20
20
21
21
from ..v1 import (
22
22
parameter_mapping ,
23
- parameters ,
24
23
validate_yaml_syntax ,
25
24
yaml ,
26
25
)
@@ -522,15 +521,6 @@ def get_optimization_parameters(self) -> list[str]:
522
521
"""
523
522
return [p .id for p in self .parameters if p .estimate ]
524
523
525
- def get_optimization_parameter_scales (self ) -> dict [str , str ]:
526
- """
527
- Return list of optimization parameter scaling strings.
528
-
529
- See :py:func:`petab.parameters.get_optimization_parameters`.
530
- """
531
- # TODO: to be removed in v2?
532
- return parameters .get_optimization_parameter_scaling (self .parameter_df )
533
-
534
524
def get_observable_ids (self ) -> list [str ]:
535
525
"""
536
526
Returns dictionary of observable ids.
@@ -595,9 +585,7 @@ def x_fixed_ids(self) -> list[str]:
595
585
"""Parameter table parameter IDs, for fixed parameters."""
596
586
return self .get_x_ids (free = False )
597
587
598
- def get_x_nominal (
599
- self , free : bool = True , fixed : bool = True , scaled : bool = False
600
- ) -> list :
588
+ def get_x_nominal (self , free : bool = True , fixed : bool = True ) -> list :
601
589
"""Generic function to get parameter nominal values.
602
590
603
591
Parameters
@@ -607,9 +595,6 @@ def get_x_nominal(
607
595
fixed:
608
596
Whether to return fixed parameters, i.e. parameters not to
609
597
estimate.
610
- scaled:
611
- Whether to scale the values according to the parameter scale,
612
- or return them on linear scale.
613
598
614
599
Returns
615
600
-------
@@ -620,10 +605,6 @@ def get_x_nominal(
620
605
for p in self .parameters
621
606
]
622
607
623
- if scaled :
624
- v = list (
625
- parameters .map_scale (v , self .parameter_df [PARAMETER_SCALE ])
626
- )
627
608
return self ._apply_mask (v , free = free , fixed = fixed )
628
609
629
610
@property
@@ -641,28 +622,7 @@ def x_nominal_fixed(self) -> list:
641
622
"""Parameter table nominal values, for fixed parameters."""
642
623
return self .get_x_nominal (free = False )
643
624
644
- @property
645
- def x_nominal_scaled (self ) -> list :
646
- """Parameter table nominal values with applied parameter scaling"""
647
- return self .get_x_nominal (scaled = True )
648
-
649
- @property
650
- def x_nominal_free_scaled (self ) -> list :
651
- """Parameter table nominal values with applied parameter scaling,
652
- for free parameters.
653
- """
654
- return self .get_x_nominal (fixed = False , scaled = True )
655
-
656
- @property
657
- def x_nominal_fixed_scaled (self ) -> list :
658
- """Parameter table nominal values with applied parameter scaling,
659
- for fixed parameters.
660
- """
661
- return self .get_x_nominal (free = False , scaled = True )
662
-
663
- def get_lb (
664
- self , free : bool = True , fixed : bool = True , scaled : bool = False
665
- ):
625
+ def get_lb (self , free : bool = True , fixed : bool = True ):
666
626
"""Generic function to get lower parameter bounds.
667
627
668
628
Parameters
@@ -672,34 +632,20 @@ def get_lb(
672
632
fixed:
673
633
Whether to return fixed parameters, i.e. parameters not to
674
634
estimate.
675
- scaled:
676
- Whether to scale the values according to the parameter scale,
677
- or return them on linear scale.
678
635
679
636
Returns
680
637
-------
681
638
The lower parameter bounds.
682
639
"""
683
640
v = [p .lb if p .lb is not None else nan for p in self .parameters ]
684
- if scaled :
685
- v = list (
686
- parameters .map_scale (v , self .parameter_df [PARAMETER_SCALE ])
687
- )
688
641
return self ._apply_mask (v , free = free , fixed = fixed )
689
642
690
643
@property
691
644
def lb (self ) -> list :
692
645
"""Parameter table lower bounds."""
