Skip to content

Commit 7c1683a

Browse files
committed
clean up tests, remove unused imports
Signed-off-by: Jaime Cardenas <[email protected]>
1 parent 4aadd04 commit 7c1683a

File tree

6 files changed

+7
-117
lines changed

6 files changed

+7
-117
lines changed

tests/pytorch/selective_layernorm_mlp/distributed/run_numerics.py

Lines changed: 0 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -9,14 +9,12 @@
99
import os
1010
import sys
1111
from functools import wraps
12-
import math
1312

1413
import torch
1514
from torch import nn
1615
import torch.distributed as dist
1716
import transformer_engine.pytorch as te
1817

19-
import transformer_engine_torch as tex
2018
from transformer_engine.common.recipe import (
2119
MXFP8BlockScaling,
2220
DelayedScaling,
@@ -27,9 +25,6 @@
2725
Recipe,
2826
QParams,
2927
)
30-
from transformer_engine.pytorch import Float8CurrentScalingQuantizer, NVFP4Quantizer
31-
from transformer_engine.pytorch.constants import NVFP4_BLOCK_SCALING_SIZE
32-
from transformer_engine.pytorch.distributed import gather_along_first_dim
3328

3429

3530
def _compare_tensors(name, test, ref, rtol, atol):

tests/pytorch/selective_layernorm_mlp/test_cuda_graphs.py

Lines changed: 4 additions & 61 deletions
Original file line numberDiff line numberDiff line change
@@ -166,12 +166,7 @@ def forward(self, input_: torch.Tensor, **kwargs) -> torch.Tensor:
166166

167167

168168
# Supported modules
169-
_test_cuda_graphs_modules: List[str] = [
170-
# Put linear first to test the case where the cuda context might not be set in
171-
# creating TMA descriptor for MXFP8 quantization.
172-
"selective_layernorm_mlp",
173-
]
174-
169+
_test_cuda_graphs_modules: List[str] = ["selective_layernorm_mlp"]
175170

176171
def _test_cuda_graphs(
177172
*,
@@ -195,20 +190,8 @@ def _test_cuda_graphs(
195190

196191
# Create modules.
197192
with quantized_model_init(enabled=fp8_params, recipe=fp8_recipe):
198-
if module == "transformer":
199-
modules = [
200-
TransformerLayer(
201-
model_config.hidden_size,
202-
model_config.hidden_size,
203-
model_config.num_heads,
204-
hidden_dropout=0.0,
205-
attention_dropout=0.0,
206-
fuse_qkv_params=True,
207-
params_dtype=dtype,
208-
)
209-
for _ in range(num_layers)
210-
]
211-
elif module == "selective_layernorm_mlp":
193+
194+
if module == "selective_layernorm_mlp":
212195
modules = [
213196
SelectiveLayerNormMLP(
214197
model_config.hidden_size,
@@ -217,47 +200,7 @@ def _test_cuda_graphs(
217200
)
218201
for _ in range(num_layers)
219202
]
220-
elif module == "layernorm_linear":
221-
modules = [
222-
LayerNormLinear(
223-
model_config.hidden_size,
224-
model_config.hidden_size,
225-
params_dtype=dtype,
226-
)
227-
for _ in range(num_layers)
228-
]
229-
elif module == "mha":
230-
modules = [
231-
MultiheadAttention(
232-
model_config.hidden_size,
233-
model_config.num_heads,
234-
attention_dropout=0.0,
235-
params_dtype=dtype,
236-
fuse_qkv_params=True,
237-
)
238-
for _ in range(num_layers)
239-
]
240-
elif module == "linear":
241-
modules = [
242-
Linear(
243-
model_config.hidden_size,
244-
model_config.hidden_size,
245-
device="cuda",
246-
params_dtype=dtype,
247-
)
248-
for _ in range(num_layers)
249-
]
250-
elif module == "linear_op":
251-
modules = [
252-
te_ops.Sequential(
253-
te_ops.Linear(
254-
model_config.hidden_size,
255-
model_config.hidden_size,
256-
dtype=dtype,
257-
),
258-
)
259-
for _ in range(num_layers)
260-
]
203+
261204
else:
262205
raise ValueError(f"Unknown module type ({module})")
263206

tests/pytorch/selective_layernorm_mlp/test_deferred_init.py

Lines changed: 1 addition & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -7,10 +7,7 @@
77

88
import transformer_engine.pytorch as te
99

10-
_core_modules = [
11-
te.SelectiveLayerNormMLP,
12-
]
13-
10+
_core_modules = [te.SelectiveLayerNormMLP,]
1411
_composed_modules = []
1512

