-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgeo.js
899 lines (723 loc) · 36.5 KB
/
geo.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/** Extend Number object with method to convert numeric degrees to radians */
if (Number.prototype.toRadians === undefined) {
Number.prototype.toRadians = function() { return this * Math.PI / 180; };
}
/** Extend Number object with method to convert radians to numeric (signed) degrees */
if (Number.prototype.toDegrees === undefined) {
Number.prototype.toDegrees = function() { return this * 180 / Math.PI; };
}
/**
* Creates a LatLon point on the earth's surface at the specified latitude / longitude.
*
* @constructor
* @param {number} lat - Latitude in degrees.
* @param {number} lon - Longitude in degrees.
*
* @example
* var p1 = new LatLon(52.205, 0.119);
*/
function LatLon(lat, lon) {
// allow instantiation without 'new'
if (!(this instanceof LatLon)) return new LatLon(lat, lon);
this.lat = Number(lat);
this.lon = Number(lon);
}
/**
* Checks if another point is equal to ‘this’ point.
*
* @param {LatLon} point - Point to be compared against this point.
* @returns {bool} True if points are identical.
*
* @example
* var p1 = new LatLon(52.205, 0.119);
* var p2 = new LatLon(52.205, 0.119);
* var equal = p1.equals(p2); // true
*/
LatLon.prototype.equals = function(point) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
if (this.lat != point.lat) return false;
if (this.lon != point.lon) return false;
return true;
};
/**
* Returns a string representation of ‘this’ point, formatted as degrees, degrees+minutes, or
* degrees+minutes+seconds.
*
* @param {string} [format=dms] - Format point as 'd', 'dm', 'dms'.
* @param {number} [dp=0|2|4] - Number of decimal places to use - default 0 for dms, 2 for dm, 4 for d.
* @returns {string} Comma-separated latitude/longitude.
*/
LatLon.prototype.toString = function(format, dp) {
return Dms.toLat(this.lat, format, dp) + ', ' + Dms.toLon(this.lon, format, dp);
};
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
if (typeof module != 'undefined' && module.exports) module.exports = LatLon; // ≡ export default LatLon
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Geodesy representation conversion functions (c) Chris Veness 2002-2017 */
/* MIT Licence */
/* www.movable-type.co.uk/scripts/latlong.html */
/* www.movable-type.co.uk/scripts/geodesy/docs/module-dms.html */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
'use strict';
/* eslint no-irregular-whitespace: [2, { skipComments: true }] */
/**
* Latitude/longitude points may be represented as decimal degrees, or subdivided into sexagesimal
* minutes and seconds.
*
* @module dms
*/
/**
* Functions for parsing and representing degrees / minutes / seconds.
* @class Dms
*/
var Dms = {};
// note Unicode Degree = U+00B0. Prime = U+2032, Double prime = U+2033
/**
* Parses string representing degrees/minutes/seconds into numeric degrees.
*
* This is very flexible on formats, allowing signed decimal degrees, or deg-min-sec optionally
* suffixed by compass direction (NSEW). A variety of separators are accepted (eg 3° 37′ 09″W).
* Seconds and minutes may be omitted.
*
* @param {string|number} dmsStr - Degrees or deg/min/sec in variety of formats.
* @returns {number} Degrees as decimal number.
*
* @example
* var lat = Dms.parseDMS('51° 28′ 40.12″ N');
* var lon = Dms.parseDMS('000° 00′ 05.31″ W');
* var p1 = new LatLon(lat, lon); // 51.4778°N, 000.0015°W
*/
Dms.parseDMS = function(dmsStr) {
// check for signed decimal degrees without NSEW, if so return it directly
if (typeof dmsStr == 'number' && isFinite(dmsStr)) return Number(dmsStr);
// strip off any sign or compass dir'n & split out separate d/m/s
var dms = String(dmsStr).trim().replace(/^-/, '').replace(/[NSEW]$/i, '').split(/[^0-9.,]+/);
if (dms[dms.length-1]=='') dms.splice(dms.length-1); // from trailing symbol
if (dms == '') return NaN;
// and convert to decimal degrees...
var deg;
switch (dms.length) {
case 3: // interpret 3-part result as d/m/s
deg = dms[0]/1 + dms[1]/60 + dms[2]/3600;
break;
case 2: // interpret 2-part result as d/m
deg = dms[0]/1 + dms[1]/60;
break;
case 1: // just d (possibly decimal) or non-separated dddmmss
deg = dms[0];
// check for fixed-width unseparated format eg 0033709W
//if (/[NS]/i.test(dmsStr)) deg = '0' + deg; // - normalise N/S to 3-digit degrees
//if (/[0-9]{7}/.test(deg)) deg = deg.slice(0,3)/1 + deg.slice(3,5)/60 + deg.slice(5)/3600;
break;
default:
return NaN;
}
if (/^-|[WS]$/i.test(dmsStr.trim())) deg = -deg; // take '-', west and south as -ve
return Number(deg);
};
/**
* Separator character to be used to separate degrees, minutes, seconds, and cardinal directions.