693
646
return self .get_lb ()
694
647
695
- @property
696
- def lb_scaled (self ) -> list :
697
- """Parameter table lower bounds with applied parameter scaling"""
698
- return self .get_lb (scaled = True )
699
-
700
- def get_ub (
701
- self , free : bool = True , fixed : bool = True , scaled : bool = False
702
- ):
648
+ def get_ub (self , free : bool = True , fixed : bool = True ):
703
649
"""Generic function to get upper parameter bounds.
704
650
705
651
Parameters
@@ -709,31 +655,19 @@ def get_ub(
709
655
fixed:
710
656
Whether to return fixed parameters, i.e. parameters not to
711
657
estimate.
712
- scaled:
713
- Whether to scale the values according to the parameter scale,
714
- or return them on linear scale.
715
658
716
659
Returns
717
660
-------
718
661
The upper parameter bounds.
719
662
"""
720
663
v = [p .ub if p .ub is not None else nan for p in self .parameters ]
721
- if scaled :
722
- v = list (
723
- parameters .map_scale (v , self .parameter_df [PARAMETER_SCALE ])
724
- )
725
664
return self ._apply_mask (v , free = free , fixed = fixed )
726
665
727
666
@property
728
667
def ub (self ) -> list :
729
668
"""Parameter table upper bounds"""
730
669
return self .get_ub ()
731
670
732
- @property
733
- def ub_scaled (self ) -> list :
734
- """Parameter table upper bounds with applied parameter scaling"""
735
- return self .get_ub (scaled = True )
736
-
737
671
@property
738
672
def x_free_indices (self ) -> list [int ]:
739
673
"""Parameter table estimated parameter indices."""
@@ -790,56 +724,6 @@ def sample_parameter_startpoints_dict(
790
724
)
791
725
]
792
726
793
- # TODO: remove in v2?
794
- def unscale_parameters (
795
- self ,
796
- x_dict : dict [str , float ],
797
- ) -> dict [str , float ]:
798
- """Unscale parameter values.
799
-
800
- Parameters
801
- ----------
802
- x_dict:
803
- Keys are parameter IDs in the PEtab problem, values are scaled
804
- parameter values.
805
-
806
- Returns
807
- -------
808
- The unscaled parameter values.
809
- """
810
- return {
811
- parameter_id : parameters .unscale (
812
- parameter_value ,
813
- self .parameter_df [PARAMETER_SCALE ][parameter_id ],
814
- )
815
- for parameter_id , parameter_value in x_dict .items ()
816
- }
817
-
818
- # TODO: remove in v2?
819
- def scale_parameters (
820
- self ,
821
- x_dict : dict [str , float ],
822
- ) -> dict [str , float ]:
823
- """Scale parameter values.
824
-
825
- Parameters
826
- ----------
827
- x_dict:
828
- Keys are parameter IDs in the PEtab problem, values are unscaled
829
- parameter values.
830
-
831
- Returns
832
- -------
833
- The scaled parameter values.
834
- """
835
- return {
836
- parameter_id : parameters .scale (
837
- parameter_value ,
838
- self .parameter_df [PARAMETER_SCALE ][parameter_id ],
839
- )
840
- for parameter_id , parameter_value in x_dict .items ()
841
- }
842
-
843
727
@property
844
728
def n_estimated (self ) -> int :
845
729
"""The number of estimated parameters."""
@@ -986,7 +870,6 @@ def add_parameter(
986
870
id_ : str ,
987
871
estimate : bool | str = True ,
988
872
nominal_value : Number | None = None ,
989
- scale : str = None ,
990
873
lb : Number = None ,
991
874
ub : Number = None ,
992
875
prior_dist : str = None ,
@@ -1002,7 +885,6 @@ def add_parameter(
1002
885
id_: The parameter id
1003
886
estimate: Whether the parameter is estimated
1004
887
nominal_value: The nominal value of the parameter
1005
- scale: The parameter scale
1006
888
lb: The lower bound of the parameter
1007
889
ub: The upper bound of the parameter
1008
890
prior_dist: The type of the prior distribution
@@ -1016,8 +898,6 @@ def add_parameter(
1016
898
record [ESTIMATE ] = estimate
1017
899
if nominal_value is not None :
1018
900
record [NOMINAL_VALUE ] = nominal_value
1019
- if scale is not None :
1020
- record [PARAMETER_SCALE ] = scale
1021
901
if lb is not None :
1022
902
record [LOWER_BOUND ] = lb
1023
903
if ub is not None :
0 commit comments