diff --git a/content/incompleteness/representability-in-q/representability-in-q.tex b/content/incompleteness/representability-in-q/representability-in-q.tex index 378cd66f..4e932152 100644 --- a/content/incompleteness/representability-in-q/representability-in-q.tex +++ b/content/incompleteness/representability-in-q/representability-in-q.tex @@ -27,6 +27,8 @@ \olimport{undecidability} +\olimport{sigma1-completeness} + \OLEndChapterHook \end{document} diff --git a/content/incompleteness/representability-in-q/sigma1-completeness.tex b/content/incompleteness/representability-in-q/sigma1-completeness.tex new file mode 100644 index 00000000..3ef99d43 --- /dev/null +++ b/content/incompleteness/representability-in-q/sigma1-completeness.tex @@ -0,0 +1,300 @@ +% Part: incompleteness +% Chapter: representability-in-q +% Section: sigma1-completeness + +\documentclass[../../../include/open-logic-section]{subfiles} + +\begin{document} + +\olfileid{inc}{inp}{s1c} +\olsection{\texorpdfstring{$\Sigma_1$}{Sigma-1} completeness} + +Despite the incompleteness of $\Th{Q}$ and its consistent, axiomatizable +extensions, we have seen that $\Th{Q}$ does prove many basic facts about +numerals. In fact, this can be extended quite considerably. To understand +the scope of what can be proved in $\Th{Q}$, we introduce the notions of +$\Delta_0$, $\Sigma_1$, and $\Pi_1$ !!{formula}s. Roughly speaking, a +$\Sigma_1$ !!{formula} is one of the form $\lexists{x}!A(x)$, where $!A$ +is constructed using only propositional connectives and bounded +quantifiers. We shall show that if $!A$ is a $\Sigma_1$ !!{sentence} +which is true in $\Struct{N}$, then $\Th{Q} \Proves !A$ +(\olref{thm:sigma1-completeness}). + +\begin{defn} +\ollabel{defn:bd-quant} +A \emph{bounded existential !!{formula}} is one of the form +$\lexists[x][(x < t \land !A(x))]$ where $t$ is any term, which we +conventionally write as $\bexists{x < t}{!A(x)}$. +% +A \emph{bounded universal !!{formula}} is one of the form +$\lforall[x][(x < t \lif !A(x))]$ where $t$ is any term, which we +conventionally write as $\bforall{x < t}{!A(x)}$. +\end{defn} + +\begin{defn} +\ollabel{defn:delta0-sigma1-pi1-frm} +A !!{formula} $!B$ is $\Delta_0$ if it is built up from atomic +!!{formula}s using only propositional connectives and bounded +quantification. +% +A !!{formula} $!A$ is $\Sigma_1$ if $!A \ident \lexists[x][!B(x)]$ +where $!B$ is $\Delta_0$. +% +A !!{formula} $!A$ is $\Pi_1$ if $!A \ident \lforall[x][!B(x)]$ +where $!B$ is $\Delta_0$. +\end{defn} + +\begin{lem} +\ollabel{lem:q-proves-clterm-id} Suppose $t$ is a closed term such that +$\Assign{t}{N} = n$. Then $\Th{Q} \Proves \eq[t][\num n]$. +\end{lem} + +\begin{proof} +We prove this by induction on the complexity of $t$. For the base case, +${\Obj 0}^\Struct{N} = 0$, and $\Th{Q} \Proves \eq[\Obj 0][\num 0]$ +since $\num 0 \ident \Obj 0$. +% +For the inductive case, let $t_1$ and $t_2$ be terms such that +$t_1^\Struct{N} = n_1$, $t_2^\Struct{N} = n_2$, +$\Th{Q} \Proves \eq[t_1][\num n_1]$, and +$\Th{Q} \Proves \eq[t_2][\num n_2]$. + +Then $(t_1')^\Struct{N} = n_1 + 1$, and we have that $\Th{Q} \Proves +\eq[t_1'][{\num n_1}']$ by the first-order rules for identity applied +to the induction hypothesis and the !!{formula} +$\eq[\num{n_1}'][\num{n_1}']$, +so we have $\Th{Q} \Proves \eq[t_1'][\num{n_1 + 1}]$ +by the definition of numerals. + +For sums we have +$$ + (t_1 + t_2)^\mathfrak{N} + = t_1^\mathfrak{N} + t_2^\mathfrak{N} + = n_1 + n_2. +$$ +By the induction hypothesis and the rules for identity, +$\Th{Q} \Proves \eq[t_1 + t_2][\num n_1 + t_2]$, and then +$\Th{Q} \Proves \eq[t_1 + t_2][\num n_1 + \num n_2]$ +by a second application of the rules for identity. +By \olref[inc][req][bre]{lem:q-proves-add}, +$\Th{Q} \Proves \eq[\num n_1 + \num n_2][\num{n_1 + n_2}]$, +so $\Th{Q} \Proves \eq[t_1 + t_2][\num{n_1 + n_2}]$. + +Similar reasoning also works for $\times$, using +\olref[inc][req][bre]{lem:q-proves-mult}. +% +Since this exhausts the closed terms of arithmetic, we have that +$\Th{Q} \Proves \eq[t][\num n]$ for all closed terms $t$ such that +$t^\Struct{N} = n$. +\end{proof} + +\begin{prob} +Prove in detail the part of \olref{lem:q-proves-clterm-id} +involving $\times$. +\end{prob} + +\begin{lem} +\ollabel{lem:atomic-completeness} +Suppose $t_1$ and $t_2$ are closed terms. Then +\begin{enumerate} +\item If $t_1^\Struct{N} = t_2^\Struct{N}$, + then $\Th{Q} \Proves \eq[t_1][t_2]$. +\item If $t_1^\Struct{N} \neq t_2^\Struct{N}$, + then $\Th{Q} \Proves \eq/[t_1][t_2]$. +\item If $t_1^\Struct{N} < t_2^\Struct{N}$, + then $\Th{Q} \Proves t_1 < t_2$. +\item If $t_2^\Struct{N} \leq t_1^\Struct{N}$, + then $\Th{Q} \Proves \lnot(t_1 < t_2)$. +\end{enumerate} +\end{lem} + +\begin{proof} +Given terms $t_1$ and $t_2$, we fix $n = t_1^\mathfrak{N}$ and +$m = t_2^\mathfrak{N}$. + +Suppose $!A \ident t_1 = t_2$. By \olref{lem:q-proves-clterm-id}, +$\Th{Q} \Proves \eq[t_1][\num n]$ and $\Th{Q} \Proves \eq[t_2][\num n]$. +If $n = m$, then $\Th{Q} \Proves \eq[\num n][\num m]$ and hence +$\Th{Q} \Proves \eq[t_1][t_2]$ by the transitivity of identity. +If $n \neq m$ then $\Th{Q} \Proves \eq/[\num n][\num m]$, +and by the transitivity of identity again, +$\Th{Q} \Proves \eq/[t_1][t_2]$. + +Now let $!A \ident t_1 < t_2$. For both cases, we rely on axiom $!Q_8$, +which states that $x < y \leftrightarrow \lexists[z][\eq[z' + x][y]]$ +for all $x,y$. + +Suppose $\Sat{N}{t_1 < t_2}$. Then there exists some $k \in \Nat$ +such that $n + k + 1 = m$. By \olref{lem:q-proves-clterm-id}, +$\Th{Q} \Proves \eq[t_1][\num n]$ and $\Th{Q} \Proves \eq[t_2][\num m]$, +and by the first part of this lemma, +$\Th{Q} \Proves \eq[\num n + {\num k}'][\num m]$. +By the transitivity of identity it follows that +$\Th{Q} \Proves \eq[{\num k}' + t_1][t_2]$, +so $\Th{Q} \Proves \lexists[z][\eq[z' + t_1][t_2]]$. +By the right-to-left direction of $!Q_8$, $\Th{Q} \Proves t_1 < t_2$. + +Suppose instead that $\Sat/{N}{t_1 < t_2}$, i.e.\ $m \leq n$. +% +We work in $\Th{Q}$ and assume that $t_1 < t_2$. By the left-to-right +direction of $!Q_8$, there is some $z$ such that $\eq[z' + t_1][t_2]$. +Since $\Th{Q} \Proves \eq[t_1][\num n]$ and +$\Th{Q} \Proves \eq[t_2][\num m]$, $\eq[z' + \num n][\num m]$. +% +By an external induction on $m$ using $!Q_5$, +$\eq[z' + \num{n - m}][\Obj 0]$. +If $m = n$ then $\eq/[z'][\Obj 0]$, giving a contradiction via $!Q_3$. +If $m < n$ then $\eq[(z' + \num{n - m - 1})'][\Obj 0]$ by $!Q_5$ again, +giving a contradiction via $!Q_3$. +So $\Th{Q} \Proves \lnot(t_1 < t_2)$. +\end{proof} + +\begin{lem} +\ollabel{lem:bounded-quant-equiv} +Suppose $!A$ is a !!{formula}. Then +\begin{enumerate} +\item $\Th{Q} \Proves \bforall{x