*
* Set to '\u202f' (narrow no-break space) for improved formatting.
*
* @example
* var p = new LatLon(51.2, 0.33); // 51°12′00.0″N, 000°19′48.0″E
* Dms.separator = '\u202f'; // narrow no-break space
* var pʹ = new LatLon(51.2, 0.33); // 51° 12′ 00.0″ N, 000° 19′ 48.0″ E
*/
Dms.separator = '';
/**
* Converts decimal degrees to deg/min/sec format
* - degree, prime, double-prime symbols are added, but sign is discarded, though no compass
* direction is added.
*
* @private
* @param {number} deg - Degrees to be formatted as specified.
* @param {string} [format=dms] - Return value as 'd', 'dm', 'dms' for deg, deg+min, deg+min+sec.
* @param {number} [dp=0|2|4] - Number of decimal places to use – default 0 for dms, 2 for dm, 4 for d.
* @returns {string} Degrees formatted as deg/min/secs according to specified format.
*/
Dms.toDMS = function(deg, format, dp) {
if (isNaN(deg)) return null; // give up here if we can't make a number from deg
// default values
if (format === undefined) format = 'dms';
if (dp === undefined) {
switch (format) {
case 'd': case 'deg': dp = 4; break;
case 'dm': case 'deg+min': dp = 2; break;
case 'dms': case 'deg+min+sec': dp = 0; break;
default: format = 'dms'; dp = 0; // be forgiving on invalid format
}
}
deg = Math.abs(deg); // (unsigned result ready for appending compass dir'n)
var dms, d, m, s;
switch (format) {
default: // invalid format spec!
case 'd': case 'deg':
d = deg.toFixed(dp); // round/right-pad degrees
if (d<100) d = '0' + d; // left-pad with leading zeros (note may include decimals)
if (d<10) d = '0' + d;
dms = d + '°';
break;
case 'dm': case 'deg+min':
d = Math.floor(deg); // get component deg
m = ((deg*60) % 60).toFixed(dp); // get component min & round/right-pad
if (m == 60) { m = 0; d++; } // check for rounding up
d = ('000'+d).slice(-3); // left-pad with leading zeros
if (m<10) m = '0' + m; // left-pad with leading zeros (note may include decimals)
dms = d + '°'+Dms.separator + m + '′';
break;
case 'dms': case 'deg+min+sec':
d = Math.floor(deg); // get component deg
m = Math.floor((deg*3600)/60) % 60; // get component min
s = (deg*3600 % 60).toFixed(dp); // get component sec & round/right-pad
if (s == 60) { s = (0).toFixed(dp); m++; } // check for rounding up
if (m == 60) { m = 0; d++; } // check for rounding up
d = ('000'+d).slice(-3); // left-pad with leading zeros
m = ('00'+m).slice(-2); // left-pad with leading zeros
if (s<10) s = '0' + s; // left-pad with leading zeros (note may include decimals)
dms = d + '°'+Dms.separator + m + '′'+Dms.separator + s + '″';
break;
}
return dms;
};
/**
* Converts numeric degrees to deg/min/sec latitude (2-digit degrees, suffixed with N/S).
*
* @param {number} deg - Degrees to be formatted as specified.
* @param {string} [format=dms] - Return value as 'd', 'dm', 'dms' for deg, deg+min, deg+min+sec.
* @param {number} [dp=0|2|4] - Number of decimal places to use – default 0 for dms, 2 for dm, 4 for d.
* @returns {string} Degrees formatted as deg/min/secs according to specified format.
*/
Dms.toLat = function(deg, format, dp) {
var lat = Dms.toDMS(deg, format, dp);
return lat===null ? '–' : lat.slice(1)+Dms.separator + (deg<0 ? 'S' : 'N'); // knock off initial '0' for lat!
};
/**
* Convert numeric degrees to deg/min/sec longitude (3-digit degrees, suffixed with E/W)
*
* @param {number} deg - Degrees to be formatted as specified.
* @param {string} [format=dms] - Return value as 'd', 'dm', 'dms' for deg, deg+min, deg+min+sec.
* @param {number} [dp=0|2|4] - Number of decimal places to use – default 0 for dms, 2 for dm, 4 for d.
* @returns {string} Degrees formatted as deg/min/secs according to specified format.
*/
Dms.toLon = function(deg, format, dp) {
var lon = Dms.toDMS(deg, format, dp);
return lon===null ? '–' : lon+Dms.separator + (deg<0 ? 'W' : 'E');
};
/**
* Converts numeric degrees to deg/min/sec as a bearing (0°..360°)
*
* @param {number} deg - Degrees to be formatted as specified.
* @param {string} [format=dms] - Return value as 'd', 'dm', 'dms' for deg, deg+min, deg+min+sec.
* @param {number} [dp=0|2|4] - Number of decimal places to use – default 0 for dms, 2 for dm, 4 for d.
* @returns {string} Degrees formatted as deg/min/secs according to specified format.
*/
Dms.toBrng = function(deg, format, dp) {
deg = (Number(deg)+360) % 360; // normalise -ve values to 180°..360°
var brng = Dms.toDMS(deg, format, dp);
return brng===null ? '–' : brng.replace('360', '0'); // just in case rounding took us up to 360°!
};
/**
* Returns compass point (to given precision) for supplied bearing.
*
* @param {number} bearing - Bearing in degrees from north.
* @param {number} [precision=3] - Precision (1:cardinal / 2:intercardinal / 3:secondary-intercardinal).
* @returns {string} Compass point for supplied bearing.
*
* @example
* var point = Dms.compassPoint(24); // point = 'NNE'
* var point = Dms.compassPoint(24, 1); // point = 'N'
*/
Dms.compassPoint = function(bearing, precision) {
if (precision === undefined) precision = 3;
// note precision could be extended to 4 for quarter-winds (eg NbNW), but I think they are little used
bearing = ((bearing%360)+360)%360; // normalise to range 0..360°
var cardinals = [
'N', 'NNE', 'NE', 'ENE',
'E', 'ESE', 'SE', 'SSE',
'S', 'SSW', 'SW', 'WSW',
'W', 'WNW', 'NW', 'NNW' ];
var n = 4 * Math.pow(2, precision-1); // no of compass points at req’d precision (1=>4, 2=>8, 3=>16)
var cardinal = cardinals[Math.round(bearing*n/360)%n * 16/n];
return cardinal;
};
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
if (typeof module != 'undefined' && module.exports) module.exports = Dms; // ≡ export default Dms
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Latitude/longitude spherical geodesy tools (c) Chris Veness 2002-2017 */
/* MIT Licence */
/* www.movable-type.co.uk/scripts/latlong.html */
/* www.movable-type.co.uk/scripts/geodesy/docs/module-latlon-spherical.html */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
'use strict';
if (typeof module!='undefined' && module.exports) var Dms = require('./dms'); // ≡ import Dms from 'dms.js'
/**
* Library of geodesy functions for operations on a spherical earth model.
*
* @module latlon-spherical
* @requires dms
*/
/**
* Returns the distance from ‘this’ point to destination point (using haversine formula).
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} Distance between this point and destination point, in same units as radius.
*
* @example
* var p1 = new LatLon(52.205, 0.119);
* var p2 = new LatLon(48.857, 2.351);
* var d = p1.distanceTo(p2); // 404.3 km
*/
LatLon.prototype.distanceTo = function(point, radius) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
radius = (radius === undefined) ? 6371e3 : Number(radius);
// a = sin²(deltaph/2) + cos(ph1)⋅cos(ph2)⋅sin²(deltaLambda/2)
// tandelta = √(a) / √(1−a)
// see mathforum.org/library/drmath/view/51879.html for derivation
var R = radius;
var ph1 = this.lat.toRadians(), gamma1 = this.lon.toRadians();
var ph2 = point.lat.toRadians(), gamma2 = point.lon.toRadians();
var deltaph = ph2 - ph1;
var deltaLambda = gamma2 - gamma1;
var a = Math.sin(deltaph/2) * Math.sin(deltaph/2)
+ Math.cos(ph1) * Math.cos(ph2)
* Math.sin(deltaLambda/2) * Math.sin(deltaLambda/2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
return d;
};
/**
* Returns the (initial) bearing from ‘this’ point to destination point.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {number} Initial bearing in degrees from north.
*
* @example
* var p1 = new LatLon(52.205, 0.119);
* var p2 = new LatLon(48.857, 2.351);
* var b1 = p1.bearingTo(p2); // 156.2°
*/
LatLon.prototype.bearingTo = function(point) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
// tantheta = sindeltaLambda⋅cosph2 / cosph1⋅sinph2 − sinph1⋅cosph2⋅cosdeltaLambda
// see mathforum.org/library/drmath/view/55417.html for derivation
var ph1 = this.lat.toRadians(), ph2 = point.lat.toRadians();
var deltaLambda = (point.lon-this.lon).toRadians();
var y = Math.sin(deltaLambda) * Math.cos(ph2);
var x = Math.cos(ph1)*Math.sin(ph2) -
Math.sin(ph1)*Math.cos(ph2)*Math.cos(deltaLambda);
var theta = Math.atan2(y, x);
return (theta.toDegrees()+360) % 360;
};
/**
* Returns final bearing arriving at destination destination point from ‘this’ point; the final bearing
* will differ from the initial bearing by varying degrees according to distance and latitude.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {number} Final bearing in degrees from north.
*
* @example
* var p1 = new LatLon(52.205, 0.119);
* var p2 = new LatLon(48.857, 2.351);
* var b2 = p1.finalBearingTo(p2); // 157.9°
*/
LatLon.prototype.finalBearingTo = function(point) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
// get initial bearing from destination point to this point & reverse it by adding 180°
return ( point.bearingTo(this)+180 ) % 360;
};
/**
* Returns the midpoint between ‘this’ point and the supplied point.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {LatLon} Midpoint between this point and the supplied point.
*
* @example
* var p1 = new LatLon(52.205, 0.119);
* var p2 = new LatLon(48.857, 2.351);
* var pMid = p1.midpointTo(p2); // 50.5363°N, 001.2746°E
*/
LatLon.prototype.midpointTo = function(point) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
// phm = atan2( sinph1 + sinph2, √( (cosph1 + cosph2⋅cosdeltaLambda) ⋅ (cosph1 + cosph2⋅cosdeltaLambda) ) + cos²ph2⋅sin²deltaLambda )
// gammam = gamma1 + atan2(cosph2⋅sindeltaLambda, cosph1 + cosph2⋅cosdeltaLambda)
// see mathforum.org/library/drmath/view/51822.html for derivation
var ph1 = this.lat.toRadians(), gamma1 = this.lon.toRadians();
var ph2 = point.lat.toRadians();
var deltaLambda = (point.lon-this.lon).toRadians();
var Bx = Math.cos(ph2) * Math.cos(deltaLambda);
var By = Math.cos(ph2) * Math.sin(deltaLambda);
var x = Math.sqrt((Math.cos(ph1) + Bx) * (Math.cos(ph1) + Bx) + By * By);
var y = Math.sin(ph1) + Math.sin(ph2);
var ph3 = Math.atan2(y, x);
var gamma3 = gamma1 + Math.atan2(By, Math.cos(ph1) + Bx);
return new LatLon(ph3.toDegrees(), (gamma3.toDegrees()+540)%360-180); // normalise to −180..+180°
};
/**
* Returns the point at given fraction between ‘this’ point and specified point.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @param {number} fraction - Fraction between the two points (0 = this point, 1 = specified point).
* @returns {LatLon} Intermediate point between this point and destination point.
*
* @example
* let p1 = new LatLon(52.205, 0.119);
* let p2 = new LatLon(48.857, 2.351);
* let pMid = p1.intermediatePointTo(p2, 0.25); // 51.3721°N, 000.7073°E
*/
LatLon.prototype.intermediatePointTo = function(point, fraction) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
var ph1 = this.lat.toRadians(), gamma1 = this.lon.toRadians();
var ph2 = point.lat.toRadians(), gamma2 = point.lon.toRadians();
var sinph1 = Math.sin(ph1), cosph1 = Math.cos(ph1), singamma1 = Math.sin(gamma1), cosgamma1 = Math.cos(gamma1);
var sinph2 = Math.sin(ph2), cosph2 = Math.cos(ph2), singamma2 = Math.sin(gamma2), cosgamma2 = Math.cos(gamma2);
// distance between points
var deltaph = ph2 - ph1;
var deltaLambda = gamma2 - gamma1;
var a = Math.sin(deltaph/2) * Math.sin(deltaph/2)
+ Math.cos(ph1) * Math.cos(ph2) * Math.sin(deltaLambda/2) * Math.sin(deltaLambda/2);
var delta = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var A = Math.sin((1-fraction)*delta) / Math.sin(delta);
var B = Math.sin(fraction*delta) / Math.sin(delta);
var x = A * cosph1 * cosgamma1 + B * cosph2 * cosgamma2;
var y = A * cosph1 * singamma1 + B * cosph2 * singamma2;
var z = A * sinph1 + B * sinph2;
var ph3 = Math.atan2(z, Math.sqrt(x*x + y*y));
var gamma3 = Math.atan2(y, x);
return new LatLon(ph3.toDegrees(), (gamma3.toDegrees()+540)%360-180); // normalise lon to −180..+180°
};
/**
* Returns the destination point from ‘this’ point having travelled the given distance on the
* given initial bearing (bearing normally varies around path followed).
*
* @param {number} distance - Distance travelled, in same units as earth radius (default: metres).
* @param {number} bearing - Initial bearing in degrees from north.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {LatLon} Destination point.
*
* @example
* var p1 = new LatLon(51.4778, -0.0015);
* var p2 = p1.destinationPoint(7794, 300.7); // 51.5135°N, 000.0983°W
*/
LatLon.prototype.destinationPoint = function(distance, bearing, radius) {
radius = (radius === undefined) ? 6371e3 : Number(radius);
// sinph2 = sinph1⋅cosdelta + cosph1⋅sindelta⋅costheta
// tandeltaLambda = sintheta⋅sindelta⋅cosph1 / cosdelta−sinph1⋅sinph2
// see mathforum.org/library/drmath/view/52049.html for derivation
var delta = Number(distance) / radius; // angular distance in radians
var theta = Number(bearing).toRadians();
var ph1 = this.lat.toRadians();
var gamma1 = this.lon.toRadians();
var sinph1 = Math.sin(ph1), cosph1 = Math.cos(ph1);
var sindelta = Math.sin(delta), cosdelta = Math.cos(delta);
var sintheta = Math.sin(theta), costheta = Math.cos(theta);
var sinph2 = sinph1*cosdelta + cosph1*sindelta*costheta;
var ph2 = Math.asin(sinph2);
var y = sintheta * sindelta * cosph1;
var x = cosdelta - sinph1 * sinph2;
var gamma2 = gamma1 + Math.atan2(y, x);
return new LatLon(ph2.toDegrees(), (gamma2.toDegrees()+540)%360-180); // normalise to −180..+180°
};
/**
* Returns the point of intersection of two paths defined by point and bearing.
*
* @param {LatLon} p1 - First point.
* @param {number} brng1 - Initial bearing from first point.
* @param {LatLon} p2 - Second point.
* @param {number} brng2 - Initial bearing from second point.
* @returns {LatLon|null} Destination point (null if no unique intersection defined).
*
* @example
* var p1 = LatLon(51.8853, 0.2545), brng1 = 108.547;
* var p2 = LatLon(49.0034, 2.5735), brng2 = 32.435;
* var pInt = LatLon.intersection(p1, brng1, p2, brng2); // 50.9078°N, 004.5084°E
*/
LatLon.prototype.intersection = function(p1, brng1, p2, brng2) {
if (!(p1 instanceof LatLon)) throw new TypeError('p1 is not LatLon object');
if (!(p2 instanceof LatLon)) throw new TypeError('p2 is not LatLon object');
// see www.edwilliams.org/avform.htm#Intersection
var ph1 = p1.lat.toRadians(), gamma1 = p1.lon.toRadians();
var ph2 = p2.lat.toRadians(), gamma2 = p2.lon.toRadians();
var theta13 = Number(brng1).toRadians(), theta23 = Number(brng2).toRadians();
var deltaph = ph2-ph1, deltaLambda = gamma2-gamma1;
// angular distance p1-p2
var delta12 = 2*Math.asin( Math.sqrt( Math.sin(deltaph/2)*Math.sin(deltaph/2)
+ Math.cos(ph1)*Math.cos(ph2)*Math.sin(deltaLambda/2)*Math.sin(deltaLambda/2) ) );
if (delta12 == 0) return null;
// initial/final bearings between points
var thetaa = Math.acos( ( Math.sin(ph2) - Math.sin(ph1)*Math.cos(delta12) ) / ( Math.sin(delta12)*Math.cos(ph1) ) );
if (isNaN(thetaa)) thetaa = 0; // protect against rounding
var thetab = Math.acos( ( Math.sin(ph1) - Math.sin(ph2)*Math.cos(delta12) ) / ( Math.sin(delta12)*Math.cos(ph2) ) );
var theta12 = Math.sin(gamma2-gamma1)>0 ? thetaa : 2*Math.PI-thetaa;
var theta21 = Math.sin(gamma2-gamma1)>0 ? 2*Math.PI-thetab : thetab;
var alfa1 = theta13 - theta12; // angle 2-1-3
var alfa2 = theta21 - theta23; // angle 1-2-3
if (Math.sin(alfa1)==0 && Math.sin(alfa2)==0) return null; // infinite intersections
if (Math.sin(alfa1)*Math.sin(alfa2) < 0) return null; // ambiguous intersection
var alfa3 = Math.acos( -Math.cos(alfa1)*Math.cos(alfa2) + Math.sin(alfa1)*Math.sin(alfa2)*Math.cos(delta12) );
var delta13 = Math.atan2( Math.sin(delta12)*Math.sin(alfa1)*Math.sin(alfa2), Math.cos(alfa2)+Math.cos(alfa1)*Math.cos(alfa3) );
var ph3 = Math.asin( Math.sin(ph1)*Math.cos(delta13) + Math.cos(ph1)*Math.sin(delta13)*Math.cos(theta13) );
var deltaLambda13 = Math.atan2( Math.sin(theta13)*Math.sin(delta13)*Math.cos(ph1), Math.cos(delta13)-Math.sin(ph1)*Math.sin(ph3) );
var gamma3 = gamma1 + deltaLambda13;
return new LatLon(ph3.toDegrees(), (gamma3.toDegrees()+540)%360-180); // normalise to −180..+180°
};
/**
* Returns (signed) distance from ‘this’ point to great circle defined by start-point and end-point.
*
* @param {LatLon} pathStart - Start point of great circle path.
* @param {LatLon} pathEnd - End point of great circle path.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} Distance to great circle (-ve if to left, +ve if to right of path).
*
* @example
* var pCurrent = new LatLon(53.2611, -0.7972);
* var p1 = new LatLon(53.3206, -1.7297);
* var p2 = new LatLon(53.1887, 0.1334);
* var d = pCurrent.crossTrackDistanceTo(p1, p2); // -307.5 m
*/
LatLon.prototype.crossTrackDistanceTo = function(pathStart, pathEnd, radius) {
if (!(pathStart instanceof LatLon)) throw new TypeError('pathStart is not LatLon object');
if (!(pathEnd instanceof LatLon)) throw new TypeError('pathEnd is not LatLon object');
var R = (radius === undefined) ? 6371e3 : Number(radius);
var delta13 = pathStart.distanceTo(this, R) / R;
var theta13 = pathStart.bearingTo(this).toRadians();
var theta12 = pathStart.bearingTo(pathEnd).toRadians();
var deltaxt = Math.asin(Math.sin(delta13) * Math.sin(theta13-theta12));
return deltaxt * R;
};
/**
* Returns how far ‘this’ point is along a path from from start-point, heading towards end-point.
* That is, if a perpendicular is drawn from ‘this’ point to the (great circle) path, the along-track
* distance is the distance from the start point to where the perpendicular crosses the path.
*
* @param {LatLon} pathStart - Start point of great circle path.
* @param {LatLon} pathEnd - End point of great circle path.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} Distance along great circle to point nearest ‘this’ point.
*
* @example
* var pCurrent = new LatLon(53.2611, -0.7972);
* var p1 = new LatLon(53.3206, -1.7297);
* var p2 = new LatLon(53.1887, 0.1334);
* var d = pCurrent.alongTrackDistanceTo(p1, p2); // 62.331 km
*/
LatLon.prototype.alongTrackDistanceTo = function(pathStart, pathEnd, radius) {
if (!(pathStart instanceof LatLon)) throw new TypeError('pathStart is not LatLon object');
if (!(pathEnd instanceof LatLon)) throw new TypeError('pathEnd is not LatLon object');
var R = (radius === undefined) ? 6371e3 : Number(radius);
var delta13 = pathStart.distanceTo(this, R) / R;
var theta13 = pathStart.bearingTo(this).toRadians();
var theta12 = pathStart.bearingTo(pathEnd).toRadians();
var deltaxt = Math.asin(Math.sin(delta13) * Math.sin(theta13-theta12));
var deltaat = Math.acos(Math.cos(delta13) / Math.abs(Math.cos(deltaxt)));
return deltaat*Math.sign(Math.cos(theta12-theta13)) * R;
};
/**
* Returns maximum latitude reached when travelling on a great circle on given bearing from this
* point ('Clairaut's formula'). Negate the result for the minimum latitude (in the Southern
* hemisphere).
*
* The maximum latitude is independent of longitude; it will be the same for all points on a given
* latitude.
*
* @param {number} bearing - Initial bearing.
* @param {number} latitude - Starting latitude.
*/
LatLon.prototype.maxLatitude = function(bearing) {
var theta = Number(bearing).toRadians();
var ph = this.lat.toRadians();
var phMax = Math.acos(Math.abs(Math.sin(theta)*Math.cos(ph)));
return phMax.toDegrees();
};
/**
* Returns the pair of meridians at which a great circle defined by two points crosses the given
* latitude. If the great circle doesn't reach the given latitude, null is returned.
*
* @param {LatLon} point1 - First point defining great circle.
* @param {LatLon} point2 - Second point defining great circle.
* @param {number} latitude - Latitude crossings are to be determined for.
* @returns {Object|null} Object containing { lon1, lon2 } or null if given latitude not reached.