1613
batch_size = 32
@@ -19,7 +16,6 @@
1916
head_dim = 64
2017
dtype = torch.bfloat16
2118

22-
2319
class TestDeferredInit:
2420

2521
@staticmethod

tests/pytorch/selective_layernorm_mlp/test_numerics.py

Lines changed: 1 addition & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,6 @@
22
#
33
# See LICENSE for license information.
44

5-
import math
65
import os
76

87
os.environ.setdefault("NVIDIA_TF32_OVERRIDE", "0")
@@ -12,41 +11,25 @@
1211
os.environ.setdefault("PYTORCH_CUDNN_ALLOW_TF32", "0")
1312
os.environ.setdefault("CUBLAS_WORKSPACE_CONFIG", ":4096:8")
1413

15-
from typing import Dict, List, Tuple, Optional
14+
from typing import Dict, List, Tuple
1615
import pytest
17-
import random
1816

1917
import torch
2018
import torch.nn as nn
2119
from torch.nn import Parameter
2220

2321
from transformer_engine.pytorch.quantization import FP8GlobalStateManager
24-
from transformer_engine.pytorch.utils import (
25-
init_method_normal,
26-
scaled_init_method_normal,
27-
attention_mask_func,
28-
)
2922
from transformer_engine.pytorch import (
3023
autocast,
31-
quantized_model_init,
3224
SelectiveLayerNormMLP,
33-
Fp8Padding,
34-
Fp8Unpadding,
35-
Float8Quantizer,
36-
Float8CurrentScalingQuantizer,
37-
MXFP8Quantizer,
3825
get_device_compute_capability,
3926
is_fp8_available,
4027
is_mxfp8_available,
4128
is_fp8_block_scaling_available,
4229
is_bf16_available,
4330
is_nvfp4_available,
4431
)
45-
from transformer_engine.pytorch import checkpoint as te_checkpoint
46-
from transformer_engine.pytorch.cpp_extensions import general_gemm, general_grouped_gemm
47-
from transformer_engine.pytorch.module.base import get_multi_stream_cublas_workspace, get_workspace
4832
from transformer_engine.common import recipe
49-
import transformer_engine_torch as tex
5033
from utils import ModelConfig, reset_rng_states
5134

5235

tests/pytorch/selective_layernorm_mlp/test_recipe.py

Lines changed: 1 addition & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -2,30 +2,16 @@
22
#
33
# See LICENSE for license information.
44

5-
from typing import Optional
6-
75
import pytest
86
import torch
9-
import warnings
107

11-
import transformer_engine.common.recipe
128
import transformer_engine.pytorch as te
139
from transformer_engine.pytorch import (
14-
Float8BlockQuantizer,
15-
MXFP8Quantizer,
16-
Float8Quantizer,
17-
NVFP4Quantizer,
1810
quantized_model_init,
1911
SelectiveLayerNormMLP,
2012
)
2113

22-
import transformer_engine_torch as tex
23-
from transformer_engine.pytorch.quantization import (
24-
FP8GlobalStateManager,
25-
_amax_and_scale_update,
26-
)
27-
import transformer_engine.pytorch.ops as te_ops
28-
from transformer_engine.common.recipe import DelayedScaling, Float8BlockScaling, MXFP8BlockScaling
14+
from transformer_engine.common.recipe import DelayedScaling
2915

3016
# Check if FP8 is supported
3117
fp8_available, reason_for_no_fp8 = te.is_fp8_available(return_reason=True)

tests/pytorch/selective_layernorm_mlp/test_sanity.py

Lines changed: 0 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -2,8 +2,6 @@
22
#
33
# See LICENSE for license information.
44

5-
from typing import Optional
6-
75
import torch
86
import pytest
97
import os
@@ -17,21 +15,10 @@
1715
)
1816
from transformer_engine.pytorch import (
1917
autocast,
20-
quantized_model_init,
2118
SelectiveLayerNormMLP,
22-
Float8CurrentScalingQuantizer,
23-
Float8Quantizer,
24-
Float8Tensor,
25-
MXFP8Tensor,
26-
checkpoint,
27-
QuantizedTensor,
2819
is_bf16_available,
2920
)
3021
from transformer_engine.common import recipe
31-
import transformer_engine_torch as tex
32-
from transformer_engine.pytorch.cpp_extensions import general_gemm
33-
from transformer_engine.pytorch.module.base import get_workspace
34-
from transformer_engine.pytorch.tensor.utils import replace_raw_data
3522
from utils import ModelConfig
3623

3724
# Only run FP8 tests on supported devices.

0 commit comments

Comments
 (0)