples (single-cell or bulk) with known labels to label new cells from a test dataset based on similarity to the reference. Two mouse reference datasets (MouseRNAseqData and ImmGenData) and two human reference datasets (HumanPrimaryCellAtlasData and BlueprintEncodeData) from CellDex R package [2] are currently available.
3333

3434

35-
```{r,eval=F}
35+
```{r,eval=run_Chunks}
3636
Anno_SO=annotateCellTypes(object=Comb_SO$object,
3737
species = "Mouse",
3838
reduction.type = "umap",
@@ -43,7 +43,7 @@ Anno_SO=annotateCellTypes(object=Comb_SO$object,
4343
```
4444

4545

46-
```{r,echo=F,eval=F}
46+
```{r,echo=F,eval=run_Chunks}
4747
saveRDS(Anno_SO, file="./images/Anno_SO.rds")
4848
4949
ggsave(Anno_SO$p1, filename = "./images/Anno1.png", width = 10, height = 10)
@@ -62,12 +62,12 @@ ggsave(Anno_SO$p2, filename = "./images/Anno2.png", width = 10, height = 10)
6262

6363
This function will merge an external table of cell annotations into an existing Seurat Object's metadata table. The input external metadata table must have a column named "Barcode" that contains barcodes matching those found in the metadata already present in the input Seurat Object. The output will be a new Seurat Object with metadata that now includes the additional columns from the external table.
6464

65-
```{r,eval=F,echo=T}
65+
```{r,eval=run_Chunks,echo=T}
6666
CellType_Anno_Table=read.csv("PerCell_Metadata.csv")
6767
6868
```
6969

70-
```{r,eval=T,echo=F}
70+
```{r,eval=run_Chunks,echo=F}
7171
Anno_SO=readRDS("./images/Anno_SO.rds")
7272
7373
@@ -77,7 +77,7 @@ [email protected][,'mouseRNAseq_main',drop=F]%>%rename('Cell Type'=mouseR
7777
7878
```
7979

80-
```{r,eval=F,echo=F}
80+
```{r,eval=run_Chunks,echo=F}
8181
8282
8383
AddExternalAnnotation = function(
@@ -207,7 +207,7 @@ return(NULL)
207207
208208
```
209209

210-
```{r,eval=F,echo=T}
210+
```{r,eval=Frun_Chunks,echo=T}
211211
212212
ExtAnno_SO=ExternalAnnotation(object = Anno_SO$object,
213213
external_metadata = CellType_Anno_Table,
@@ -228,7 +228,7 @@ This function enables users to visualize the association between two selected ge
228228

229229
Furthermore, the tool allows for the application of filters to the data, setting thresholds, and providing annotations to notify users if cells meet the established thresholds. The visualization can be improved by omitting extreme values. The tool also facilitates the creation of a heatmap to represent the density distribution of cells and exhibit the raw gene/protein expression values.
230230

231-
```{r,eval=F,echo=T,results='hide'}
231+
```{r,eval=run_Chunks,echo=T,results='hide'}
232232
grep('Cd4',rownames(Anno_SO$object@assays$RNA),ignore.case = T,value=T)
233233
234234
DLAnno_SO=dualLabeling(object = Anno_SO$object,
@@ -261,7 +261,7 @@ plot(DLAnno_SO$plot_densityHM)
261261
plot(DLAnno_SO$plot_umap)
262262
```
263263

264-
```{r,echo=F,eval=F}
264+
```{r,echo=F,eval=run_Chunks}
265265
png(filename="./images/DL1.png")
266266
plot(DLAnno_SO$plot_densityHM)
267267
dev.off()
@@ -285,19 +285,19 @@ The code also makes sure to display your chosen samples, creates a caption for t
285285
If you haven't selected specific samples, it will use all the available samples from your data. It also checks for the presence of your chosen genes in the data and processes them to ensure uniformity across different cell types.
286286
The output of this function is a detailed figure showing the activity of chosen genes across different cell types. This is useful for identifying distinct groups of cells based on gene activity levels.
287287

288-
```{r,eval=F}
288+
```{r,eval=run_Chunks}
289289
Marker_Table <- read.csv("Marker_Table_demo.csv")
290290
```
291291

