Skip to content

训练时没有响应 #112

@sjsj102323

Description

@sjsj102323

所用的脚本:

#! /bin/bash
export CUDA_VISIBLE_DEVICES=4,5,6,7
GPUS_PER_NODE=4

NNODES=1
MASTER_ADDR="localhost"
MASTER_PORT=12346

OPTS=""
OPTS+=" --use-delta"
OPTS+=" --model-config /home/zyz/.cache/modelscope/hub/OpenBMB/cpm-bee-10b/config/cpm-bee-10b.json"
OPTS+=" --dataset /home/zyz/cpm/datasets/dataset.json"
OPTS+=" --eval_dataset /home/zyz/cpm/datasets/step/data"
OPTS+=" --epoch 100"
OPTS+=" --batch-size 5"
OPTS+=" --train-iters 100"
OPTS+=" --save-name cpm_bee_finetune"
OPTS+=" --max-length 2048"
OPTS+=" --save results/"
OPTS+=" --lr 0.0001"
OPTS+=" --inspect-iters 100"
OPTS+=" --warmup-iters 1"
OPTS+=" --eval-interval 1000"
OPTS+=" --early-stop-patience 5"
OPTS+=" --lr-decay-style noam"
OPTS+=" --weight-decay 0.01"
OPTS+=" --clip-grad 1.0"
OPTS+=" --loss-scale 32768"
OPTS+=" --start-step 0"
OPTS+=" --load /home/zyz/.cache/modelscope/hub/OpenBMB/cpm-bee-10b/pytorch_model.bin"

CMD="torchrun --nnodes=${NNODES} --nproc_per_node=${GPUS_PER_NODE} --rdzv_id=1 --rdzv_backend=c10d --rdzv_endpoint=${MASTER_ADDR}:${MASTER_PORT} finetune_cpm_bee.py ${OPTS}"

echo ${CMD}
$CMD

```
`
输出结果:`

```
> nohup: 忽略输入
> torchrun --nnodes=1 --nproc_per_node=4 --rdzv_id=1 --rdzv_backend=c10d --rdzv_endpoint=localhost:12346 finetune_cpm_bee.py --use-delta --model-config /home/zyz/.cache/modelscope/hub/OpenBMB/cpm-bee-10b/config/cpm-bee-10b.json --dataset /home/zyz/cpm/datasets/dataset.json --eval_dataset /home/zyz/cpm/datasets/step/data --epoch 100 --batch-size 5 --train-iters 100 --save-name cpm_bee_finetune --max-length 2048 --save results/ --lr 0.0001 --inspect-iters 100 --warmup-iters 1 --eval-interval 1000 --early-stop-patience 5 --lr-decay-style noam --weight-decay 0.01 --clip-grad 1.0 --loss-scale 32768 --start-step 0 --load /home/zyz/.cache/modelscope/hub/OpenBMB/cpm-bee-10b/pytorch_model.bin
> [2024-03-28 20:20:35,784] torch.distributed.run: [WARNING] 
> [2024-03-28 20:20:35,784] torch.distributed.run: [WARNING] *****************************************
> [2024-03-28 20:20:35,784] torch.distributed.run: [WARNING] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
> [2024-03-28 20:20:35,784] torch.distributed.run: [WARNING] *****************************************
> /home/zyz/anaconda3/envs/cpm/lib/python3.10/site-packages/transformers/deepspeed.py:23: FutureWarning: transformers.deepspeed module is deprecated and will be removed in a future version. Please import deepspeed modules directly from transformers.integrations
>   warnings.warn(
> /home/zyz/anaconda3/envs/cpm/lib/python3.10/site-packages/transformers/deepspeed.py:23: FutureWarning: transformers.deepspeed module is deprecated and will be removed in a future version. Please import deepspeed modules directly from transformers.integrations
>   warnings.warn(
> /home/zyz/anaconda3/envs/cpm/lib/python3.10/site-packages/transformers/deepspeed.py:23: FutureWarning: transformers.deepspeed module is deprecated and will be removed in a future version. Please import deepspeed modules directly from transformers.integrations
>   warnings.warn(
> /home/zyz/anaconda3/envs/cpm/lib/python3.10/site-packages/transformers/deepspeed.py:23: FutureWarning: transformers.deepspeed module is deprecated and will be removed in a future version. Please import deepspeed modules directly from transformers.integrations
>   warnings.warn(
> ====================== Initialization ======================
> rank :          0
> local_rank :    0
> world_size :    4
> local_size :    4
> master :        aa-ESC8000-G4:53279
> device :        0
> cpus :          [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1
>                 3, 14, 15, 16, 17, 18, 19]
> 
> /home/zyz/anaconda3/envs/cpm/lib/python3.10/site-packages/bmtrain/synchronize.py:14: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ../torch/csrc/tensor/python_tensor.cpp:83.)
>   barrier = torch.cuda.FloatTensor([1])
> /home/zyz/anaconda3/envs/cpm/lib/python3.10/site-packages/bmtrain/synchronize.py:15: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
>   nccl.allReduce(barrier.storage(), barrier.storage(), 'sum', config['comm'])
> /home/zyz/anaconda3/envs/cpm/lib/python3.10/site-packages/bmtrain/synchronize.py:14: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ../torch/csrc/tensor/python_tensor.cpp:83.)
>   barrier = torch.cuda.FloatTensor([1])
> /home/zyz/anaconda3/envs/cpm/lib/python3.10/site-packages/bmtrain/synchronize.py:15: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
>   nccl.allReduce(barrier.storage(), barrier.storage(), 'sum', config['comm'])
> /home/zyz/anaconda3/envs/cpm/lib/python3.10/site-packages/bmtrain/synchronize.py:14: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ../torch/csrc/tensor/python_tensor.cpp:83.)
>   barrier = torch.cuda.FloatTensor([1])
> /home/zyz/anaconda3/envs/cpm/lib/python3.10/site-packages/bmtrain/synchronize.py:15: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
>   nccl.allReduce(barrier.storage(), barrier.storage(), 'sum', config['comm'])
> /home/zyz/anaconda3/envs/cpm/lib/python3.10/site-packages/bmtrain/synchronize.py:14: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ../torch/csrc/tensor/python_tensor.cpp:83.)
>   barrier = torch.cuda.FloatTensor([1])
> /home/zyz/anaconda3/envs/cpm/lib/python3.10/site-packages/bmtrain/synchronize.py:15: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
>   nccl.allReduce(barrier.storage(), barrier.storage(), 'sum', config['comm'])
```

`在该界面一直停留,没有响应

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions