forked from medrimonia/ssl_defender_viewer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboard.py
291 lines (259 loc) · 11.1 KB
/
board.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import numpy
import pygame
from problem import *
from solution import *
def maxDist(src, dst):
"""
Src and dst are both matrices of the same size with each column representing a
different position
"""
diff = dst - src
max_dist = 0
for entry in range(diff.shape[1]):
dist = numpy.linalg.norm(diff[:, entry])
if dist > max_dist:
max_dist = dist
return max_dist
def interpolateSimplePos(src, dst, dist):
D = np.linalg.norm(dst-src)
if dist >= D:
return dst
return src + (dst-src) * dist / D
def interpolatePos(src, dst, dist):
"""
Return the position of a robot traveling from 'src' to 'dst' with a budget of 'dist'
"""
diff = dst - src
pos = numpy.copy(src)
for entry in range(diff.shape[1]):
entry_dist = numpy.linalg.norm(diff[:, entry])
if dist >= entry_dist:
pos[:, entry] = numpy.copy(dst[:, entry])
else:
pos[:, entry] = src[:, entry] + diff[:, entry] * dist / entry_dist
return pos
class Board:
def __init__(self, problem, solution):
self.problem = problem
self.solution = solution
self.size = numpy.array([1280, 960])
self.goal_thickness = 5
# colors
self.background_color = (0, 0, 0)
self.opponent_color = (255, 0, 255)
self.defender_color = (255, 255, 0)
self.goal_color = (255, 255, 255)
self.success_color = (0, 255, 0)
self.failure_color = (255, 0, 0)
self.max_dist = None
# checking that number of defenders in solution is consistent with problem
if (not self.problem.defenders is None):
if (self.problem.getNbDefenders() != self.solution.getNbDefenders()):
print("Inconsistent number of defenders "
"(Problem: {:d}, Solution: {:d})".format(
self.problem.getNbDefenders(), self.solution.getNbDefenders()))
sys.exit(1)
self.dist = 0
self.max_dist = maxDist(
self.problem.defenders, self.solution.defenders)
print("Max dist: {:f}".format(self.max_dist))
# Compute results of shots
self.updateShotsResults()
# Handling dynamic case
self.time = None
if self.problem.ball_max_speed is not None:
max_shot_dist = 0
for shot in self.shots:
shot_dist = np.linalg.norm(shot.end - shot.src)
if shot_dist > max_shot_dist:
max_shot_dist = shot_dist
self.time = 0
self.max_time = max_shot_dist / self.problem.ball_max_speed
def getDefenders(self):
"""
Retrieve the defenders position corresponding to current state
"""
if (self.problem.defenders is None):
return self.solution.defenders
return interpolatePos(self.problem.defenders, self.solution.defenders, self.dist)
def getImgCenter(self):
""" Return the position of the center of the image """
return self.size / 2
def getRatio(self):
""" Return the ratio between image and field size [px/m]"""
return 0.95 * min(self.size[0] / self.problem.getFieldWidth(),
self.size[1] / self.problem.getFieldHeight())
def getPixelFromField(self, pos_in_field):
""" From field referential to img position """
ratio = self.getRatio()
offset_field = pos_in_field - self.problem.getFieldCenter()
offset_pixel = self.getRatio() * offset_field
# Y axis is inverted to get the Z-axis pointing outside of the screen
offset_pixel[1] *= -1
pixel = self.getImgCenter() + offset_pixel
return [int(pixel[0]), int(pixel[1])]
def updateShotsResults(self):
"""
Analyze the results of shots according to current defenders positions
"""
self.shots = self.problem.computeShotsResults(self.getDefenders())
def drawSegmentInField(self, screen, color, pos1, pos2, thickness):
start = self.getPixelFromField(pos1)
end = self.getPixelFromField(pos2)
pygame.draw.line(screen, color, start, end, thickness)
def drawShot(self, screen, shot):
"""
Also updates self.opponent_can_score if kick reaches a goal and is not intercepted
"""
color = self.failure_color
if shot.result != ShotResult.GOAL:
color = self.success_color
else:
self.opponent_can_score = True
end = shot.end
if self.time is not None:
ball_dist = self.problem.ball_max_speed * min(self.time, self.max_time)
end = interpolateSimplePos(shot.src, shot.end, ball_dist)
self.drawSegmentInField(screen, color, shot.src, end, 1)
def drawShots(self, screen):
for shot in self.shots:
self.drawShot(screen, shot)
def drawGoals(self, screen):
for goal in self.problem.goals:
self.drawSegmentInField(screen, self.goal_color,
goal.posts[:, 0], goal.posts[:, 1],
self.goal_thickness)
def drawDefendersZones(self, screen):
if self.time is None:
return
D = self.getDefenders()
t = min(self.time, self.max_time)
intercept_dist = t * self.problem.robot_max_speed
for robot_id in range(D.shape[1]):
pygame.draw.circle(screen, np.array(self.defender_color) * 0.2,
self.getPixelFromField(D[:, robot_id]),
int(intercept_dist * self.getRatio()))
def drawRobots(self, screen, robots, color):
for robot_id in range(robots.shape[1]):
# Drawing robot
pygame.draw.circle(screen, color,
self.getPixelFromField(robots[:, robot_id]),
int(self.problem.robot_radius * self.getRatio()))
# Drawing minimal distance
if (self.problem.min_dist != None):
pygame.draw.circle(screen, color,
self.getPixelFromField(robots[:, robot_id]),
int(self.problem.min_dist * self.getRatio() / 2), 1)
def drawOpponents(self, screen):
self.drawRobots(screen, self.problem.opponents, self.opponent_color)
def drawDefenders(self, screen):
self.drawRobots(screen, self.getDefenders(), self.defender_color)
def step(self):
"""
Updates variables when dynamic display is required
"""
frame_freeze = 50
if (not self.max_dist is None):
dist_step = 0.01
self.dist += dist_step
# Adding a sleep dist to freeze once situation is reached
if (self.dist > self.max_dist + frame_freeze * dist_step):
self.dist = 0
self.updateShotsResults()
if self.time is not None:
dt = 0.002 # [s]
self.time += dt
if self.time > self.max_time + frame_freeze * dt:
self.time = 0
def checkCollisions(self):
robots = numpy.concatenate(
(self.problem.opponents, self.getDefenders()), 1)
min_dist = 2 * self.problem.robot_radius
if (self.problem.min_dist != None):
min_dist = self.problem.min_dist
for r1 in range(robots.shape[1] - 1):
for r2 in range(r1+1, robots.shape[1]):
dist = numpy.linalg.norm(robots[:, r1] - robots[:, r2])
if (dist < min_dist):
return True
return False
def drawDist(self, screen):
if (not self.max_dist is None):
shown_dist = min(self.dist, self.max_dist)
text = "Dist: {:f} / {:f}".format(shown_dist, self.max_dist)
text_surface = self.font.render(text, False, (255, 255, 255))
text_rect = text_surface.get_rect()
text_rect.midtop = (self.size[0] / 2, 0)
screen.blit(text_surface, text_rect)
def drawStatus(self, screen):
text = "Success"
if self.opponent_can_score or self.collision or self.goalies_count > 1 or self.defenders_invalid:
text = "Failed: "
if self.defenders_invalid:
text += " defenders are not on grid"
if self.opponent_can_score:
text += " opponent can score"
if self.collision:
text += " collision detected"
if self.goalies_count > 1:
text += " {:d} defenders in goal area".format(
self.goalies_count)
text_surface = self.font.render(text, False, (255, 255, 255))
text_rect = text_surface.get_rect()
text_rect.midbottom = (self.size[0] / 2, self.size[1])
screen.blit(text_surface, text_rect)
def checkDefendersInvalid(self):
# If defenders are on the grid, the number of steps should 'almost' be an int
pos_steps = self.solution.defenders / self.problem.pos_step
return np.max(np.abs(pos_steps-np.round(pos_steps))) > 10 ** -6
def checkGoalArea(self):
self.goalies_count = 0
if not self.problem.goalkeeper_area is None:
limits = self.problem.goalkeeper_area
defenders = self.getDefenders()
for def_id in range(defenders.shape[1]):
x_ok = limits[0, 0] <= defenders[0, def_id] <= limits[0, 1]
y_ok = limits[1, 1] <= defenders[1, def_id] <= limits[1, 0]
if x_ok and y_ok:
self.goalies_count += 1
def drawGoalArea(self, screen):
if not self.problem.goalkeeper_area is None:
limits = self.problem.goalkeeper_area
top_left = self.getPixelFromField(limits[:, 0])
bot_right = self.getPixelFromField(limits[:, 1])
left = top_left[0]
top = top_left[1]
width = bot_right[0] - top_left[0]
height = bot_right[1] - top_left[1]
goalkeeper_area = pygame.Rect(left, top, width, height)
pygame.draw.rect(screen, (0, 0, 255), goalkeeper_area)
def draw(self, screen):
self.opponent_can_score = False
self.step()
self.collision = self.checkCollisions()
self.defenders_invalid = self.checkDefendersInvalid()
self.checkGoalArea()
self.drawGoalArea(screen)
self.drawDefendersZones(screen)
self.drawShots(screen)
self.drawGoals(screen)
self.drawOpponents(screen)
self.drawDefenders(screen)
self.drawDist(screen)
self.drawStatus(screen)
def run(self):
pygame.init()
self.font = pygame.font.SysFont("Ubuntu Mono", 50)
screen = pygame.display.set_mode(self.size)
running = True
dynamic = False
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
keys = pygame.key.get_pressed()
if (keys[pygame.K_ESCAPE]):
running = False
screen.fill(self.background_color)
self.draw(screen)
pygame.display.flip()