292-
```{r,eval=T,echo=F}
292+
```{r,eval=run_Chunks,echo=F}
293293
Marker_Table_demo <- read.csv("../tests/testthat/fixtures/Marker_Table_demo.csv")
294294
Marker_Table_demo%>%head()%>%
295295
knitr::kable()
296296
297297
Marker_Table=Marker_Table_demo[1:4,]
298298
```
299299

300-
```{r,eval=F,echo=T,results='hide'}
300+
```{r,eval=Frun_Chunks,echo=T,results='hide'}
301301
302302
FigOut=colorByMarkerTable(object=Anno_SO$object,
303303
samples.subset=c("PBS","ENT","NHSIL12", "Combo","CD8dep" ),
@@ -315,7 +315,7 @@ plot(FigOut)
315315
316316
```
317317

318-
```{r,echo=F,eval=F}
318+
```{r,echo=F,eval=run_Chunks}
319319
png(filename="./images/CBM1.png",width=1000,height=700)
320320
plot(FigOut)
321321
dev.off()
@@ -343,7 +343,7 @@ Subclass Identification: If desired, the program can identify subclasses within
343343
**Updating Cell Type Labels:** The program appends a "Likely_CellType" column to the metadata of the scRNA-seq object, based on the results of the module score analysis.
344344
**Output:** An updated scRNA-seq object with new cell type labels.
345345

346-
```{r,eval=F}
346+
```{r,eval=run_Chunks}
347347
348348
MS_object=modScore(object=Anno_SO$object,
349349
marker.table=Marker_Table[,c("Macrophages","M1","M2" )],
@@ -377,7 +377,7 @@ This function creates a dot plot visualization of cell types by metadata categor
377377
It also generates a dot plot using Seurat's Dotplot function [3], providing a visual representation of the percentage of various cell types within each cluster. Typically, a cluster can be more distinctively named by the predominant cell type as seen in the dotplot. The plot's order can be customized for the clusters and cell types. If no specific order is provided, the function uses a default order.
378378
An optional parameter allows the user to make the plot interactive. The function returns the updated Seurat object and the plot.
379379

380-
```{r,eval=F}
380+
```{r,eval=run_Chunks}
381381
382382
RNC_object=nameClusters(object=Anno_SO$object,
383383
cluster.numbers= c(0,1,2,3,4,5,6,7),
@@ -392,7 +392,7 @@ RNC_object=nameClusters(object=Anno_SO$object,
392392
393393
```
394394

395-
```{r,eval=F,echo=T,results='hide'}
395+
```{r,eval=run_Chunks,echo=T,results='hide'}
396396
397397
# DimPlot(MS_object, group.by = "SCT_snn_res.0.2", label = T, reduction = 'umap')
398398
# DimPlot(MS_object, group.by = "mouseRNAseq_main", label = T, reduction = 'umap')
@@ -421,7 +421,7 @@ In addition to the plot, the function provides the tabular format of the dot plo
421421
This function can be useful for exploratory data analysis and visualizing the differences in gene expression across different conditions or groups of cells.
422422

423423

424-
```{r,eval=F}
424+
```{r,eval=run_Chunks}
425425
426426
FigOut=dotPlotMet(object=Anno_SO$object,
427427
metadata="orig.ident",
@@ -435,7 +435,7 @@ FigOut=dotPlotMet(object=Anno_SO$object,
435435
436436
```
437437

438-
```{r,eval=F,echo=F,results='hide'}
438+
```{r,eval=run_Chunks,echo=F,results='hide'}
439439
440440
c("Itgam", "Ly6g_neg","Adgre1", "Cd68", "Siglec1", "Csf1r", "Apoe", "Mafb", "Cx3cr1", "Nr4a1","F13a1",
441441
"Lgals3", "Cxcl9", "Cxcl10", "Sell", "Arg1", "Mmp13", "Mmp12")

vignettes/SCWorkflow-Overview.Rmd

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,7 @@ vignette: >
99

1010
```{r, include = FALSE}
1111
options(rmarkdown.html_vignette.check_title = FALSE)
12+
run_Chunks=FALSE
1213
1314
knitr::opts_chunk$set(
1415
collapse = TRUE,
@@ -32,7 +33,7 @@ This tool supports standard scRNAseq, CITE-Seq, and TCR-Seq assays. Samples prep
3233

3334
A corresponding Metadata table can be used to add sample level information to the Seurat object. The table format should have Sample names in the first Column and any sample metadata in additional columns. The Metadata table can also be used to rename samples by including an alternative sample name Column in the metadata table.
3435

35-
```{r,echo=F}
36+
```{r,echo=F,eval=run_Chunks}
3637
# data.table(My_Sample_Names=c('CID3586','CID3921',
3738
# 'CID4066','CID4290A',
3839
# 'CID4398','CID4471',
@@ -63,7 +64,7 @@ Samples can also be excluded from the final Seurat object using a REGEX strategy
6364

6465
The final Seurat Object will contain an assay slot with log2 normalized counts. QC figures for individual samples will also be produced to help evaluate samples quality.
6566

66-
```{r,eval=F,echo=T,results='hide'}
67+
```{r,eval=run_Chunks,echo=T,results='hide'}
6768
6869
SampleMetadataTable <- read.table(file = "./images/Sample_Metadata.txt", sep = '\t',header = T)
6970
files=list.files(path="../tests/testthat/fixtures/Chariou/h5files",full.names = T)
@@ -81,7 +82,7 @@ SOlist=processRawData(input=files,
8182
)
8283
```
8384

84-
```{r,echo=F,eval=F}
85+
```{r,echo=F,eval=run_Chunks}
8586
ggsave(SOlist$plots[[1]], filename = "./images/ProcessInputData1.png", width = 10, height = 10)
8687
ggsave(SOlist$plots[[2]], filename = "./images/ProcessInputData2.png", width = 10, height = 10)
8788
@@ -109,7 +110,7 @@ The individual filtering criteria used in this tool are listed below.
109110
The function will return a filtered Seurat Object and various figures showing metrics before and after filtering. These figures can be used to help evaluate the effects of filtering criteria and whether filtering limits need to be adjusted.
110111

111112

112-
```{r,eval=F,echo=T,results='hide'}
113+
```{r,eval=run_Chunks,echo=T,results='hide'}
113114
114115
SO_filtered=filterQC(object=SOlist$object,
115116
## Filter Genes
@@ -135,7 +136,7 @@ SO_filtered=filterQC(object=SOlist$object,
135136
136137
```
137138

138-
```{r,echo=F,eval=F}
139+
```{r,echo=F,eval=run_Chunks}
139140
ggsave(SO_filtered$plots$PostFilterCombined, filename = "./images/QC1.png", width = 10, height = 10)
140141
ggsave(SO_filtered$plots$ViolinPlotCombine, filename = "./images/QC2.png", width = 10, height = 10)
141142
ggsave(SO_filtered$plots$ScatterPlotCombine, filename = "./images/QC3.png", width = 10, height = 10)
@@ -151,7 +152,7 @@ ggsave(SO_filtered$plots$ScatterPlotCombine, filename = "./images/QC3.png", widt
151152

152153
This functions combines multiple sample level Seurat Objects into a single Seurat Object and normalizes the combined dataset. The multi-dimensionality of the data will be summarized into a set of "principal components" and visualized in both UMAP and tSNE projections. A graph-based clustering approach will identify cell clusters with in the data.
153154

154-
```{r,eval=F,echo=T,results='hide'}
155+
```{r,eval=run_Chunks,echo=T,results='hide'}
155156
156157
Comb_SO=combineNormalize(
157158
object=SO_filtered$object,
@@ -194,7 +195,7 @@ Comb_SO=combineNormalize(
194195
195196
```
196197

197-
```{r,echo=F,eval=F}
198+
```{r,echo=F,eval=run_Chunks}
198199
saveRDS(Comb_SO$object, file="./images/CN_SO.rds")
199200
200201
ggsave(Comb_SO$plots$UMAP, filename = "./images/CN1.png", width = 10, height = 10)

0 commit comments

Comments
 (0)