|
| 1 | +import json |
| 2 | +from datetime import date |
| 3 | + |
| 4 | +from ccflow import DateContext |
| 5 | +from ccflow.callable import ModelEvaluationContext |
| 6 | +from ccflow.evaluators import GraphEvaluator, LoggingEvaluator, MultiEvaluator |
| 7 | +from ccflow.tests.evaluators.util import NodeModel |
| 8 | + |
| 9 | +# NOTE: for these tests, round-tripping via JSON does not work |
| 10 | +# because the ModelEvaluationContext just has an InstanceOf validation check |
| 11 | +# and so we do not actually construct a full MEC on load. |
| 12 | + |
| 13 | + |
| 14 | +def _make_nested_mec(model): |
| 15 | + ctx = DateContext(date=date(2022, 1, 1)) |
| 16 | + mec = model.__call__.get_evaluation_context(model, ctx) |
| 17 | + assert isinstance(mec, ModelEvaluationContext) |
| 18 | + # ensure nested: outer model is an evaluator, inner is a ModelEvaluationContext |
| 19 | + assert isinstance(mec.context, ModelEvaluationContext) |
| 20 | + return mec |
| 21 | + |
| 22 | + |
| 23 | +def test_mec_model_dump_basic(): |
| 24 | + m = NodeModel() |
| 25 | + mec = _make_nested_mec(m) |
| 26 | + |
| 27 | + d = mec.model_dump() |
| 28 | + assert isinstance(d, dict) |
| 29 | + assert "fn" in d and "model" in d and "context" in d and "options" in d |
| 30 | + |
| 31 | + s = mec.model_dump_json() |
| 32 | + parsed = json.loads(s) |
| 33 | + assert parsed["fn"] == d["fn"] |
| 34 | + # Also verify mode-specific dumps |
| 35 | + d_py = mec.model_dump(mode="python") |
| 36 | + assert isinstance(d_py, dict) |
| 37 | + d_json = mec.model_dump(mode="json") |
| 38 | + assert isinstance(d_json, dict) |
| 39 | + json.dumps(d_json) |
| 40 | + |
| 41 | + |
| 42 | +def test_mec_model_dump_diamond_graph(): |
| 43 | + n0 = NodeModel() |
| 44 | + n1 = NodeModel(deps_model=[n0]) |
| 45 | + n2 = NodeModel(deps_model=[n0]) |
| 46 | + root = NodeModel(deps_model=[n1, n2]) |
| 47 | + |
| 48 | + mec = _make_nested_mec(root) |
| 49 | + |
| 50 | + d = mec.model_dump() |
| 51 | + assert isinstance(d, dict) |
| 52 | + assert set(["fn", "model", "context", "options"]).issubset(d.keys()) |
| 53 | + |
| 54 | + s = mec.model_dump_json() |
| 55 | + json.loads(s) |
| 56 | + # verify mode dumps |
| 57 | + d_py = mec.model_dump(mode="python") |
| 58 | + assert isinstance(d_py, dict) |
| 59 | + d_json = mec.model_dump(mode="json") |
| 60 | + assert isinstance(d_json, dict) |
| 61 | + json.dumps(d_json) |
| 62 | + |
| 63 | + |
| 64 | +def test_mec_model_dump_with_multi_evaluator(): |
| 65 | + m = NodeModel() |
| 66 | + _ = LoggingEvaluator() # ensure import/validation |
| 67 | + evaluator = MultiEvaluator(evaluators=[LoggingEvaluator(), GraphEvaluator()]) |
| 68 | + |
| 69 | + # Simulate how Flow builds evaluation context with a custom evaluator |
| 70 | + ctx = DateContext(date=date(2022, 1, 1)) |
| 71 | + mec = ModelEvaluationContext(model=evaluator, context=m.__call__.get_evaluation_context(m, ctx)) |
| 72 | + |
| 73 | + d = mec.model_dump() |
| 74 | + assert isinstance(d, dict) |
| 75 | + assert "fn" in d and "model" in d and "context" in d |
| 76 | + s = mec.model_dump_json() |
| 77 | + json.loads(s) |
| 78 | + # verify mode dumps |
| 79 | + d_py = mec.model_dump(mode="python") |
| 80 | + assert isinstance(d_py, dict) |
| 81 | + d_json = mec.model_dump(mode="json") |
| 82 | + assert isinstance(d_json, dict) |
| 83 | + json.dumps(d_json) |
0 commit comments