*/
LatLon.crossingParallels = function(point1, point2, latitude) {
var ph = Number(latitude).toRadians();
var ph1 = point1.lat.toRadians();
var gamma1 = point1.lon.toRadians();
var ph2 = point2.lat.toRadians();
var gamma2 = point2.lon.toRadians();
var deltaLambda = gamma2 - gamma1;
var x = Math.sin(ph1) * Math.cos(ph2) * Math.cos(ph) * Math.sin(deltaLambda);
var y = Math.sin(ph1) * Math.cos(ph2) * Math.cos(ph) * Math.cos(deltaLambda) - Math.cos(ph1) * Math.sin(ph2) * Math.cos(ph);
var z = Math.cos(ph1) * Math.cos(ph2) * Math.sin(ph) * Math.sin(deltaLambda);
if (z*z > x*x + y*y) return null; // great circle doesn't reach latitude
var gammam = Math.atan2(-y, x); // longitude at max latitude
var deltaLambdai = Math.acos(z / Math.sqrt(x*x+y*y)); // deltaLambda from gammam to intersection points
var gammai1 = gamma1 + gammam - deltaLambdai;
var gammai2 = gamma1 + gammam + deltaLambdai;
return { lon1: (gammai1.toDegrees()+540)%360-180, lon2: (gammai2.toDegrees()+540)%360-180 }; // normalise to −180..+180°
};
/* Rhumb - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Returns the distance travelling from ‘this’ point to destination point along a rhumb line.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} Distance in km between this point and destination point (same units as radius).
*
* @example
* var p1 = new LatLon(51.127, 1.338);
* var p2 = new LatLon(50.964, 1.853);
* var d = p1.distanceTo(p2); // 40.31 km
*/
LatLon.prototype.rhumbDistanceTo = function(point, radius) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
radius = (radius === undefined) ? 6371e3 : Number(radius);
// see www.edwilliams.org/avform.htm#Rhumb
var R = radius;
var ph1 = this.lat.toRadians(), ph2 = point.lat.toRadians();
var deltaph = ph2 - ph1;
var deltaLambda = Math.abs(point.lon-this.lon).toRadians();
// if dLon over 180° take shorter rhumb line across the anti-meridian:
if (deltaLambda > Math.PI) deltaLambda -= 2*Math.PI;
// on Mercator projection, longitude distances shrink by latitude; q is the 'stretch factor'
// q becomes ill-conditioned along E-W line (0/0); use empirical tolerance to avoid it
var delta = Math.log(Math.tan(ph2/2+Math.PI/4)/Math.tan(ph1/2+Math.PI/4));
var q = Math.abs(delta) > 10e-12 ? deltaph/delta : Math.cos(ph1);
// distance is pythagoras on 'stretched' Mercator projection
var delta = Math.sqrt(deltaph*deltaph + q*q*deltaLambda*deltaLambda); // angular distance in radians
var dist = delta * R;
return dist;
};
/**
* Returns the bearing from ‘this’ point to destination point along a rhumb line.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {number} Bearing in degrees from north.
*
* @example
* var p1 = new LatLon(51.127, 1.338);
* var p2 = new LatLon(50.964, 1.853);
* var d = p1.rhumbBearingTo(p2); // 116.7 m
*/
LatLon.prototype.rhumbBearingTo = function(point) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
var ph1 = this.lat.toRadians(), ph2 = point.lat.toRadians();
var deltaLambda = (point.lon-this.lon).toRadians();
// if dLon over 180° take shorter rhumb line across the anti-meridian:
if (deltaLambda > Math.PI) deltaLambda -= 2*Math.PI;
if (deltaLambda < -Math.PI) deltaLambda += 2*Math.PI;
var delta = Math.log(Math.tan(ph2/2+Math.PI/4)/Math.tan(ph1/2+Math.PI/4));
var theta = Math.atan2(deltaLambda, delta);
return (theta.toDegrees()+360) % 360;
};
/**
* Returns the destination point having travelled along a rhumb line from ‘this’ point the given
* distance on the given bearing.
*
* @param {number} distance - Distance travelled, in same units as earth radius (default: metres).
* @param {number} bearing - Bearing in degrees from north.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {LatLon} Destination point.
*
* @example
* var p1 = new LatLon(51.127, 1.338);
* var p2 = p1.rhumbDestinationPoint(40300, 116.7); // 50.9642°N, 001.8530°E
*/
LatLon.prototype.rhumbDestinationPoint = function(distance, bearing, radius) {
radius = (radius === undefined) ? 6371e3 : Number(radius);
var delta = Number(distance) / radius; // angular distance in radians
var ph1 = this.lat.toRadians(), gamma1 = this.lon.toRadians();
var theta = Number(bearing).toRadians();
var deltaph = delta * Math.cos(theta);
var ph2 = ph1 + deltaph;
// check for some daft bugger going past the pole, normalise latitude if so
if (Math.abs(ph2) > Math.PI/2) ph2 = ph2>0 ? Math.PI-ph2 : -Math.PI-ph2;
var delta = Math.log(Math.tan(ph2/2+Math.PI/4)/Math.tan(ph1/2+Math.PI/4));
var q = Math.abs(delta) > 10e-12 ? deltaph / delta : Math.cos(ph1); // E-W course becomes ill-conditioned with 0/0
var deltaLambda = delta*Math.sin(theta)/q;
var gamma2 = gamma1 + deltaLambda;
return new LatLon(ph2.toDegrees(), (gamma2.toDegrees()+540) % 360 - 180); // normalise to −180..+180°
};
/**
* Returns the loxodromic midpoint (along a rhumb line) between ‘this’ point and second point.
*
* @param {LatLon} point - Latitude/longitude of second point.
* @returns {LatLon} Midpoint between this point and second point.
*
* @example
* var p1 = new LatLon(51.127, 1.338);
* var p2 = new LatLon(50.964, 1.853);
* var pMid = p1.rhumbMidpointTo(p2); // 51.0455°N, 001.5957°E
*/
LatLon.prototype.rhumbMidpointTo = function(point) {
if (!(point instanceof LatLon)) throw new TypeError('point is not LatLon object');
// see mathforum.org/kb/message.jspa?messageID=148837
var ph1 = this.lat.toRadians(), gamma1 = this.lon.toRadians();
var ph2 = point.lat.toRadians(), gamma2 = point.lon.toRadians();
if (Math.abs(gamma2-gamma1) > Math.PI) gamma1 += 2*Math.PI; // crossing anti-meridian
var ph3 = (ph1+ph2)/2;
var f1 = Math.tan(Math.PI/4 + ph1/2);
var f2 = Math.tan(Math.PI/4 + ph2/2);
var f3 = Math.tan(Math.PI/4 + ph3/2);
var gamma3 = ( (gamma2-gamma1)*Math.log(f3) + gamma1*Math.log(f2) - gamma2*Math.log(f1) ) / Math.log(f2/f1);
if (!isFinite(gamma3)) gamma3 = (gamma1+gamma2)/2; // parallel of latitude
var p = LatLon(ph3.toDegrees(), (gamma3.toDegrees()+540)%360-180); // normalise to −180..+180°
return p;
};
/* Area - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Calculates the area of a spherical polygon where the sides of the polygon are great circle
* arcs joining the vertices.
*
* @param {LatLon[]} polygon - Array of points defining vertices of the polygon
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} The area of the polygon, in the same units as radius.
*
* @example
* var polygon = [new LatLon(0,0), new LatLon(1,0), new LatLon(0,1)];
* var area = LatLon.areaOf(polygon); // 6.18e9 m²
*/
LatLon.areaOf = function(polygon, radius) {
// uses method due to Karney: osgeo-org.1560.x6.nabble.com/Area-of-a-spherical-polygon-td3841625.html;
// for each edge of the polygon, tan(E/2) = tan(deltaLambda/2)·(tan(ph1/2) + tan(ph2/2)) / (1 + tan(ph1/2)·tan(ph2/2))
// where E is the spherical excess of the trapezium obtained by extending the edge to the equator
var R = (radius === undefined) ? 6371e3 : Number(radius);
// close polygon so that last point equals first point
var closed = polygon[0].equals(polygon[polygon.length-1]);
if (!closed) polygon.push(polygon[0]);
var nVertices = polygon.length - 1;
var S = 0; // spherical excess in steradians
for (var v=0; v<nVertices; v++) {
var ph1 = polygon[v].lat.toRadians();
var ph2 = polygon[v+1].lat.toRadians();
var deltaLambda = (polygon[v+1].lon - polygon[v].lon).toRadians();
var E = 2 * Math.atan2(Math.tan(deltaLambda/2) * (Math.tan(ph1/2)+Math.tan(ph2/2)), 1 + Math.tan(ph1/2)*Math.tan(ph2/2));
S += E;
}
if (isPoleEnclosedBy(polygon)) S = Math.abs(S) - 2*Math.PI;
var A = Math.abs(S * R*R); // area in units of R
if (!closed) polygon.pop(); // restore polygon to pristine condition
return A;
// returns whether polygon encloses pole: sum of course deltas around pole is 0° rather than
// normal ±360°: blog.element84.com/determining-if-a-spherical-polygon-contains-a-pole.html
function isPoleEnclosedBy(polygon) {
// TODO: any better test than this?
var SumDelta = 0;
var prevBrng = polygon[0].bearingTo(polygon[1]);
for (var v=0; v<polygon.length-1; v++) {
var initBrng = polygon[v].bearingTo(polygon[v+1]);
var finalBrng = polygon[v].finalBearingTo(polygon[v+1]);
SumDelta += (initBrng - prevBrng + 540) % 360 - 180;
SumDelta += (finalBrng - initBrng + 540) % 360 - 180;
prevBrng = finalBrng;
}
var initBrng = polygon[0].bearingTo(polygon[1]);
SumDelta += (initBrng - prevBrng + 540) % 360 - 180;
// TODO: fix (intermittant) edge crossing pole - eg (85,90), (85,0), (85,-90)
var enclosed = Math.abs(SumDelta) < 90; // 0°-ish
return enclosed;
}
};
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */