-
Notifications
You must be signed in to change notification settings - Fork 976
/
Copy pathmodel_utils.py
133 lines (123 loc) · 4.43 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""Utility functionns for model building, training and evaluation
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import os
from resnet import build_resnet
def lr_scheduler(epoch):
"""Learning rate scheduler - called every epoch"""
lr = 1e-3
if epoch > 80:
lr *= 5e-2
elif epoch > 60:
lr *= 1e-1
elif epoch > 40:
lr *= 5e-1
print('Learning rate: ', lr)
return lr
def parser():
"""Instatiate a command line parser for ssd network model
building, training, and testing
"""
parser = argparse.ArgumentParser(description='FCN for object segmentation')
# arguments for model building and training
help_ = "Number of feature extraction layers of FCN head after backbone"
parser.add_argument("--layers",
default=3,
type=int,
help=help_)
help_ = "Batch size during training"
parser.add_argument("--batch-size",
default=4,
type=int,
help=help_)
help_ = "Number of epochs to train"
parser.add_argument("--epochs",
default=100,
type=int,
help=help_)
help_ = "Number of data generator worker threads"
parser.add_argument("--workers",
default=4,
type=int,
help=help_)
help_ = "Backbone or base network"
parser.add_argument("--backbone",
default=build_resnet,
help=help_)
help_ = "Train the model"
parser.add_argument("-t",
"--train",
action='store_true',
help=help_)
help_ = "Print model summary (text and png)"
parser.add_argument("--summary",
default=False,
action='store_true',
help=help_)
help_ = "Directory for saving filenames"
parser.add_argument("--save-dir",
default="weights",
help=help_)
help_ = "Dataset name"
parser.add_argument("--dataset",
default="drinks",
help=help_)
# inputs configurations
help_ = "Input image height"
parser.add_argument("--height",
default=480,
type=int,
help=help_)
help_ = "Input image width"
parser.add_argument("--width",
default=640,
type=int,
help=help_)
help_ = "Input image channels"
parser.add_argument("--channels",
default=3,
type=int,
help=help_)
# dataset configurations
help_ = "Path to dataset directory"
parser.add_argument("--data-path",
default="dataset/drinks",
help=help_)
help_ = "Train data npy filename in --data-path"
parser.add_argument("--train-labels",
default="segmentation_train.npy",
help=help_)
help_ = "Test data npy filename in --data-path"
parser.add_argument("--test-labels",
default="segmentation_test.npy",
help=help_)
# configurations for evaluation of a trained model
help_ = "Load h5 model trained weights"
parser.add_argument("--restore-weights",
help=help_)
help_ = "Evaluate model"
parser.add_argument("-e",
"--evaluate",
default=False,
action='store_true',
help=help_)
help_ = "Image file for evaluation"
parser.add_argument("--image-file",
default=None,
help=help_)
help_ = "Plot prediction during evaluation"
parser.add_argument("--plot",
default=False,
action='store_true',
help=help_)
# debug configuration
help_ = "Level of verbosity for print function"
parser.add_argument("--verbose",
default=1,
type=int,
help=help_)
return parser