|
| 1 | +# Copyright 2016 The TensorFlow Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +# ============================================================================== |
| 15 | +"""Tests for tf upgrader.""" |
| 16 | + |
| 17 | +from __future__ import absolute_import |
| 18 | +from __future__ import division |
| 19 | +from __future__ import print_function |
| 20 | +import shutil |
| 21 | +import tempfile |
| 22 | +import numpy as np |
| 23 | +import tensorflow as tf |
| 24 | +from tensorflow.python.framework import test_util |
| 25 | +from tensorflow.python.platform import test as test_lib |
| 26 | + |
| 27 | + |
| 28 | +class TestUpgrade(test_util.TensorFlowTestCase): |
| 29 | + """Test various APIs that have been changed in 1.0. |
| 30 | +
|
| 31 | + This test will not run in current TensorFlow, but did run in 0.11. |
| 32 | + This file is intended to be converted by a genrule() that uses the converter |
| 33 | + so that a 1.0 compatible version of this file is generated. That is run as |
| 34 | + a unit test if the converter is successful. |
| 35 | + """ |
| 36 | + |
| 37 | + def testArgRenames(self): |
| 38 | + with self.test_session(): |
| 39 | + |
| 40 | + a = [[1., 2., 3.], [4., 5., 6.]] |
| 41 | + b = [[True, False, False], [False, True, True]] |
| 42 | + dim0 = [1] |
| 43 | + dim1 = [1] |
| 44 | + |
| 45 | + self.assertAllEqual( |
| 46 | + tf.reduce_any( |
| 47 | + b, reduction_indices=dim0).eval(), [True, True]) |
| 48 | + self.assertAllEqual( |
| 49 | + tf.reduce_all( |
| 50 | + b, reduction_indices=[0]).eval(), [False, False, False]) |
| 51 | + self.assertAllEqual( |
| 52 | + tf.reduce_all( |
| 53 | + b, reduction_indices=dim1).eval(), [False, False]) |
| 54 | + self.assertAllEqual( |
| 55 | + tf.reduce_sum( |
| 56 | + a, reduction_indices=[1]).eval(), [6., 15.]) |
| 57 | + self.assertAllEqual( |
| 58 | + tf.reduce_sum( |
| 59 | + a, reduction_indices=[0, 1]).eval(), 21.0) |
| 60 | + self.assertAllEqual(tf.reduce_sum(a, [0, 1]).eval(), 21.0) |
| 61 | + self.assertAllEqual( |
| 62 | + tf.reduce_prod( |
| 63 | + a, reduction_indices=[1]).eval(), [6., 120.]) |
| 64 | + self.assertAllEqual( |
| 65 | + tf.reduce_prod( |
| 66 | + a, reduction_indices=[0, 1]).eval(), 720.0) |
| 67 | + self.assertAllEqual(tf.reduce_prod(a, [0, 1]).eval(), 720.0) |
| 68 | + self.assertAllEqual( |
| 69 | + tf.reduce_mean( |
| 70 | + a, reduction_indices=[1]).eval(), [2., 5.]) |
| 71 | + self.assertAllEqual( |
| 72 | + tf.reduce_mean( |
| 73 | + a, reduction_indices=[0, 1]).eval(), 3.5) |
| 74 | + self.assertAllEqual(tf.reduce_mean(a, [0, 1]).eval(), 3.5) |
| 75 | + self.assertAllEqual( |
| 76 | + tf.reduce_min( |
| 77 | + a, reduction_indices=[1]).eval(), [1., 4.]) |
| 78 | + self.assertAllEqual( |
| 79 | + tf.reduce_min( |
| 80 | + a, reduction_indices=[0, 1]).eval(), 1.0) |
| 81 | + self.assertAllEqual(tf.reduce_min(a, [0, 1]).eval(), 1.0) |
| 82 | + self.assertAllEqual( |
| 83 | + tf.reduce_max( |
| 84 | + a, reduction_indices=[1]).eval(), [3., 6.]) |
| 85 | + self.assertAllEqual( |
| 86 | + tf.reduce_max( |
| 87 | + a, reduction_indices=[0, 1]).eval(), 6.0) |
| 88 | + self.assertAllEqual(tf.reduce_max(a, [0, 1]).eval(), 6.0) |
| 89 | + self.assertAllClose(tf.reduce_logsumexp(a, reduction_indices=[1]).eval(), |
| 90 | + [3.40760589, 6.40760612]) |
| 91 | + self.assertAllClose( |
| 92 | + tf.reduce_logsumexp(a, reduction_indices=[0, 1]).eval(), |
| 93 | + 6.45619344711) |
| 94 | + self.assertAllClose( |
| 95 | + tf.reduce_logsumexp(a, [0, 1]).eval(), 6.45619344711) |
| 96 | + self.assertAllEqual( |
| 97 | + tf.expand_dims([[1, 2], [3, 4]], dim=1).eval(), |
| 98 | + [[[1, 2]], [[3, 4]]]) |
| 99 | + |
| 100 | + def testArgMinMax(self): |
| 101 | + with self.test_session(): |
| 102 | + self.assertAllEqual( |
| 103 | + tf.argmin([[1, 2, 3], [4, 1, 0]], dimension=1).eval(), |
| 104 | + [0, 2]) |
| 105 | + self.assertAllEqual( |
| 106 | + tf.argmin([[1, 2, 3], [4, 1, 0]], dimension=0).eval(), |
| 107 | + [0, 1, 1]) |
| 108 | + self.assertAllEqual( |
| 109 | + tf.argmax([[1, 2, 3], [4, 1, 0]], dimension=1).eval(), |
| 110 | + [2, 0]) |
| 111 | + self.assertAllEqual( |
| 112 | + tf.argmax([[1, 2, 3], [4, 1, 0]], dimension=0).eval(), |
| 113 | + [1, 0, 0]) |
| 114 | + |
| 115 | + def testExpandAndSqueeze(self): |
| 116 | + with self.test_session(): |
| 117 | + |
| 118 | + # TODO(aselle): sparse_split, sparse_reduce_sum, |
| 119 | + # sparse_reduce_sum_sparse, reduce_join |
| 120 | + a = [[1, 2, 3]] |
| 121 | + self.assertAllEqual(tf.expand_dims(tf.squeeze(a, [0]), 0).eval(), |
| 122 | + a) |
| 123 | + self.assertAllEqual(tf.squeeze(tf.expand_dims(a, 1), [1]).eval(), |
| 124 | + a) |
| 125 | + self.assertAllEqual( |
| 126 | + tf.expand_dims( |
| 127 | + tf.squeeze( |
| 128 | + [[1, 2, 3]], squeeze_dims=[0]), dim=0).eval(), |
| 129 | + a) |
| 130 | + self.assertAllEqual( |
| 131 | + tf.squeeze( |
| 132 | + tf.expand_dims( |
| 133 | + [[1, 2, 3]], dim=1), squeeze_dims=[1]).eval(), |
| 134 | + a) |
| 135 | + |
| 136 | + self.assertAllEqual( |
| 137 | + tf.squeeze( |
| 138 | + tf.expand_dims( |
| 139 | + [[1, 2, 3]], dim=1), squeeze_dims=[1]).eval(), |
| 140 | + a) |
| 141 | + |
| 142 | + def testArithmeticRenames(self): |
| 143 | + with self.test_session() as s: |
| 144 | + stuff = tf.split(1, 2, [[1, 2, 3, 4], [4, 5, 6, 7]]) |
| 145 | + vals = s.run(stuff) |
| 146 | + self.assertAllEqual(vals, |
| 147 | + [[[1, 2], [4, 5]], [[3, 4], [6, 7]]]) |
| 148 | + self.assertAllEqual( |
| 149 | + tf.neg(tf.mul(tf.add(1, 2), tf.sub(5, 3))).eval(), |
| 150 | + -6) |
| 151 | + self.assertAllEqual( |
| 152 | + s.run(tf.listdiff([1, 2, 3], [3, 3, 4]))[0], [1, 2]) |
| 153 | + self.assertAllEqual( |
| 154 | + tf.list_diff([1, 2, 3], [3, 3, 4])[0].eval(), [1, 2]) |
| 155 | + a = [[1., 2., 3.], [4., 5., 6.]] |
| 156 | + foo = np.where(np.less(a, 2), np.negative(a), a) |
| 157 | + self.assertAllEqual( |
| 158 | + tf.select(tf.less(a, 2), tf.neg(a), a).eval(), |
| 159 | + foo) |
| 160 | + self.assertAllEqual( |
| 161 | + tf.complex_abs(tf.constant(3 + 4.j)).eval(), |
| 162 | + 5) |
| 163 | + # # TODO(aselle): (tf.batch_*) |
| 164 | + # ] |
| 165 | + |
| 166 | + def testVariables(self): |
| 167 | + with self.test_session() as s: |
| 168 | + |
| 169 | + # make some variables |
| 170 | + _ = [tf.Variable([1, 2, 3], dtype=tf.float32), |
| 171 | + tf.Variable([1, 2, 3], dtype=tf.int32)] |
| 172 | + s.run(tf.initialize_all_variables()) |
| 173 | + _ = [v.name for v in tf.all_variables()] |
| 174 | + _ = [v.name for v in tf.local_variables()] |
| 175 | + |
| 176 | + def testSummaries(self): |
| 177 | + with self.test_session() as s: |
| 178 | + var = tf.Variable([1, 2, 3], dtype=tf.float32) |
| 179 | + s.run(tf.initialize_all_variables()) |
| 180 | + x, y = np.meshgrid(np.linspace(-10, 10, 256), np.linspace(-10, 10, 256)) |
| 181 | + image = np.sin(x**2 + y**2) / np.sqrt(x**2 + y**2) * .5 + .5 |
| 182 | + image = image[None, :, :, None] |
| 183 | + |
| 184 | + # make a dummy sound |
| 185 | + freq = 440 # A = 440Hz |
| 186 | + sampling_frequency = 11000 |
| 187 | + audio = np.sin(2 * np.pi * np.linspace(0, 1, sampling_frequency) * freq) |
| 188 | + audio = audio[None, :, None] |
| 189 | + test_dir = tempfile.mkdtemp() |
| 190 | + # test summaries |
| 191 | + writer = tf.train.SummaryWriter(test_dir) |
| 192 | + summaries = [ |
| 193 | + tf.scalar_summary("scalar_var", var[0]), |
| 194 | + tf.scalar_summary("scalar_reduce_var", tf.reduce_sum(var)), |
| 195 | + tf.histogram_summary("var_histogram", var), |
| 196 | + tf.image_summary("sin_image", image), |
| 197 | + tf.audio_summary("sin_wave", audio, sampling_frequency), |
| 198 | + ] |
| 199 | + run_summaries = s.run(summaries) |
| 200 | + writer.add_summary(s.run(tf.merge_summary(inputs=run_summaries))) |
| 201 | + # This is redundant, but we want to be able to rewrite the command |
| 202 | + writer.add_summary(s.run(tf.merge_all_summaries())) |
| 203 | + writer.close() |
| 204 | + shutil.rmtree(test_dir) |
| 205 | + |
| 206 | + |
| 207 | +if __name__ == "__main__": |
| 208 | + test_lib.main() |
0 commit comments