-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutility.py
148 lines (108 loc) · 5.51 KB
/
utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from __future__ import print_function
from pathlib import Path
import argparse
import os
import io
import numpy as np
from sklearn.cluster import KMeans
from sklearn.neighbors import NearestNeighbors
import imageio
import skimage.io
from PIL import Image
import matplotlib.cm as cm
import matplotlib.pyplot as plt
from skimage import color
from NetVLAD.dataset import get_whole_val_set
parser = argparse.ArgumentParser(description='ES-PS-Utility')
parser.add_argument('--root_dir', type=str, default='', help='Path to dataset')
parser.add_argument('--dataset', type=str, default='berlin',
help='Dataset to use', choices=['oxford', 'nordland', 'berlin'])
parser.add_argument('--num_clusters', type=int, default=16, help='Number of NetVlad clusters. Default=16')
parser.add_argument('--netvlad_extracts_path', type=str, default='', help='Path to NetVLAD Extractions')
parser.add_argument('--save_viz', action='store_true', help='Save Utility Visualization Gifs')
parser.add_argument('--save_path', type=str, default='',
help='Path to save Place-Specific (PS) Utilities & Low Environment-Specific (ES) Utility Clusters')
def fig2img(fig):
"""Convert a Matplotlib figure to a PIL Image and return it"""
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
def color_map_color(value, cmap_name='jet', vmin=0, vmax=1):
norm = plt.Normalize(vmin, vmax)
cmap = cm.get_cmap(cmap_name)
rgb = cmap(norm(abs(value)))[:3] # will return rgba, we take only first 3 so we get rgb
return rgb
if __name__ == "__main__":
opt = parser.parse_args()
print(opt)
save_path = Path(opt.save_path)
save_path.mkdir(exist_ok=True, parents=True)
print("==> Predicting Environment- and Place-Specific Utility")
dbFeat = np.load(os.path.join(opt.netvlad_extracts_path, 'dbFeat.npy'))
db_cluster_masks = np.load(os.path.join(opt.netvlad_extracts_path, 'db_cluster_masks.npy'))
dataset = get_whole_val_set(opt.root_dir, opt.dataset.lower())
knn = NearestNeighbors(n_jobs=1)
knn.fit(dataset.dbStruct.locDb)
_ , positives = knn.radius_neighbors(dataset.dbStruct.locDb,
radius=dataset.dbStruct.posDistThr, sort_results=True)
_ , non_negatives = knn.radius_neighbors(dataset.dbStruct.locDb,
radius=(2*dataset.dbStruct.posDistThr), sort_results=True)
ps_utility = np.zeros((dataset.dbStruct.numDb, opt.num_clusters))
es_utility = np.zeros((opt.num_clusters, 1))
for j in range(dataset.dbStruct.numDb):
unique_clusters = np.unique(db_cluster_masks[j]).astype(int)
indexes = np.arange(dataset.dbStruct.numDb)
db_neg = np.delete(indexes, non_negatives[j]) # np.delete(x, exclude non-negatives)
neg = dbFeat[db_neg,:]
diff = np.zeros((1,opt.num_clusters))
for i in unique_clusters:
day_query = dbFeat[j,512*i:512*(i+1)]
n = neg[:,512*i:512*(i+1)]
dist = np.linalg.norm(n-day_query, axis=1)
es_utility[i] += np.sum(dist)
diff[:,i] = np.average(dist)
diff = diff+1
absent_clusters = np.delete(np.arange(opt.num_clusters), unique_clusters)
diff[:,absent_clusters] = 0
ps_utility[j] = diff
es_utility = es_utility/(dataset.dbStruct.numDb*(dataset.dbStruct.numDb-1))
es_utility_order = np.argsort(es_utility)
kmeans = KMeans(n_clusters=2, random_state=0).fit(es_utility.reshape(-1, 1))
if es_utility_order[0] in np.where(kmeans.labels_ == 0)[0]:
low_es_utility_clusters = np.where(kmeans.labels_ == 0)[0]
else:
low_es_utility_clusters = np.where(kmeans.labels_ == 1)[0]
np.save(os.path.join(opt.save_path, 'ps_utility.npy'), ps_utility)
np.save(os.path.join(opt.save_path, 'low_es_utility_clusters.npy'), low_es_utility_clusters)
if opt.save_viz:
print("==> Visualizing Estimated Utilities")
image_paths = dataset.dbStruct.dbImage
image_paths = [x.replace(' ','') for x in image_paths]
ps_utility_rankings = np.flip(np.argsort(ps_utility, axis=1), axis=1)
high_es_utility_clusters = np.delete(np.arange(opt.num_clusters), low_es_utility_clusters)
ps_utility_viz = []
es_utility_viz = []
for i in np.arange(len(image_paths))[::4]:
img = skimage.io.imread(os.path.join(opt.root_dir, image_paths[i]))
colors = np.zeros((opt.num_clusters,3))
ps_utility_ranking = ps_utility_rankings[i]
for j in range(opt.num_clusters):
colors[ps_utility_ranking[j].astype('int'),:] = color_map_color(j/(opt.num_clusters-1))
new_colors = colors[np.unique(db_cluster_masks[i]).astype(int)]
plt.axis('off')
plt.imshow(color.label2rgb(db_cluster_masks[i], img, colors=new_colors, bg_label=-1, alpha=0.5)) # PS
plt.tight_layout(pad=0)
ps_utility_viz.append(fig2img(plt.gcf()))
plt.close()
es_binary_mask = np.in1d(db_cluster_masks[i], high_es_utility_clusters).reshape((480,640))
plt.axis('off')
plt.imshow(color.label2rgb(es_binary_mask, img, bg_label=1, alpha=0.5)) # ES
plt.tight_layout(pad=0)
es_utility_viz.append(fig2img(plt.gcf()))
plt.close()
np_ps_utility_viz = [np.array(viz) for viz in ps_utility_viz]
np_es_utility_viz = [np.array(viz) for viz in es_utility_viz]
imageio.mimsave(os.path.join(opt.save_path, 'ps_utility.gif'), np_ps_utility_viz, fps=1)
imageio.mimsave(os.path.join(opt.save_path, 'es_utility.gif'), np_es_utility_viz, fps=1)